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Abstract—
Understanding on-node application power and performance

characteristics is critical to the push toward exascale computing.
In this paper, we present an analysis of factors that impact
both performance and energy usage of OpenMP applications.
Using hardware performance counters in the Intel Sandybridge
X86-64 architecture, we measure energy usage and power draw
for a variety of OpenMP programs: simple micro-benchmarks,
a task parallel benchmark suite, and a hydrodynamics mini-
app of a few thousand lines. The evaluation reveals substantial
variations in energy usage depending on the algorithm, the
compiler, the optimization level, the number of threads, and even
the temperature of the chip. Variations of 20% were common and
in the extreme were over 2X. In most cases, performance increases
and energy usage decreases as more threads are used. However,
for programs with sub-linear speedup, minimal energy usage
often occurs at a lower thread count than peak performance.

Our findings informed the design and implementation an
adaptive run time system that automatically throttles concur-
rency using data measured on-line from hardware performance
counters. Without source code changes or user intervention,
the thread scheduler accurately decides when energy can be
conserved by limiting the number of active threads. For the target
programs, dynamic runtime throttling consistently reduces power
and overall energy usage slightly (around 3%).

I. INTRODUCTION

The trade-off between performance and energy usage has
been a constraint for several generations of commodity micro-
processors. Decreasing voltage and clock frequency is one
common mechanism to reduce power that can result in sub-
stantial energy savings for some applications (see Section V).
Increasing frequency, e.g., using Intel’s Turbo Boost or AMD’s
TurboCore, can save energy by completing the problem faster
(but typically drawing higher power). Intel’s Sandybridge chip
provides multiple hardware techniques to control frequency
and hardware performance counters to dynamically monitor
the chip’s energy usage. With these tools the runtime system
can actively participate in the energy/performance trade-off.

By limiting the number of active threads, the runtime can
reduce the instantaneous power demand, but the effect on
overall energy usage depends on how overall execution time is
changed by running on fewer hardware threads. When shared
hardware resources (last-level cache, memory or network band-
width) are oversubscribed, reducing the number of threads will
not significantly affect total execution time. In this case fewer
active threads can result in energy savings. However, if there

is little interaction between threads and hardware resources are
sufficient to support their execution, decreasing the number of
threads will result in longer execution time and an increase in
the overall energy utilization for the application.

Our work focuses understanding energy usage and run time
performance of OpenMP multicore applications. To that end,
the contributions of this paper are 1.) an analysis of factors that
impact both performance and energy usage and 2.) an adaptive
run time system that automatically throttles concurrency based
on online measurements of system performance data.

The evaluation of several OpenMP programs, including
micro-benchmarks, an OpenMP task benchmark suite, and a
mini-app of several thousand lines, reveals substantial variation
in energy usage depending on the application, the compiler, the
optimization level, the number of threads and even the chip
temperature. We analyze the effects of these variables on both
power and performance, observing the interaction between
execution time and energy usage. On a two socket system,
10% to 20% variation in power draw between applications
was common (120 - 150 Watts); in the extremes the variation
was over 2X (59.0 to 158.7 Watts). Within a given application,
compiler optimizations can decrease time to completion with
a similar power draw for a net decrease in total energy usage,
often by a factor of two, but ranging from less than 1X to
more than 5X. Performance increases as parallelism increases.
Generally this reduces overall energy consumed, but for several
tests that exhibit imperfect parallel speedup, energy consumed
was minimized before maximum parallelism was reached.

Using dynamic performance measurements, the hierarchi-
cal scheduler [1] of the Qthreads lightweight threading runtime
system [2] is modified to perform active power management
for OpenMP applications. Dynamic Voltage and Frequency
Scaling (DVFS) requires tens of thousands of cycles to adjust
voltage[3]. By modifying the duty cycle register setting, cycle
frequency can be adjusted quickly and easily. Integration of
a simple model into the Qthreads scheduler enables it to
accurately decide when limiting the number of threads will
have little to no effect on performance yet reduce the overall
energy usage of the program significantly. For applicable pro-
grams, dynamic concurrency throttling by the runtime system
successfully reduces power and overall energy usage up to 3%.

II. EVALUATING ENERGY USAGE

For large exascale systems, the runtime system will per-
form energy management on-node and probably across nodes.
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To better understand the number and scope of energy variables
available to the runtime system, we evaluate various OpenMP
programs. OpenMP programs can implement many different
parallel algorithms and can provide single node multithreading
as part of larger parallel applications, e.g., using MPI.

The test programs fall into three groups. The first are
locally-written micro-benchmarks to examine several different
types of algorithms. These simple programs implement funda-
mental algorithms such as matrix multiplication and sorting.
They are not tuned and represent default implementations of
generic algorithms. The second group of tests applications
are benchmarks from the Barcelona OpenMP Task Suite
(BOTS) [4] that exercise various aspects of task parallelism
in OpenMP. They include protein alignment, sparse LU de-
composition, Strassen matrix multiply, simulation of a health
system, integer sorting, Fibonacci number calculation, and the
nqueens problem. Some of these applications are similar to our
micro-benchmarks but include key optimizations. Several have
cutoff thresholds limiting the amount of generated parallelism
so that the granularity of the tasks is coarse enough to
amortize scheduling overhead costs. Two of the benchmarks
have alternate versions to compare task generation patterns. For
more information, see [5]. The final test is a proxy application,
or mini-app, that emulates a larger application that will run
on exascale systems. LULESH is a mini-app of about 3000
lines of code that represents the behavior of a production
hydrodynamics application at Lawrence Livermore National
Laboratory (LLNL) [6]. It uses a Lagrangian method to solve
the Sedov blast wave problemin three dimensions. We used
the OpenMP version of LULESH from the LLNL web site.

All tests were performed on an M620 Dell blade with
two Intel Xeon E5-2680 (Sandybridge) CPUs and 64GB of
memory. The default clock speed of the processors is 2.70GHz.
Intel’s Turboboost feature was disabled in the BIOS. The blade
runs a 3.5.0 pre-release version of the Linux kernel to support
additional hardware counter access. Each test was repeated
10 times and the lowest execution time is presented in our
results. Modern processors have enough internal heterogeneity
that execution times often vary by several percent run to run.
Different implementations of OpenMP have potentially large
variations between runs particularly for task-based algorithms,
but repeating experiments mitigates this variation.

A. Intel Sandybridge RAPL interface
The Intel Sandybridge architecture added the Running Av-

erage Power Limit (RAPL) interface. The RAPL interface sup-
ports client power limit control, providing the ability to manage
power from the supervisor level. It provides mechanisms for
proactive or reactive response to thermal events. It also tracks
power usage and allows control over the maximum power draw
of the chip. For this work, the MSR PKG ENERGY STATUS
counter was used to track energy usage by each socket. It is
frequently updated but should be accessed less often to smooth
jitter in the power usage. and counts in 15.3 microJoule units.
Since the counter is only 32 bits wide it can wrap around in
a few minutes. The measurement tools monitor the number of
wraps to obtain valid application energy consumption numbers.

B. RCRdaemon
The Resource Centric Reflection (RCR) daemon runs at

supervisor level and provides performance information to var-

ious clients through a self-describing hierarchical data structure
in a shared memory region. It tracks hardware performance
counters within a core, e.g., floating point operations, and
resources shared by multiple cores, e.g., L3 cache misses, and
resources shared by multiple sockets, e.g., NIC utilization. The
overhead of running the daemon is about 16% of one of the
16 cores in the 2-socket test system.1

The RCRdaemon information is available to the program-
mer through a simple API that delineates a code region for
measurement with a start and end call. As currently imple-
mented the code run time must be at least 0.1 second. When the
second call is reached, the elapsed time, the amount of energy
used (in Joules), the average power (in Watts) and the most re-
cent temperature of each chip (from IA32 THERM STATUS)
is output. Each test program has been modified to include the
calls either explicitly in the source or implicitly through the
Qthreads runtime.

C. Evaluation
We first evaluate the effects of static decisions on overall

energy and performance. These decisions include choice of
compiler (ICC versus GCC), algorithm design and implemen-
tation, compiler optimization level, and number of threads
used. We only explore a small subset of the potential energy
effects possible. The number of compilers tested could be
larger and the number of compiler optimization options is
almost endless. One effect we observed previously and tried
to mitigate is a noticeable reduction in energy usage when
the system is cold2. With that exception, power generally
correlated with execution time. All numbers reported here are
from experiments run on a warm system.

1) Compiler Variation: Two different compiler/OpenMP
runtimes were tested: Intel’s ICC/OpenMP and GNU’s
GCC/OpenMP. Table I shows that differences in energy usage
between the two compilers do exist (at optimization level O2),
but not consistently enough to favor one compiler over the
other. For 12 of the 14 test applications, GCC used less average
power but for 5 tests ICC’s better execution time resulted in
lower total energy cost for the program. ICC for Fibonacci
(with and without cutoffs) runs faster, but GCC’s advantage
running BOTS with cutoff (96.5 W vs 157.0 W) resulted in
GCC using less total energy (639 J vs 899 J). This advantage
was not consistent, for instance, ICC used 11% less average
power for the BOTS Strassen matrix multiply.

Historically, optimizations in both compilers have been
focused on completion time and not concerned with energy
usage. As power concerns become paramount for exascale
systems, understanding the individual differences between the
compiler families (e.g., how GCC uses 2% less energy on dijk-
stra) will become a factor in choosing the proper compilation
strategy to use for a particular application.

2) Algorithm Variation: Differences in the underlying al-
gorithms and the optimization techniques used in their imple-
mentations result in large variations in performance and power.

1In future work, we plan to substantially reduce the overhead by eliminating
data compaction at each update. A non-compacted structure will use more
shared memory but allow simple load and stores for reading and updates.

2Of 100 tests run on an initially cold system, the first run always used less
energy and drew less power. For example, on the first run the NAS benchmark
BT.C used 3.2% less energy (24666J vs 25477J) and lower power (151.0W
vs 155.8W) than later runs with the same execution time.



GCC ICC
Application Time Total Joules Ave Watts Time Total Joules Ave Watts
reduction 75.6 10201 134.9 77.1 10422 135.1
nqueens 5.5 649 118.0 6.0 714 119.0

mergesort 22.5 1364 60.6 20.5 1211 59.1
fibonacci 77.0 7115 92.3 13.5 1935 143.2
dijkstra 4.5 574 127.6 4.5 589 130.9

BOTS alignment-for 1.5 187 124.3 2.1 276 130.7
BOTS alignment-single 1.5 195 129.4 2.0 261 130.1

BOTS fib w/cutoff 6.6 639 96.5 5.7 899 157.0
BOTS health w/cutoff 1.6 216 134.5 1.5 205 135.8

BOTS nqueens w/cutoff 2.0 249 124.2 1.9 242 126.7
BOTS sort w/cutoff 1.5 188 124.9 1.4 189 134.1

BOTS sparselu-single 6.8 996 145.9 6.8 1010 147.7
BOTS strassen w/cutoff 24.1 3700 153.7 25.2 3483 138.3

LULESH mini-app 48.6 7064 145.4 14.5 2242 154.5

TABLE I. EXECUTION TIME AND ENERGY USAGE (16 THREADS): OPTIMIZATION -O2, WITH ICC -IPO FOR SPARSELU

-O0 -O1 -O2 -O3
Application Time Joules Watts Time Joules Watts Time Joules Watts Time Joules Watts
reduction 79.1 10578 133.7 77.1 10360 134.3 75.6 10201 134.9 76.6 10302 134.4
nqueens 14.5 1962 135.2 6.5 800 123 5.5 649 118.0 6.5 846 130.1

mergesort 77.0 4752 61.7 23.0 1390 60.4 22.5 1364 60.6 22.5 1359 60.3
fibonacci 83.1 8012 96.4 83.6 8031 96.1 141.6 13806 97.5 77.1 7115 92.3
dijkstra 8.5 1195 140.5 5.0 657 131.3 4.5 574 127.6 4.5 572 127.2

BOTS alignment-for 5.9 895 151.0 1.8 244 135.1 1.5 187 124.3 1.6 207 128.7
BOTS alignment-single 5.7 864 150.9 1.8 245 135.7 1.5 195 129.4 1.5 193 128.1

BOTS fib w/cutoff 21.2 2157 101.8 14.2 1416 100.0 6.6 639 96.5 10.1 1014 99.9
BOTS health w/cutoff 1.6 224 139 1.6 218 135.4 1.6 216 134.5 1.6 217 134.6

BOTS nqueens w/cutoff 5.6 835 148.5 2.0 252 125.3 2.0 249 124.2 1.9 238 124.6
BOTS sort w/cutoff 2.8 389 138.2 1.5 186 123.1 1.5 188 124.9 1.5 182 121.0

BOTS sparselu-single 35.6 5517 154.8 18.3 2577 141.0 6.8 996 145.9 6.8 1001 146.5
BOTS strassen w/cutoff 34.5 5509 159.6 24.3 3702 152.3 24.1 3700 153.7 24.1 3679 152.3

LULESH mini-app 79.6 12134 152.4 48.6 7078 145.7 48.6 7064 145.4 47.6 6939 145.8

TABLE II. OPTIMIZATION LEVEL EXECUTION TIME AND ENERGY USAGE (GNU GCC 16 THREADS)

For GCC (O2), the power draw varied from 60.6W for an
unoptimized mergesort application to 153.7W for a modestly
optimized Strassen matrix multiply. Most applications drew
between 120W and 145W, a 20% variation. The range for ICC
was similar (59.0W to 158.0W). A better understanding of al-
gorithms and optimization could allow higher level schedulers
to co-locate high power work with lower power work to limit
thermal intervention across a system, or to schedule high power
work on sockets with better cooling. General conclusions
are hard to make; algorithms that overlap memory traffic
with computation require more peak power than memory-
or computationally-bound algorithms, but overlapping often
reduces execution time and total energy costs.

3) Compiler Optimization: Compiler optimizations affect
execution time, average power usage, and total energy con-
sumption. For GCC, Table II, there is no simple relation-
ship between increasing optimization level and energy use
or average power. Increasing the optimization level generally
improves performance, but O2 outperforms O3 in several
cases, e.g., reduction and nqueens. Using O3 generally draws
less power than O1 or O2, but in the case of nqueens O3
uses substantially more (130.1W vs. 118.0W). For energy
consumption, there is no clear winner between O2 and O3.

For ICC, Table III, level O0 generally uses the most
time, average power, and total energy. There are exceptions
like fibonacci where O0 execution time is the same as other
optimizations levels and it uses slightly less power. As with
GCC, execution time differs minimally between O2 and O3 for
most of our test applications. Using O3 generally draws less
power (1.4W for mergesort), but minor execution variations
can mask any power improvements.

Overall the decrease in energy use from optimization is
substantial, typically a factor of 2 or 3 less in the optimized
code. The difference in energy use between the specific op-
timization levels is less clear and it is difficult to pinpoint a
single “best” set of optimizations to minimize energy use for
all applications. Finding the optimal compiler optimizations
for any given application will require autotuning. While such
methods are worthwhile for some heavily used kernels and
applications, for general applications a dynamic (runtime)
mechanism will likely be required.

4) Thread Count: The OS and runtime system can control
the number of threads available for the execution of each appli-
cation. We studied the effect of varying parallelism by limiting
the number of OpenMP threads to less than the available
hardware limit of 16. If thread executions are completely inde-
pendent, the reduction of parallelism should increase execution
time proportionally. In modern processors, many hardware
resources, particularly in the memory subsystem, are shared
between hardware threads. These shared resources, e.g., shared
caches, can improve performance by reducing memory latency,
but contention for them can limit performance.

The simple micro-benchmarks have not been tuned gen-
erally and scale poorly as shown by the left-hand graphs in
Figures 1 and 2. Nqueens scales to 16 threads, dijkstra scales
to 8, and mergesort only scales to 2 threads. Serial versions of
Fibonacci and reduction both outperform any parallel version.
16 threads of Fibonacci took 50% longer than the serial time
and reduction time increased by 220%. Both are elided from
the graph to preserve scale for readability. Most of the BOTS
tests (left-hand graph in Figures 3 and 4) have near linear
speedup with their curves overlaying each other. Three BOTS



-O0 -O1 -O2 -O3
Application Time Joules Watts Time Joules Watts Time Joules Watts Time Joules Watts
reduction 80.1 10892 135.9 77.1 10337 134.0 77.1 10422 135.1 77.6 10512 135.4
nqueens 15.5 2143 138.1 6.0 710 118.3 6.0 714 119.0 6.0 710 118.3

mergesort 112.1 6963 62.1 20.5 1234 60.1 20.5 1211 59.0 21.5 1239 57.6
fibonacci 13.5 1928 142.7 13.5 1933 143.0 13.5 1935 143.2 13.5 1938 143.4
dijkstra 7.5 1054 140.4 4.5 595 132.2 4.5 589 130.9 4.5 589 130.7

BOTS alignment-for 5.6 859 152.8 2.4 322 133.7 2.1 276 130.7 2.2 290 131.3
BOTS alignment-single 5.5 845 153.0 2.3 308 133.4 2.0 261 130.1 2.1 279 132.2

BOTS fib w/cutoff 10.5 1612 154.1 7.7 1162 150.3 5.7 899 157.0 5.7 894 156.2
BOTS health w/cutoff 1.6 228 141.9 1.5 205 135.8 1.5 205 135.8 1.5 204 135.0

BOTS nqueens w/cutoff 5.0 773 154.0 2.3 295 127.6 1.9 242 126.7 1.9 231 121.0
BOTS sort w/cutoff 2.0 297 147.5 1.3 175 134.0 1.4 189 134.1 1.3 176 134.3
BOTS sparselu-for 30.4 4829 158.7 6.7 999 148.4 6.8 1014 148.4 6.6 986 148.6

BOTS sparselu-single 30.2 4788 158.4 6.7 997 148.1 6.8 1010 147.7 6.6 983 148.0
BOTS strassen w/cutoff 37.2 5482 147.3 25.8 3761 145.8 25.2 3483 138.3 24.8 3498 140.0

LULESH mini-app 52.1 8132 156.2 15.5 2360 152.1 14.5 2242 154.5 14.5 2233 153.8

TABLE III. OPTIMIZATION LEVEL EXECUTION TIME AND ENERGY USAGE (INTEL ICC 16 THREADS), WITH -IPO FOR SPARSELU
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Fig. 1. SIMPLE/LULESH GCC Speedup and Normalized Energy Consumption
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Fig. 2. SIMPLE/LULESH ICC Speedup and Normalized Energy Consumption

tests, health (6.7), sort (12.6), Strassen (4.9) and lulesh (4.0)
have speedups below 15. Each of these programs experiences
some form of contention limiting its performance.

The energy consumption of a processor is driven by many
factors, including frequency, voltage, number of active transis-
tors, leakage current, etc. A large portion of each processor is
devoted to the hardware structures shared between cores. Thus
each additional active core uses much less energy than the first
core. As long as performance increases proportionally, adding
cores improves overall energy consumption. Figures 1 and 2
show that for most of the example applications that was
the case. The four programs that scaled poorly have unusual
energy consumption curves. As thread counts increase above

8 for the programs, the additional energy usage from each
addtional thread is not matched by a corresponding execution
time reduction and the overall energy consumption of the
program rises. The increase ranges from 17% for lulesh to
30% for dijkstra.

The observed increase in energy usage as thread parallelism
increases exposes potential runtime energy savings. Simple
runtime models can use hardware performance counters to rec-
ognize many forms of dynamic contention that limits scaling.
Run time systems have the potential to change the number of
active hardware threads over time using hardware mechanisms
to idle one or more threads and greatly reduce the power
consumed. A system that dynamically adjusts parallelism to
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Fig. 3. BOTS GCC Speedup and Normalized Energy Consumption
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Fig. 4. BOTS ICC Speedup and Normalized Energy Consumption

control energy consumption can have the ability to limit energy
consumption with little impact on execution time.

III. USING QTHREADS TO EXECUTE OPENMP
Qthreads [2] is a cross-platform general-purpose parallel

run time library designed to support lightweight threading and
synchronization in a flexible integrated locality framework.
Qthreads directly supports programming with lightweight
threads and a variety of synchronization methods, includ-
ing non-blocking atomic operations and potentially blocking
full/empty bit (FEB) operations. The Qthreads lightweight
threading concept and its implementation are intended to match
future hardware environments by providing efficient software
support for massive multithreading.

In the Qthreads execution model, lightweight threads
(qthreads) are created in user-space with a small context
and small fixed-size stack. Unlike heavyweight threads such
as pthreads, qthreads do not support expensive features like
per-thread identifiers, per-thread signal vectors, or preemptive
multitasking. Qthreads are scheduled onto a small set of worker
pthreads. Logically, a qthread is the smallest schedulable unit
of work, such as a set of loop iterations or an OpenMP task,
and a program execution generates many more qthreads than
it has worker pthreads. Each worker pthread is pinned to a
processor core and assigned to a locality domain, termed a
shepherd. There may be multiple worker pthreads per shep-
herd, and shepherds may be mapped to different architectural
components, e.g., one shepherd per core, one shepherd per
shared L3 cache, or one shepherd per processor socket.

OpenMP is supported by Qthreads through the ROSE
source-to-source compiler and its XOMP interface [7]. Al-
though Qthreads XOMP/OpenMP support is incomplete, it
accepts every OpenMP program accepted by the ROSE com-
piler. OpenMP directives are outlined and mapped to functions
and data structures in the Qthreads library. Explicit tasks and
chunks of loop iterations are implemented as qthreads

A. MAESTRO Extensions to Qthreads
The MAESTRO project [8] has implemented alternative

thread scheduling mechanisms and polices within the Qthreads
runtime. The Sherwood hierarchical scheduler [1] recognizes
that on non-uniform memory access (NUMA) machines some
threads share a last-level cache and a local memory. Those
threads can take advantage of that locality by sharing a LIFO
work queue. Constructive cache sharing avoids high-latency
accesses and saves memory bandwidth. Work stealing among
the queues provides system-wide load balancing.

The Sherwood scheduler has been extended to allow
scheduling decisions to be made based on current contention
for memory bandwidth. It was integrated with the Resource
Centric Reflection system [9] to modify scheduling policies
to account for dynamic utilization of various shared hardware
resources across a multi-socket multi-core node. The driving
idea is that thread performance will be impacted not only
by the code running on that thread, but also by the code
running on other threads sharing hardware resources. Based
upon on-line measurements of system resource usage, the run
time system changes the number of worker threads active at



any thread initiation point (the beginning of a parallel loop
iteration chunk or task instantiation). Internal mechanisms are
implemented in Qthreads to allow the number of active threads
to vary dynamically to support this ability.

IV. AUTOMATIC DYNAMIC CONCURRENCY THROTTLING

In Section II, we showed that for some programs, total
energy consumption is reduced by running with less than the
maximum number of available threads. Qthreads/MAESTRO
has the ability to manipulate thread scheduling policies based
on hardware counter information. Combined with the RAPL
interface in the Intel Sandybridge architecture, the infrastruc-
ture exists to build a scheduler that automates dynamic thread
throttling. It will limit the amount of active parallelism in
regions of code where power usage is high and contention
for a shared resource limits execution performance.

Automatic throttling for Qthreads is implemented using
two daemons: the system RCRdaemon, described in Sec-
tion II-B, and, inside the Qthreads runtime, a user-level dae-
mon that reads the shared memory region updated by RCRdae-
mon. The latter daemon activates every 0.1 seconds and uses
very little CPU time. This granularity was chosen to allow
fluctuations in the energy counters to dissipate. (DVFS could
support this modulation frequency but could only slow all cores
or none, whereas our duty cycle changes are per-core.) The
polling frequency is adjustable to allow control of overhead
versus responsiveness. It measures two metrics: current power
utilization and memory bandwidth. The observed values are
classified as High, Medium, or Low. When both conditions are
High, a flag is set to activate throttling at the next opportunity.
If both conditions are Low, throttling is disabled. The Medium
range does not toggle throttling, but avoids hysteresis effects
that occur when observed values hover near the threshold.

Inside the runtime, the scheduler was modified to check
if throttling is active. Each shepherd maintains an counter of
active worker threads. When a worker thread looks for work
(either a new task or parallel loop iterations), if the active
thread count for this shepherd is greater than the shepherd-
local throttling limit, then that worker thread is placed in a
spin loop. It waits for one of four conditions: throttling de-
activation; application completion; parallel region termination;
or parallel loop termination. In the spin loop, the thread does
no productive work and is run in a low power mode.

Most previous work in this area, described in Section V,
has used DVFS to run in a low power state. For this ap-
plication, DVFS has two significant disadvantages. First, as
currently implemented, it affects all cores on a processor. It
also requires significant OS and hardware overhead to adjust
the voltage without having instructions fail. Dynamic throttling
will require individual cores to be rapidly placed in a low
power state, so we use a different hardware mechanism. The
duty cycle of individual cores can be modified using a control
register (MSR)3. On the Sandybridge architecture, the effective
frequency of the clock can be reduced to 1/32nd of the
actual frequency. By slowing the processor in a tight memory
spin loop, each thread saves about 3W. For our tests idling
four threads saved over 12W (in one case 134W vs. 147W).
Adjusting the duty-cycle is not instantaneous, but our mea-

3Both DVFS and duty cycle modification require kernel permission level at
the hardware, therefore dynamic power adjustment must be run as root.

Configuration Time Total Joules Ave Watts
16 Threads - Dynamic 48.4 6860 141.7
16 Threads - Fixed 45.5 7089 155.9
12 Threads - Fixed 48.2 6341 131.5

TABLE IV. EXECUTION TIME AND ENERGY USAGE ON LULESH
USING MAESTRO (OPTIMIZATION -O3).

Configuration Time Total Joules Ave Watts
16 Threads - Dynamic 16.04 2262 140.9
16 Threads - Fixed 16.34 2306 141.0
12 Threads - Fixed 15.83 2236 141.2

TABLE V. EXECUTION TIME AND ENERGY USAGE ON DIJKSTRA
USING MAESTRO (OPTIMIZATION -O3).

surements show it takes only the amount of time equivalent to
approximately 250 memory operations (including call and OS
overhead to access the MSR). Thus, duty-cycle modification
provides low-overhead hardware-supported power control.

A. Throttling Models
The RCRdaemon records the average power drawn across

intervals for each socket in the system. In our test two-socket
system, we used the results from the application benchmark
evaluation to set our high and low power benchmarks for each
socket. Since only a few applications exceeded 150W for their
entire execution, we chose 75W per socket as our metric for
high energy usage. The power draw of almost all applications
exceeded 100W during execution, so 50W per socket was
chosen as our low power point. The low value was picked
after looking at the 12 thread results, attempting to allow the
high power applications to run with 12 threads, but to reset
when average power regions were encountered.

When only average power is used to determine throttling,
it often limits thread count for programs running at high
efficiency and increased overall energy consumption. To reduce
this behavior, we check the number of outstanding memory
references in the memory subsystem. In previous studies [10],
each processor was found to have an effective maximum
outstanding memory references count, above which memory
bandwidth does not increase but memory latency worsens. The
high value is chosen to be 75% of the maximum achievable
number and the low is 25% of that number.

B. Throttling Results
Four test programs showed power utilization curves for

which throttling the amount of concurrency could result in
a total reduction in energy consumed. We examine each to
evaluate the effectiveness of our simple throttling implementa-
tion. On the other applications, which already scale well, our
throttling implementation never detected the need to throttle
and resulted in only minor overheads (up to 0.6%).

1) LULESH Mini-App: Table IV shows that concurrency
throttling is partially effective. Limiting the parallelism reduces
average power of lulesh by 14.2W at the cost of increased
execution time (2.9 sec). This resulted in a total energy savings
of 229J (or about 3.3%). The execution time matched the 12
thread case, but turning the threads off at the OS level saved
an additional 10.2W and 519J.

2) Simple Microbenchmark Dijkstra: Table V shows that
the energy decrease from 16 to 12 threads of the simple micro-



Configuration Time Total Joules Ave Watts
16 Threads - Dynamic 1.33 173.0 130.0
16 Threads - Fixed 1.26 176.3 139.4
12 Threads - Fixed 1.35 166.9 123.0

TABLE VI. EXECUTION TIME AND ENERGY USAGE ON BOTS
HEALTH USING MAESTRO (OPTIMIZATION -O3).

Configuration Time Total Joules Ave Watts
16 Threads - Dynamic 23.7 3601 151.7
16 Threads - Fixed 24.1 3716 154.2
12 Threads - Fixed 26.9 3505 130.3

TABLE VII. EXECUTION TIME AND ENERGY USAGE ON BOTS
STRASSEN USING MAESTRO (OPTIMIZATION -O3).

benchmark dijkstra was entirely the result of a quicker execu-
tion with fewer threads. The average power was effectively
unchanged. The reduced thread count eased contention for
some shared resources and allowed a faster execution. When
throttling is enabled, the power remains about the same and
about half of the lost performance is recovered resulting in a
1.9% power improvement (3.1% possible).

3) BOTS Benchmark Health: The BOTS benchmark health,
Table VI, decreases execution time by 6%(0.9sec) but increases
power by 12% (16.4W) as the thread count increases from 12
to 16 threads. The automated throttling recovers about half of
the increased power (9.4W). This results in an execution 5%
slower than 16 fixed threads using 7% less power and a small
decrease in total energy (173J vs 176.3J).

4) BOTS Benchmark Strassen: The fastest execution for
BOTS Strassen occurred with throttling enabled (see Ta-
ble VII). The 1.6% execution time improvement combined
with the 1.6% reduction in power resulted in the throttled
version using 3.2% less energy. Most of the execution was
done with 16 threads, resulting in energy and power usage
comparable to 16 threads rather than the 18% lower power
required with only 12 threads.

C. Overall Effectiveness
Throttling is only useful when the CPU is using a high

percentage of the available power and execution is delayed
due to contention a some point in the system. When programs
effectively use all the threads, reducing the number of threads
significantly increases total execution time, raising overall
power utilization. When latencies are limiting performance,
parallelism needs to stay high, even if memory contention
occurs. If the applications in our study are representative of
typical multicore applications, between a quarter and a third
of programs (or program phases) may see energy savings
from throttling. Reducing parallelism dynamically is effective
without any modifications to the application. Duty-cycle modi-
fication by the runtime saves over half the energy that could be
saved by having the OS put the hardware thread to sleep. The
savings are mitigated by the longer execution times resulting
in a net gain of only about 3%. With better hardware idle
mechanisms the improvements could be larger.

V. RELATED WORK

Over the last decade or so there has been considerable
research into power management, initially for embedded de-
vices and then later for HPC systems and applications. The

embedded community has responded to the power challenge
through improvements to make the system as well as the ap-
plications power-aware [11], [12]. Embedded devices typically
have stricter power constraints but less restrictive performance
requirements compared to the HPC systems addressed here.

Power management on HPC systems has focused on using
the available hardware mechanisms for controlling energy
use. The most common mechanism has been voltage and
frequency scaling, used in either inter-node [13], [14] or intra-
node methods. Our technique is comparable to the intra-node
efforts. Early intra-node work by Ge, et al. [15] explored
opportunities to save energy at fixed frequencies for memory-
bound applications. Freeh, et al. [16] used offline traces to
manually divide the work into phases that are run at several
frequencies do determine the most energy efficient choice.
The Tiwari, et al. Green Queue [17] automates the process of
finding phases and optimal frequencies using power models.
A number of efforts use hardware performance counters [18],
[19], [20] to compute optimal off-line settings. Several projects
estimate energy usage based on hardware counters with direct
correlation including cache access [21], MIPS [22] and CPU
stall cycles [23]. Li, et al. [24] address DVFS and dynamic
concurrency throttling for hybrid, multi-node MPI+OpenMP
applications. They statically determine the best concurrency
level for each OpenMP phase and explore dynamic algorithms
to reduce power utilization in nodes that are idle due to
load imbalance. All these approaches estimate energy usage,
whereas MAESTRO measures energy using the new hardware-
supplied energy counter. In contrast to our duty-cycle modifi-
cation, DVFS-based work has the dual drawbacks of 1) large
transition time overheads and 2) global effect on all cores on a
chip (currently). Duty-cycle modification can be activated and
deactivated very quickly and on a single core basis.

Recently an additional hardware mechanism, power clamp-
ing, has been introduced on Intel SandyBridge, along with
similar mechanisms on IBM Power 6 and 7 (capping) and
AMD Bulldozer (capping and thermal design power limits).
Rountree, et al. [25] examine the effect of clamping for an
HPC application (NAS MG). Their work addresses proces-
sor performance variation as HPC moves from performance
scheduling to power scheduling. Concurrency throttling to
match parallelism to available power would operate well
within a multi-node power clamping environment. However,
our current work seeks to reduce energy usage, not to respect
a fixed power bound. Other work that saves energy by turning
off components includes Dynamic Sleep Signal Generator by
Youssef et al. [26], which uses off-line traces to predict when
functional units can be put to sleep.

VI. CONCLUSIONS

Software optimization of energy usage is just beginning. In
its early stages, users and developers often rely on brute force
energy optimization strategies that resemble strategies used in
early autotuning. Modern processors make the entire process
opaque by aggressively idling temporarily unused hardware.
We examined two compilers, along with a variety of algorithm
and optimization levels, and discovered that there are no simple
answers for energy usage for all different applications.

The general rule of thumb “hurry up and finish” works
well for about 2/3 of the applications studied. The base
power draw is high enough that increasing power to complete



execution more quickly is normally advantageous to the total
energy consumed. In four programs whose concurrency scaled
poorly, we found a degree of concurrency beyond which
the effectiveness of additional parallelism no longer justifies
the additional energy used. For these programs the minimum
energy did not correspond with the number of threads to obtain
maximum performance. As core counts increase on processors
and hardware resources shared between cores become bottle-
necks to execution performance, limiting parallelism to control
energy costs will become more attractive.

The Qthreads runtime was modified to automate the de-
tection of ‘excess’ parallelism, using the Intel Sandybridge
hardware performance counters throughout execution. By re-
ducing parallelism when power and memory bandwidth usage
are both high, the energy consumption for all four programs
with poor scaling was reduced. The savings are a fraction of
the potential savings, due to current overheads in the software
and the hardware mechanisms for idling the unused threads.

Concurrency throttling, as presented, is a mechanism for
saving energy within a single node of a larger system. The
interface to control active parallelism and monitoring of energy
consumption made available by the runtime system will be
useful to higher level tools that seek to control energy usage
across multi-node systems. In the future, we envision energy
tools that control not only parallelism but also processor
speed and dynamic hardware resource allocation in response
to system bottlenecks or load imbalance.
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