SAND2012-1251C

Clones: Underlying Patterns throughout the
Software Lifecycle

Submission Version

Abstract—While there has been marked interest in identifying
redundant patterns in software and their effect on software main-
tainability and stability, the ability to efficiently and effectively
identify this redundancy is still an open area of research. During
the study of a large, industrial project in which we analyzed
the applicability of using design metrics as predictors of change-
proneness in UML designs and traced the UML design objects to
final Java code representation, patterns of identical metric values
for classes and their implementation became evident. We label
our technique for identifying these metric clones as latent metric
clone analysis. Analyzing additional industrial study data, we
found that as much as 50% of both the design modules and the
implementation modules were metric clones. Additionally, due to
the fact we consider multiple phases of the software lifecycle, we
can efficiently identify design clones throughout development and
match them to their implementation. As part of our evaluation,
we were able to compare software module stability via change
orders to the co-occurrence of metric clones. Our analysis
suggests that module stability is fundamentally coupled to a clone
and non-clone pattern. We find that clones are not inherently
detrimental as previous research has conjectured, but knowledge
of their existence is extremely useful to practitioners as they
redesign or maintain large-scale software systems.

Keywords-Clones, Metrics, Latent Metric Clone Analysis, Pat-
terns in Software Lifecycle

I. INTRODUCTION

Duplicate or similar code, often referred to as code clones,
is a common occurrence in commercial software systems.
Depending on their context, these clones may or may not
adversely impact the development and stability of software
engineering projects. Multiple studies have confirmed this
duplicitous nature of the cloning phenomenon [1]-[9]. Clones
can also be introduced unintentionally or intentionally through
independent development efforts. Clones may be intentionally
created to improve program reliability or development speed.
The same functionality may be intentionally duplicated to min-
imize dependencies to deliver individual control. On the other
hand, the process of applying design patterns (e.g., pattern-
driven development on component platforms such as JEE and
.NET) increases the possibility of unintentional cloning. A
survey of clone research by Koschke lists many other root
causes for software clones [10].

Since many of the previous studies demonstrate that clones
are present in higher-level languages such as Java and C++,
it is not surprising that clones exist in other development
products, such as UML models. It is generally believed that the
use of modeling tools will increase over time and the industrial
standard for object-oriented software analysis and design will
be UML [11]. Development will evolve into a design activity

as new, high-level languages emerge and generative techniques
improve. A poor design with clones will result in rework,
slower development productivity and a decrease in the soft-
ware’s future extendibility. These trends indicate the necessity
of improved modeling skills and continuous assessment of
the design, including tracking clones throughout the software
lifecycle.

Independent of the reason for their existence, the identifi-
cation of clones in the design and implementation phase is
important. Clones resulting from bad designs impact quality
and maintainability [7]. It is well known that correcting an
error encountered by an end-user is an order of magnitude
more expensive than when finding it in earlier phases [12].
In this same light, identifying design clones and tracking
them through implementation offers valuable insights into their
behavior and the consequential development actions.

Approaches to identifying clones are an active research
topic. Most of techniques involve comparison of the identified
artifact expressed as text, tokens, an abstract syntax tree,
a program dependence graph, metrics and other direct or
abstracted structures or measures. The distance between each
clone comparison can range from exact to various degrees of
precision. Each technique holds both benefits and drawbacks
in identifying exact copies, syntactically identical copies and
copies with modifications. The metrics-identified clones are
rated as the best choice in identifying all types of clones and
can scale up for evaluating large systems [10].

In our research, we have developed a metrics-based ap-
proach for analyzing software designs (during both design and
implementation) that can help designers engineer quality into
the product. From our analysis of large industrial projects,
we have discovered that within a software system are hidden
relationships and structures that can be illuminated by eval-
uating and measuring software development artifacts. These
relationships can be used to answer questions about the sta-
bility of the software product and perhaps, more importantly,
guide software development techniques. Software development
is itself a pattern-selecting and pattern-making process and the
development pattern is inherent in the structure and execution
of the software. The coherent patterns or arrangements of
modules that are gradually realized become effective and
ontologically significant by virtue of their development. To
uncover these patterns, we calculate, collect, and analyze
a multitude of metrics. For example, we collect 155 UML
and 113 Java primitive and composite metrics. In analyzing
the design (UML) and code (Java) of two large industrial
projects, modules within each respective set were identified

that possessed exactly the same values for all of the calculated
metrics. We label our technique for identifying these metric
clones as latent metric clone analysis. One class or method
is a metric clone of another if both possess exactly the same
values for all of the metrics considered. When matching the
model data to the code data, entire class patterns emerged. To
distinguish individual model clones and code clones, a label
of class implementation clone was given to the set of modules.
Our contributions include:

o We present a scalable metric-based technique for identify-
ing clones in both software design objects (classes) and
the final code representation. Not only can we identify
clones in a single stage of the software lifecycle, we
can track them as they evolve during the development
process.

o Our work, based on the examination of large-scale indus-
trial systems and complete change order histories, lend
further credence to the belief that the impact of software
clones is dependent on their context and not uniformly
harmful. In fact, we find that many clones are more stable
than non-clone code.

The rest of the paper is organized as follows: We discuss
related work in Section II and provide an overview of our
metrics collection and analysis process in Section III. In
Section IV, we present experimental results demonstrating the
effectiveness of our technique at identifying clones, discuss
the validity of our results in Section V, and conclude in
Section VI.

II. RELATED WORK

The recent interest in code clones and software redundancy
has led to a significant amount of research in related areas. In
this section, we review previous work in three related areas:
the effect of clones on software projects, methods for clone
detection, and change tracking through the software lifecycle.

A. The Effects of Software Redundancy

As the prevalence of cloned code has been demonstrated
by multiple studies on a variety of systems [10], [13], a large
number of studies have been conducted in order to understand
the effects of this redundancy on large-scale software systems
[1]-[8]. These works fall primarily in two categories, with the
first being those that demonstrate clones are inherently bad for
software stability and maintainability and the second showing
clones are essentially neutral and do not adversely affect a
software system.

In the work by Lozano et al. [3], they developed a lexical-
based clone tracking tool called CloneTracker to determine
the frequencies of changes to both methods that have clones
and those that do not. The study demonstrated that cloned
methods change much more frequently than the methods
without clones, supporting the argument that clones are change
inconsistently and are harder to maintain than non-clone code.
Other work by Geiger et al. [2] studied the relation of clones
(at the file level) to the changes related to these files and
found that change to clones are inconsistently applied and

may at a later time need to be propagated, incurring extra
maintenance costs. Kim et al. [1] investigated the evolution
of code clones and showed that consistent changes to the
code clones of a group are fewer than anticipated, leading
to a higher maintenance cost. A similar study by Krinke [5]
looking at five different open source projects demonstrated that
that identified clones are inconsistently modified and prone to
potential instability. A recent study that works on industrial
code shows that inconsistent changes to code duplicates are
frequent and lead to severe unexpected behavior [7].

In contrast to the above studies, recent studies have cast
doubts on the fact that clones are always harmful, but instead
posit that developers and testers need to be aware of the
relationships in the code. A study by Aversano et al. [4]
found that “the majority of clone classes are always maintained
consistently” with the caveat that in some cases the lack of
consistent changes can indeed leads to bugs and higher main-
tenance costs. Bettenburg er al. [6] studied the inconsistent
changes of clones at the release level. They noted that the
number of defects due to inconsistent changes in clones is
substantially lower at the release level than at the revision
level and over time cloned code appeared to be more stable.
Rahman et al. [8] analyzed several large open source projects
and state that cloned code is not inherently “smelly” or difficult
to maintain.

Unlike previous works which use small code bases [3] or
open source projects [2], our work used large-scale industrial
software projects to verify our results. Additionally, we are
able to leverage software lifecycle artifacts and true change
orders as opposed to data mined from versioning software or
manual annotations [6].

B. Software Clone and Redundancy Detection

Previous work in the detection of software redundancy
and clones generally falls into one of three areas: lexical-
based [14], [15], graph-based [16]-[19], and metrics-based
detection [20], [21]. CCFinder [14] and CP-Miner [15] identify
clones by transforming the software program according to
language-specific rules into tokens and matching subsequences
of tokens. While lexical techniques are easy to adapt to various
languages, they often have trouble detecting clones produced
by natural editing patterns [26]. Graph- based detection tech-
niques such as those by Komondoor and Horwitz [16] and
Krinke [17] transform the program into dependency graphs
(PDG) using the control flow and data flow information of a
program and use isomorphic subgraph matching algorithms to
detect clones. Similar to PDG-based algorithms, CloneDR [19]
and the work by Jiang et al. [18] create abstract syntax
trees which are compared for similarity. While graph-based
clone detection techniques have high detection rates, they
generally are not scalable to large systems. The work by
Mayrand et al. [21] and Merlo et al. [20] identifies redundant
code by computing and comparing metrics based on interme-
diate representations of source code. These metrics capture
information about the architecture, data types, control flow,
and data flow. While our work is similar to the last two, we

collect metrics from both the design model and code base
and able to track the clones and changes through the software
lifecycle.

C. Tracking Software Changes

Recently, there has been interest in tracking clones through
a code base as it ages. Saha et al. [22] created a clone
genealogy extractor to track changes through multiple releases
of seventeen open source programs written in multiple pro-
gramming languages. They found that the majority of software
clones either propagate without major syntactic changes or
change consistently in the subsequent releases and this was
not generally affected by implementation language choice.
Krinke [23] studied the evolution of code in terms of clone
stability and concluded that cloned code is more stable than
non-cloned code. CloneTracker is a tool by Duala-Ekoko and
Robillard [24] that tracks clones during software development
by creating an abstract model of different sections and notify-
ing a developer when sections with similar abstract models
are edited. In our work, we look at the beginning stages
of the software lifecycle and track how clones evolve from
the design documents to become realized in executable code.
Additionally, we are able to track a history of changes not only
from repository information, but also from customer-driven
change orders.

ITI. ANALYSIS SYSTEM AND EXPERIMENTAL SETUP

Improvements in the software development process depend
on our ability to collect and analyze data drawn from the vari-
ous phases of the development lifecycle. We have developed a
metrics-guided methodology for software analysis that begins
with architectural design. To support this endeavor, a tool
architecture as seen in Figure 1 provides a clear separation
of the five subsystems needed to analyze the study data:
the External Data Collection (external source and process
information), the Repository System (processed representa-
tions), the Metrics Engine, the Analysis Engine and Report
Generation. The architecture is both extensible and flexible,
allowing for the incorporation of new analysis techniques and
user-requested functionality. To concentrate on the software
analysis, a lightweight incremental approach is featured to
complement specific analysis techniques. Collection and stor-
age are separated to extend future analysis to the various
sources of information about a software system.

Program representation is a critical issue in software analy-
sis and software re-engineering. It heavily relates to the porta-
bility and effectiveness of the software analysis tools that can
be developed. Our approach focuses on design artifacts and
source code representation in the form of an XML document.
For each representation, we create a data type definition (DTD)
and the source file is translated into an XML file using that
document structure. The DTD for Java, C/C++, Ada, UML
XMI and SDL have been created, although Figure 1 displays
only a subset of these for brevity. Polylingual projects can
also be analyzed. The software professional selects whether or
not to merge the analysis of the supported representations in

multi-language projects. The environment bridges the analysis
of metrics for the design and development phases of software
projects. It will trace the UML design objects (classes and
methods) to the final code representation (classes and meth-
ods).

Two of the design metrics developed in our research are
an external design metric D, and an internal design metric
D;. The calculation of D, focuses on a module’s external
relationships to other modules in the software system and is
based on information available during architectural design.
The metric D; incorporates factors related to a module’s
internal structure and is calculated during the detailed design
phase of software development. These metrics gauge project
quality as well as design complexity during the design phase
and subsequent phases thereafter. The primary objective is to
employ these metrics to identify fault-prone modules, or stress
points, in the structure of the software. Each metric can be
used independently depending on the lifecycle phase or they
can be combined to determine the stress-points and overall
quality of the product. Thus, in the implementation phase,
the metrics can be used to focus verification and validation
activities. For testing, the metrics can assist in determining
where testing effort should be focused and the types of test
strategies to employ. Further, it has been shown that D(G) -
the linear combination D, and D; - can be used to predict
and measure the impact of design decisions on the expected
reliability of a software product during the code and test
phases of development [25]. Applying D(G), the concept of
design significance becomes a viable and measurable attribute
that helps to identify those components for which design
decisions would have a significant effect on the expected
reliability of the software [26]. In the twenty years of metrics
validation, on a wide variety of projects ranging from missile
defense, satellite, financial and telecommunications systems, to
interactive games, the design metrics have identified at least
75% of the fault-prone components 100% of the time with
very few false positives [12], [27]-[31].

A discussion of model-level metrics is incomplete without
considering the relationship between similar metrics at the cor-
responding code level. In practice, the UML model represents
the design stage of a system. As implementation continues,
the model is updated. In this context, the difference between
the design metrics extracted from the UML model and design
metrics extracted from the source code will reflect properties
of the evolution of the system, rather than exclusively the prop-
erties of the design. Even when models and implementation
are synchronized, there will be a difference between metric
values. The UML design metrics are calculated from the UML
class diagram and, therefore, are collected at the class level of
abstraction.

Framed by the development process, the UML model design
metrics and the source design metrics can provide developers
with a comprehensive analysis of the delivery excellence of
their projects. By using the design metrics as the common
scale, an overall delivery excellence rating can be defined and
performance consistently analyzed and trended. Monitoring

L)
C Java
XML XML

External Data Collection

Changes External
C/C++ el L CHEILE Mapped to Metrics
Source| |Source Source Orders Modules Files
——] ~ N
C/C++ || Java Data Descriptor
Parser || Parser / i,

Description Analyzer
¥
Data XML
IProcess Info |

Metrics Engine

Metri
et.rlc_s 1]
Description

Metrics Data /

XML Internal
Representations

Analysis Engine

Metrics

Clone Analysis
Change Analysis
Timeslice Analysis

Repository System J

Stress Point Analysis

N

Report Generation

Fig. 1.

these trends from the design phase of development to the
coding phase, a final product of enhanced quality and reduced
costs, due to problems being exposed earlier in the project,
can be delivered. This matching provides the missing link
between the artifacts of design and implementation of a
software product. To our knowledge, there has been little work
exploring the relationship between the model of a software
system and the corresponding code through the evaluation of
similar metrics (design metrics) at each level of abstraction.

A. Other Clone Inferences

For every analyzed project, changes stemming from the
change report are bound to a module. Examining the process
information for each module has the potential to tailor activ-
ities to individual sets of modules rather than a one-size fits
all approach. In previous studies, change reports collected as
early as the requirements phase were provided. Such thorough
fault reporting is most helpful in determining the origin and
resolution of faults in the development process.

Specifically, we have been working within the domains of
UML models, large software repositories, software metrics,

Tool Architecture to Analyze Software Systems

change order systems, social/professional feedback and in-
trusion detection through alerts. Each of these domains has
a catalog of information to extract. A lightweight ontology
mechanism was introduced, labeled as Data Descriptor in Fig-
ure 1, to manage the similarities and differences of each data
set. The Description Analyzer (Figure 1) contains input/output
APIs that encapsulate and separate domain objects, enabling
tasks to be completed in a scalable, efficient and error-free
method while permitting these tasks to be populated with
extra features when necessary. The Analysis Engine shown in
Figure 1 has the capability to analyze a system with respect
to clones, changes, changes over time (time slices) and stress
points. For this paper, we focus on clone analysis.

IV. CLONE ANALYSIS RESULTS

The goal of our software analyses was to assess the predic-
tive ability of the design metrics in identifying change-prone
components in the UML design, plus trace the UML design
objects (classes and methods) to the final code representation
(Java classes and methods) to uncover relationships and clone
patterns between the UML design and the Java code. By defi-

Project 1 Project 2
design code design code
i % # % # % i %
of mods including clones 4846 16124 754 1261
metrics collected 156 114 156 114
of unique modules 3119 64% 8045 50% 168 22% 445 35%
unique mods wfwao changes | 668 2451|21% 74%| 2802 5243 35% 65% [95 73 |57% 43%| 445 0| 100% 0%
of clones 1727 36% 8079 50% 286 78% 816 B3%
of clone groups 334 1255 a4 113
clone group w/fwo changes 13 321 | 4% 96%| 743 512|39% 41% |13 31 (30% 70%| 113 0| 100% 0%
total changed modules 705 15% 10080 63% 178 24% 1261 100%
total changes 1803 11998 2907 2023

Fig. 2.

Overall Project Data

Group 21: DMA Clone ID: 2001234 Number of Clones 4

MetricValues
e[t ss][o2 21s I el L 1L
Protected AreaPanel LEMEBEE_FUNCTION||2
FriendlyUnitCheckPanel|[MEMBER_FUNCTICN||2
NEMBEER_FUNCTICN||32
NEMBEER_FUNCTICN||1

Changes

Targethlanager
AlertsPanel

Fig. 3. A Clone Group Example

nition, the design artifacts are not complete and only represent
an early model of the actual system to be developed. For this
reason, analyses of the metrics from both the UML model
and the source code were completed to draw conclusions
concerning the relationship between models of the system
and the corresponding code. Our analyses consisted of three
separate examinations: the metrics analysis of the XMI data;
the metrics analysis of the Java data; and the matched XMI
and Java metrics.

Two project analyses using the above outline have been
completed. Project 1 is a complete system. Project 2 is a
subset of a larger, older system. In analyzing the design (UML
design) and code (Java) of both Projects 1 and 2, modules
within each respective set were identified that possessed ex-
actly the same values for all of the metrics under consideration,
i.e., module clones. This redundancy does not allow one to
distinguish one module from the other and, therefore, for our
analysis, clones are grouped as one entity. To identify the clone
group of a module, a unique number was assigned to each
group by the tool. The clones are assigned numbers from our
Analysis Engine (Figure 1).

A. Metrics Analysis of XMI Data

This analysis revealed that Project 1’s UML design con-
tained 334 groups of clones accounting for 1727 modules
from the total of 4846 modules, which means that 36% of the
modules were design clones (Figure 2). Change Orders (COs)

were distributed to design classes. Of these 334 clone groups
only 4% or 13 of the clone group had COs. The percentage of
total modules changed during design for Project 1 was low at
15% for a project of this size. The 13 clone groups represent
37 changed clones and thus 705 total changed modules in
design (as seen in Figure 2). In Project 2’s design phase,
78% of the modules were identified as clones. With a higher
percentage of clone modules in Project 2, it seems plausible
that the number of clones with changes would also increase.
As shown in Figure 2, design clone groups from Project 2
had 30% of its clone groups identified with changes. In both
studies, design clone modules had fewer changes than non-
clone (unique) modules.

B. Metrics Analysis of Java Data

Many code modules in Projects 1 and 2 were also clones
at 50% and 65% respectively. In the coding phase many
more clones groups were identified with changes at 59% and
100%. For each project, the non-clone and clone modules were
categorized by COs for both design and code. When observing
the full spectrum of COs, the clone groups are clustered at the
lower end of the CO range, while the higher end of COs are
void of clones. This pattern was observed in both the design
and code phases. These data suggest that both ends of the CO
spectrum are fundamentally coupled to a clone or non-clone
pattern.

C. Other Clone Inferences

A clone group can contain modules with different CO
values. For example, in Figure 3, the design clone group
2001234 containing 4 modules has COs ranging from 1 to
32. Such inconsistencies in the CO count require a review.
Similar to design clones, a code module clone group can also
contain modules identified with a different number of COs.
Naturally, as the number of clones in a group increases, the
probability that all of the modules in the clone group possess
the same CO count decreases.

Clones can skew metric data resulting in poorer analysis re-
sults. Figure 4(a) displays the presence of noisy data produced
by clones and Figure 4(b) displays the data when clones are

120
100
80 = Number of
Modules
—C0s

60 \
40
20

: LT

(a) All Modules

120

100

80
60

40 \
20 \\

= Non Clones

—COs

(b) Non-clone Modules

Fig. 4. Number of modules per class listed in descending order by change
order value

grouped. Shown in Figure 4(a) is the relationship between the
CO value of the class and the number of modules within the
class. The horizontal axis lists the number of modules per class
in decreasing order by the CO count. As seen in Figure 4(a),
there is a mild positive correlation (.5) that classes with more
modules have more COs. In Figure 4(b), removing the clone
modules from the number of modules in each of the classes
results in an increased positive correlation (.9) between COs
and non-clone modules. The relationship between clones and
COs was also evident in the UML classes where non-clone
classes possessed the higher concentrations of COs versus their
clone counterparts.

D. Matched XMI and Java Metrics

The methods from Projects 1 and 2 were matched with their
respective class from the XMI information. When matching
the design data to the code data, entire class patterns of clones
were uncovered. To distinguish individual design class clones
and code module clones, a label of class implementation
clone was given to a set of modules. An example of a class
implementation clone is provided in Figure 5. The design
clone, identified as pattern 2019, the first row of the table,
was repeated 29 times within the UML design of the project.
When matched with its code modules, the design pattern 2019
consisted of six virtually identical code patterns. Pattern 2019-
1, displayed in Figure 5, lists the design record at the top of
the table and the five Java modules contained in that class,

namely Java clones with Clone IDs 1001,1002,1003,1017 and
1021.

For the remaining five patterns, one module is exchanged for
another. For example, in pattern 2019-2 (not shown here) clone
module 1021 is replaced with an extra copy of clone 1003
resulting in patterns 1001,1002, 1003,1017 and a extra copy
of 1003. There are eight class implementation clones with the
2019-2 pattern. Pattern 2019-3 replaces a non-clone module
for either clone module 1003 or clone module 1021 depending
on the comparison. In the final three patterns, other minor
variations are found. Observing these patterns draws attention
to the variation of COs among almost identical classes. For
example, in the instances where a non-clone module replaced
a clone module, the COs among the variations of the patterns
fluctuate more than variations where a clone is swapped for
anther clone. In our analysis, we also observed that the class
implementation clone pattern underscores the variation of COs
among almost identical class designs.

V. THREATS TO VALIDITY

In this section, we discuss the threats to validity that could
adversely affect the results we present and the generalization
of our technique.

A. Construct Validity

Our paper focuses on determining metric clones and only
considers two modules to be clones if all of the metrics are
identical, minimizing the potential for false positives. Our
work has presented evidence that changes are required more
often for non-clone modules. In Section IV, we show a strong
positive correlation between the change orders and non-clone
modules. This correlation is demonstrated for both the UML
classes and the finished Java code.

B. Internal Validity

The change orders were collected from the corporate repos-
itory for software changes and represent a complete set of
modifications made to the project. As each change order is
well documented and directly associated with a module, we
do not have to worry about errors induced by linking changes
and bug fixes to potential locations in the code. Not only do
we have the advantage of well-organized change orders, but
also we have the completeness of change orders over the entire
life of the system.

C. External Validity

In order to keep our findings and methodology as general-
izable as possible, our work has examined multiple industrial
software projects and found consistent results across those
projects. Additionally, as the change orders are the mandated
way to incorporate changes and bug fixes to the industrial
systems, we claim the change orders represent the issues that
are typically associated with a typical industrial project.

Noduole NAMEAD

Methods

1 _15_5_8cel27f_1221744687687_615554_760 MEMBER_FUNCTION
2 _15_5_8cel2¥f_1ZX21744687687_615554_v60 PROTOTYPE_CONSTRUCTOR Yes
3 _15_5_8cel27f_1221744687687_615554_760 MEMBER_FUNCTION

4 _15_5_8cel27f_1221744687687_615554_760 MEMBER_FUNCTION
> _15_5_8cel27f 1221744687687 _615554_760 CLASS

Fig. 5.

VI. CONCLUSION

Our analyses suggest that both ends of the change order
spectrum, namely those modules with few or no changes and
those modules with many changes, are fundamentally coupled
to a clone or non-clone pattern. When matching the XMI data
to the Java data, entire class patterns emerged. These patterns
underscore the variation of COs among almost identical class
designs. Through this study, we presented the effectiveness
of the evaluation of design to implementation, allowing for
continuous assessment. These results also imply that early
class categorization can correctly identify problem methods
later in development.

The foundation of our previous software design research
is the result that the design metrics De and Di are excellent
predictors of fault-prone components. Cloning can distort this
design metric technology as it introduces duplicate values,
throwing off stress-point thresholds leading to stress points
that may not be fault-prone. We have seen in this study that
clones can permeate the lifecycle phases from analysis through
implementation. Awareness of these patterns will ensure the
applicability of these design metrics to systems with significant
cloning.

We believe as stated in the introduction that there is an
abundance of information that can be gathered from each of
the products produced during software development (spec-
ifications, design, code, test cases, etc.). Unlike traditional
metrics tools that tell you specific information about the
current product and essentially provide a record of the past,
our direction is to use latent metric clone analysis as predictive
in a proactive process. This study emphasizes that much can
be learned from metrics and also much can be expected from
their use.

VII. ACKNOWLEDGMENTS
This research is based upon work supported by the National
Science Foundation under Grant No. 0968959.

REFERENCES

[1] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of
code clone genealogies,” ACM SIGSOFT Software Engineering Notes,
vol. 30, pp. 187-196, 2005.

TYPE
_15_5_8celd7i_1221744587687_615554_v50 CLASS NORMAL

[2]

[3]

[4]

[5]
[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

Clone Clone ID Changes

Yes 2019 7
Wes 1021

1002
es 107
Yez 1003
Yes 10

Class Implementation Clone: Pattern 2019-1

R. Geiger, B. Fluri, H. Gall, and M. Pinzger, “Relation of code
clones and change couplings,” Fundamental Approaches to Software
Engineering, vol. 3922, pp. 411-425, 2006.

A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the harm-
fulness of cloning: A change based experiment,” in 4th International
Workshop on Mining Software Repositories, 2007.

L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in //th European Conference on Software Main-
tenance and Reengineering, 2007.

J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in 14th Working Conference on Reverse Engineering, 2007.
N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan,
“An empirical study on inconsistent changes to code clones at release
level,” in 16th Working Conference on Reverse Engineering, 2009.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 31st International Conference on Software Engineer-
ing, 2009.

F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
7th IEEE Working Conference on Mining Software Repositories, 2010.
S. Jarzabek and Y. Xue, “Are clones harmful for maintenance?” in 4th
International Workshop on Software Clones, 2010.

R. Koschke, “Survey of research on software clones,” in Dagstuhl
Seminar Proceedings on Duplication, Redundancy, and Similarity in
Software, 2007.

H. Storrle, “Towards clone detection in uml domain models,” in 4th
European Conference on Software Architecture: Companion Volume,
2010.

D. Zage and W. Zage, “An analysis of the fault correction process in a
large-scale sdl production model,” in 25th International Conference on
Software Engineering, 2003.

C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach,” Science
of Computer Programming, vol. 74, pp. 470-495, 2009.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, pp. 654—670, 2002.
Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding
copy-paste and related bugs in operating system code,” in 6th Conference
on Symposium on Opearting Systems Design & Implementation, 2004.
R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” Static Analysis, vol. 2126, pp. 40-56, 2001.

J. Krinke, “Identifying similar code with program dependence graphs,”
in 8th Working Conference on Reverse Engineering, 2001.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International
Conference on Software Engineering, 2007.

1. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in International Conference on
Software Maintenance, 1998.

E. Merlo, G. Antoniol, M. Di Penta, and V. Rollo, “Linear complexity
object-oriented similarity for clone detection and software evolution
analyses,” in IEEE International Conference on Software Maintenance.
IEEE, 2004, pp. 412-416.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
International Conference on Software Maintenance, 1996.

R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and K. Schneider,
“Evaluating code clone genealogies at release level: An empirical
study,” in 10th IEEE Working Conference on Source Code Analysis and
Manipulation, 2010.

J. Krinke, “Is cloned code more stable than non-cloned code?” in 8th
IEEE International Working Conference on Source Code Analysis and
Manipulation, 2008.

E. Duala-Ekoko and M. Robillard, “Tracking code clones in evolving
software,” in 29th International Conference on Software Engineering,
2007.

W. Zage and D. Zage, “Smart: Security measurements and assuring
reliability through metrics technology,” in 21st Annual Systems and
Software Technology Conference, 2009.

J. Stineburg, W. Zage, and D. Zage, “Measuring the effect of design
decisions on software reliability,” in International Society of Software
Reliability Engineers (ISSRE), 2005.

W. Wong, J. Horgan, M. Syring, W. Zage, and D. Zage, “Applying
design metrics to predict fault-proneness: a case study on a large-scale
software system,” Software: Practice and Experience, vol. 30, pp. 1587—
1608, 2000.

W. Zage and D. Zage, “Relating design metrics to software quality:
Some empirical results,” SERC Technical Report 74-P, Tech. Rep., 1990.
——, “Evaluating design metrics on large-scale software,” IEEE Soft-
ware, vol. 10, pp. 75-81, 1993.

W. Zage, D. Zage, J. McGrew, and N. Sood, “Using design metrics
to identify error-prone components of sdl designs,” in 9th SDL Forum,
1999.

W. Zage and D. Zage, “Metrics directed verification of uml designs,”
SERC Technical Report 281, Tech. Rep., 2006.

