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Why Study Slip Planes in BCC Metals?

• Inputs to large scale models

• Understand large scale 
experiments
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Ambiguity of Slip Planes in BCC Metals

• Screw dislocations dominate at 
low temperatures.

• Slip planes in BCC metals are 
often ambiguous

– Slip traces have been observed 
on:

• {110}

• {112}

• {123}

• Prevalence of Cross-Slip?
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Previous Observations of Slip in Tantalum

• Slip trace analysis in Ta:

– Wavy Slip at 4.2 K and above

– Slip lines identified are all {110}

– Adding trace impurities 
indicates {110}

– Slip tends towards the MRSSP 
as temperature increases

• Indentation experiments 
suggest {110} at RT.
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Composite Slip

• Observations of {110} and 
{112} slip can be explained by 
competing slip planes.

• They can also be explained by 
cross slip

– Screw dislocations are 
prevalent in BCC metals

– {112} slip can be comprised of 
{110} slip steps

– {110} slip can be comprised of 
{112} slip steps
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Metastable Core Structures:
Predictions From Atomistics

• Many atomistics simulations exhibit a 
polarized core

– Obeys C3 symmetry

– Has 2 degenerate structures: A & B

• Compact Core

– Obeys D3 Symmetry

• Split core

– Only satisfies the diad symetry

– Triply degenerate

– Sits on a {110} plane

– Metastable state between compact cores

Polarized Cores

(c) (d)Compact Core Split Core



How does {112} slip work in Atomistics?

Polarized core

Fig. 4. Comparison of MEPs of kink-pairs. Reaction coordi-
nates designate replica numbers.

Wen and Ngan, Acta Mater (2000)
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A->B
A->A
B->B
B->A

For motion to the right
Flips for motion to the left

Polarized cores can result in a favored slip direction, which, in conjunction with 
polarity flips results in net {112} slip from {110} slip steps 



Previous Atomistic Results: Ta

• Most models predict a compact 
core for Ta

• Interatomic potentials often show 
{112} slip

– Comprised of {110} slip events

• DFT shows similar results

{110}{112}
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How do we reconcile the experimental observations of {110} slip 
at low temperatures with atomistic simulations of {112} slip?



Compact core
D3 symmetry Peierls Potential

Why would a compact core, which has no structure preference for direction glide, give 
rise to {112} net slip from {110} slip steps?

Many Interatomic potentials that predict {112} 
slip with a compact core also predict a split core.

Does this influence the choice of slip planes?

How Do Compact Cores Give Rise to {112} 
Slip?
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Atomistic Results for Ta Potentials

• Compared 5 interatomic models

– All predict compact cores

– All exhibit net {112} slip

• Core Transformations 
typically occur first

– Compact->Split

• Slip then occurs from

– Split -> Split

Computed Peierls Potential

Slip path of a strain dislocation

Angular Dependent Potential (Mishin)
Acakland Thetford Finnis-Sinclair
Zhou (EAM)
Guelil (EAM)
Li (force matched EAM)



How Does the Compact Core Influence Slip?

• Low temperature / High stresses:

– The energy barrier from C->SA drops faster than C->SB even when the stress 
favors C->SB

– High stresses required to move from SA destabilize other core structures -> 
slip occurs SA->SA

• At higher temperatures / low stresses -> energy barriers between C->SA 
and C->SB are similar which leads to cumulative {112} slip.
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The stability of the Split core influences {112} slip.
Does the split core actually exist?



Density Functional Theory

• Due to PBCs, we use a a 
dislocation dipole, 231 atoms.

• Empirical potentials exhibit the 
camel hump Peierls potential.

• DFT does not show a 
metastable state

– Different XC: PBE (GGA) & LDA

– Different PP: PAW & USPP
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An Aside on Universality

• Consider 5 different BCC 
metals: Ta, V, Nb, Mo, W

• All Materials modeled show 
similar Peierls potentials

• Peierls potential height scales 
with the dislocation line 
energy.
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Slip planes Ta predicted by DFT

• Previous reports with DFT 
suggest {112} slip

– Isolated dislocation: 
Woodward and Rao (2002)

– Dipole: Segall et al.

• Conducted straining 
simulations on dipoles using

– PAW-PBE

– PAW-LDA

• Complex slip, not {110} but 
not {112}

Elastic straining

Dipole moves

Dipoles may not be the best test case for {112} slip
Can {112} slip exist for compact cores w/o split cores?

Positions
Initial 
Positions

Final Positions



FIB-milled Tensile Straining Bars 

1 m

Produces large uniform electron transparent 
tensile bars, but require extensive FIB-milling 
and annealing

• Micron bars, created by ion milling and 
FIB, will be used for in-situ TEM 
straining   – generation, propagation 
and interaction

• Uniform gauge length

• Large electron transparent region

• To better control the fracture process

• To study the dislocation dynamic beyond 
crack tip  



Dislocation Dynamics in Micro-straining 
Bars

• Dislocation motion in a {110} plane 

• Dislocations direction is <111>

<110>

 

Strain 
Direction

Dislocation motion can be observed in the plastic zone 
ahead of the fracture tip, as full line dislocations



Deformation of Polycrystals and Oligorystals

• Tensile tests on polycrystalline and 
oligocrystalline Ta.

• Surface Strains are measured 
using Digital Image Correlation

• Grain Orientations determined by 
EBSD

• This allows us to correlate Schmid 
Factors and Accumulated Plastic 
Strain.
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Correlation of Accumulated Plastic Strain 
and Schmid Factors

• Use a Spearmin Correlation to relate 
effective plastic strain to Schmid 
Factors.

• In poly crystals, {110} shows the 
strongest correlation

• Higher correlations by including “grain 
neighborhoods” (<20o misorientations).

• Oligocrystals show stronger 
correlations.

0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

Schmid Factor {110}<111>

E
ff

ec
ti

ve
 P

la
st

ic
 S

tr
ai

n 
(%

)

Confidence = 97.9%

Correlation = 10.3%

Correlation = 79.7%
Confidence = 99.9%

Carroll, Clark, Buchheit, Boyce & Weinberger, submitted (2013)



Slip Trace Analysis: Oligocrystal

• Slip trace analysis performed on the oligocrystal shows confusing picture 
of slip.

– Only slip planes within 5 degrees are shown.

– Most slip traces align with either {110} or {123}

– Very few align with {112}

– Agrees well with Schmid factor correlation



Slip trace analysis: Ta oligocrystal 2
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Discussion

• Literature suggests {110} slip in Ta at low T tending to 
MRSSP slip at high T.

• Most simulations show {112} slip at 0K

– ADP simulations show {112} slip at all temperatures

– {112} slip caused by core structures and their stability

• Core polarization

• Split core and compact core stability

– DFT simulations show {112} slip & {110}?

• {112} slip in simulations seems strongly dependent on core 
structures predicted.

• RT in-situ TEM straining experiments show {110} slip

• RT polycrystal and oligocrystal experiments support {110} 
slip.

This work supports {110} slip in Ta


