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Introduction

Nonlinear coupled drift-diffusion equations for semi-conductors

∇ · (λ2E)− (p− n+ C) = 0 and E = −∇ψ in Ω× [0, T ]

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = µnnE +Dn∇n in Ω× [0, T ]

∂p

∂t
+∇ · Jp +R(ψ, n, p) = 0 and Jp = µppE−Dp∇p in Ω× [0, T ]

E - electric field n - electron density
ψ - electric potential p - hole density

Want a numerical scheme that is:

(Standard approach)

stable in advection-dominated regime

→ Scharfetter-Gummel upwinding

locally conservative

→ finite volume method

These schemes are typically limited to topologically dual grids
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Introduction

Nonlinear coupled drift-diffusion equations for semi-conductors

∇ · (λ2E)− (p− n+ C) = 0 and E = −∇ψ in Ω× [0, T ]

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = µnnE +Dn∇n in Ω× [0, T ]

∂p

∂t
+∇ · Jp +R(ψ, n, p) = 0 and Jp = µppE−Dp∇p in Ω× [0, T ]

E - electric field n - electron density
ψ - electric potential p - hole density

Want a numerical scheme that is: (Our approach)

stable in advection-dominated regime → multi-dimensional S-G upwinding

locally conservative → control volume finite element method

Stable and robust on unstructured grids
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CVFEM Formulation

Electron continuity equation

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0

n = g on ΓD, Jn · n = q on ΓN

n(0,x) = n0(x) in Ω

Ci!

Ks!

br!

eij!
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vj!
Kt!
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"Cij

For advection-dominated problems nodal current density Jn can develop
spurious oscillations. Need some form of stabilization.
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Integrate over control volume Ci and apply divergence theorem

Z
Ci

∂n

∂t
dV −

Z
∂Ċi

Jn·~ndS = −
Z
Ci

R(ψ, n, p)dV +

Z
∂CN

i

qdS ∀vi ∈ V (Ω∪ΓN )

For advection-dominated problems nodal current density Jn can develop
spurious oscillations. Need some form of stabilization.
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Approximate electron density by nh(x, t) ∈ Gh
D(Ω)Z

Ci

∂nh
∂t

dV −
Z
∂Ċi

Jn · ~ndS = −
Z
Ci

R(ψ, nh, p)dV +

Z
∂CN

i

qdS

where Jn(nh(x, t)) = µnnh(x, t)E +Dn∇nh(x, t)

and nh(x, t) =
X

vj∈V (Ω∪ΓN )

nj(t)Nj(x) +
X

vj∈V (ΓD)

g(vj , t)Nj(x)

For advection-dominated problems nodal current density Jn can develop
spurious oscillations. Need some form of stabilization.
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Semi-discrete in space CVFEM formulationZ
Ci

∂nh
∂t

dV −
Z
∂Ċi

Jn · ~ndS = −
Z
Ci

R(ψ, nh, p)dV +

Z
∂CN

i

qdS

where Jn(nh(x, t)) =
X

vj∈V (Ω∪ΓN )

nj(t)(µnNjE +Dn∇Nj)

For advection-dominated problems nodal current density Jn can develop
spurious oscillations. Need some form of stabilization.
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Scharfetter-Gummel Upwinding

Assume that electric potential varies
linearly along eij

Eij = − (ψj − ψi)

hij
; ψi = ψ(vi);ψj = ψ(vj)

1-d boundary value problem along
primal edge (eij) for Jij ≈ Jn · nij

dJij
ds

= 0; Jij = µnEijn(s) +Dn
dn(s)

ds
n(0) = ni and n(hij) = nj

Ci!

Ks!

br!

eij!

vi!

vj!
Kt!

vk!

mik!

mil!

vl!

bt!

vm!

Kr! Ku!

bu!

bs!

mim!
! 

"Cij

When topologically dual
Jn · nij |mij = ±Jn · tij |mij

Outgoing flux through control volume boundary

Z
∂Ċi

Jn · ndS ≈
X

∂Cij∈∂Ċi

aijDn

hij
(nj (coth(aij) + 1)− ni (coth(aij)− 1)) |∂Cij |

where aij =
hijEij

2β
, β = kBT

q
, µn = Dn

β
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Multi-dimensional S-G Upwinding

Idea: Use H(curl)-conforming finite elements to expand edge
currents into primary cell

Nodal space, Gh
D(Ω), and edge element space, Ch

D(Ω), belong to an exact
sequence

given Ni ∈ Gh
D(Ω), ∇Ni ∈ Ch

D(Ω)

For the lowest order case

∇Ni =
X

eij∈E(vj )

σij
−→
W ij , σij = ±1

If the carrier drift velocity µnE = 0

Jn(nh) =
X

eij∈E(vj )

Dn(nj − ni)
−→
W ij

Exponentially fitted current density

JE =
X

eij∈E(Ω)

aijDn (nj (coth(aij) + 1)− ni (coth(aij)− 1))
−→
W ij
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Multi-dimensional S-G Upwinding

Standard S-GZ
∂Ċi

Jn · ndS ≈
X

∂Cij∈∂Ċi

Jij |∂Cij |

=
X

∂Cij∈∂Ċi

X
∂Cr

ij∈∂Cij

Jij |∂Crij |

Multi-dimensional S-G
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0@ X
ekl∈Kr

hklJkl
−→
Wkl(x

r
ij)

1A · nrij |∂Crij |

br!

vi!

mij!

vl!
! 

nij
r! 

t ij
r

! 

"Cij
r

Ci!

vi!

vj!

mik!

vk!

! 

nik
r

! 

"Cik
r! 

t ik
r

Kr!

Ci!

br!

vi!

vj!

mij!

mik!

Kr!

vk!

vl!
! 

nij
r

! 

nik
r

! 

"Cij
r

! 

"Cik
r

! 

t ij
r

! 

t ik
r

Jij =
aijDn

hij

`
nj
`
coth(aij ) + 1

´
− ni

`
coth(aij )− 1

´´

2/28/2013 16



Accuracy Test

Steady-state manufactured solution

−∇ · Jn +R = 0 in Ω
n = g on ΓD

n(x, y) = x3 − y2

un = µn∇ψ = (− sinπ/6, cosπ/6)

CVFEM-SG FVM-SG CVFEM-SU
L2 error H1 error L2 error H1 error L2 error H1 error

Grid Dn = 1× 10−3

32 0.4373E-02 0.7620E-01 0.4364E-02 0.7572E-01 0.5764E-02 0.10270E+00
64 0.2108E-02 0.4954E-01 0.2107E-02 0.4937E-01 0.2712E-02 0.6357E-01
128 0.9870E-03 0.3089E-01 0.9870E-03 0.3084E-01 0.1164E-02 0.3515E-01
Rate 1.095 0.681 1.094 0.679 1.221 0.854
Grid Dn = 1× 10−5

32 0.4732E-02 0.7897E-01 0.4723E-02 0.7850E-01 0.8161E-02 0.1310E+00
64 0.2517E-02 0.5477E-01 0.2515E-02 0.5460E-01 0.4194E-02 0.9312E-01
128 0.1298E-02 0.3834E-01 0.1298E-02 0.3828E-01 0.2122E-02 0.6590E-01
Rate 0.955 0.514 0.955 0.514 0.983 0.499

CVFEM-SG control volume finite element method with multi-dimensional S-G upwinding
FEM-SG finite volume method with 1-d S-G upwinding

CVFEM-SU control volume finite element method with streamlined upwind stabilization
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Robustness Test

Manufactured solution on
randomly perturbed grids

−∇ · Jn +R = 0 in Ω
n = g on ΓD

n(x, y) = x+ y
un = (− sinπ/6, cosπ/6)

Dn = 1.0× 10−5

Grid CVFEM-SG FEM-SG
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Application to Semiconductor Devices

To solve coupled drift-diffusion equations CVFEM-SG has been
implemented in Sandia’s Charon 2 code

Charon 2 built with Trilinos libraries (http://trilinos.sandia.gov/)
that provide

Linear and Nonlinear solvers
Temporal and spatial discretization
Automatic differentiation

PN Diode Coupled drift-diffusion equations

∇ · (ε0εsi∇ψ)− (p− n +Nd −Na) = 0 in Ω

−∇ · Jn + R(ψ, n, p) = 0 in Ω

−∇ · Jp − R(ψ, n, p) = 0 in Ω

R(ψ, n, p) =
np− n2

i

τp(n + ni) + τn(p + ni)

+(cnn + cpp)(np− n
2
i)

PN Diode
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PN Diode
Doping Dependence Test

Na = Nd = 1.0× 1016 Na = Nd = 1.0× 1017 Na = Nd = 1.0× 1018
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PN Diode
Strong Drift Case

Na = Nd = 1.0× 1017cm−3, Va = −1.5V
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FEM-SUPG solution develops undershoots and becomes negative in junction
region, while CVFEM-SG exhibits only minimal undershoots and values

remain positive.
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N-Channel MOSFET

source	
   drain	
  

gate	
  

substrate	
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Conclusions

CVFEM with the edge-element extension of classical S-G upwinding
offers a stable and robust method for solving the semiconductor
drift-diffusion equations

Performs well on unstructured grids

Does not require heuristic stabilization parameters

Although scheme is not provably monotone, violations of solution
bounds are lower than for comparable schemes with SUPG stabilization

More details in:

Bochev, Peterson, Gao (2013) "A new control volume finite element method for the
stable and accurate solution of the drift-diffusion equations on general unstructured
grids",CMAME 254, 126-145.
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