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 Implement ice sheet PDE flow models of varying fidelity (Stokes, Higher-Order, L1L2). 
 Uses Trilinos very heavily (FASTMath liaison). 

 Close connection to Perego/Gunzberger at FSU. 
 Interface to MPAS framework (LANL collaboration) for mesh, advection, temperature solve, 

topology data. 
 Interface to DAKOTA software for UQ (QUEST liaison) . 

 Collaboration on applications with Jackson at UT Austin. 
 Work on scalability: particularly preconditioning (Tuminaro) and performance (Worley). 
 Post-processing and V&V through LIVV (Kate Evans). 

* Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) project 

funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and 

Biological and Environmental Research. 

Sandia’s Role in the PISCEES* 

Project 

Objective: Develop Unstructured Grid Finite Element Code for  
Velocity-Stress Solves using MPAS/Trilinos  

(MPAS/Trilinos “FELIX” Dycore) 

Sandia Staff: Salinger, Kalashnikova, Eldred, Tuminaro, Jakeman, Perego. 
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Stress-Velocity Solver within the 

MPAS/Trilinos Dycore 

• Stress-velocity finite element solver with three different fidelity ice flow 
models:  

 

 L1L2. 
 

  First order (a.k.a. higher-order) Stokes. 
  Nonlinear physics implemented, w/o and w/ basal sliding, and 
convergence verified. 
  Good agreement with published results for test cases (ISMIP-HOM, 
Dome). 
 Preliminary UQ studies. 
 

 Full Stokes. 
  Linear full Stokes physics with PSPG velocity/pressure finite elements 
implemented and convergence verified. 
  Nonlinear full Stokes physics with PSPG velocity/pressure finite 
elements implemented. 

 Accuracy limited by stabilization. 5/15 



First Order (a.k.a. Higher-Order) 

Stokes Model 

• Derived as approximation of the Stokes model under the assumption that the aspect ratio 
𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

• System of two coupled non-linear PDEs for 𝑢 and 𝑣 velocities of ice:  
 
 
 
         with Glen’s law viscosity: 
 

 
 
• Boundary conditions:  
 
 
• Numerical Method: 

• Discretization: classical Galerkin FEM with structured or unstructured mesh. 
• Nonlinear solver: Newton’s method  

• Automatic differentiation (AD) Jacobians using Sacado package of Trilinos. 
• Continuation in 𝛾 → 10−10 using LOCA package of Trilinos. 

• Linear solver: preconditioned GMRES with ILU or algebraic multigrid preconditioner.  
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First Order (a.k.a. Higher-Order) 

Stokes Model: Convergence Study 

• 2D Method of Manufactured Solutions 
(MMS) problem: source terms 𝑓1 and 𝑓2  
are derived such that  

 
 

      
 is the exact solution to  

 
 
 

• Low order elements attain expected convergence 
rates; super-convergence in higher-order elements 
observed (above). 
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First Order (a.k.a. Higher-Order) 

Stokes Model: ISMIP-HOM Test C 

• Standard test case of Stokes models with basal sliding. 
 
• Bedrock and top surfaces are given by:  
 
 

 
• Sliding boundary conditions prescribed on basal 

boundary with: 
 

 
 

• Periodic boundary conditions in lateral directions 𝑥 
and 𝑦.  

 
• Excellent agreement between results computed in 

Trilinos FELIX dycore and published results. 

Velocity 𝑢 at top surface 
(𝐿 = 20) 
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First Order (a.k.a. Higher-Order) 

Stokes Model: ISMIP-HOM Test C 

(continued) 

𝐿 = 10 𝐿 = 20 

𝐿 = 40 𝐿 = 80 

Surface velocity 𝑢 as a function of 𝑥 at 𝑦 = 𝐿/4, 80𝑥80𝑥20 mesh  9/15 



First Order (a.k.a. Higher-Order) 

Stokes Model: Dome Test Case 

• Test case that simulates 3D flow field 
within an isothermal, parabolic shaped 
dome of ice with circular base. 

 

• No-sliding (no-slip) boundary conditions 
at basal boundary.  

 

• Stress-free boundary conditions at top 
surface. 

 

• No-slip boundary conditions in lateral 
directions 𝑥 and 𝑦.  

 

• Robust unstructured mesh generation 
using Sandia in-house Cubit meshing 
package. 

 

• Good agreement between results 
computed in Trilinos FELIX dycore and in 
Glimmer CISM and LifeV. 

Trilinos FELIX 

Glimmer CISM 10/15 LifeV (Perego et al.) 



First Order (a.k.a. Higher-Order) 

Stokes Model: UQ Study for Dome 
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• Modified dome test case to have basal sliding boundary condition at bedrock with: 
 

 𝛽 ~ Normal(mean = 1 kPa a/m, std. dev. = 0.2 kPa a/m)  
 

• UQ study with 1000 samples of 𝛽.   

𝛽 vs. max 𝑣-velocity  PDF of max 𝑣-velocity  



Full Stokes Model 

• Ice flow modeled as non-Newtonian incompressible fluid obeying  Stokes’ equations: 
 

 
      with Glen’s law viscosity: 
  

 
 

• Boundary conditions:  
 
 
 
 

• Numerical Method: 
• Discretization: classical Galerkin FEM with structured or unstructured mesh.  

• Currently, code only supports equal-order velocity/pressure finite elements with 
PSPG stabilization. 

• Nonlinear solver: Newton’s method  
• Automatic differentiation (AD) Jacobians using Sacado package of Trilinos. 
• Continuation in 𝛾 → 10−10 using LOCA package of Trilinos. 

• Linear solver: preconditioned GMRES with ILU or algebraic multigrid preconditioner.  
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Full Stokes Model: Convergence  

Study for Linear and Non-linear Stokes 

  Constant-coefficient Stokes flow physics with PSPG velocity/pressure finite elements verified 
on MMS problems, e.g., problem with the following exact solution:  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
  For non-linear Stokes flow physics with Glen’s law viscosity, accuracy of solution with PSPG 
velocity/pressure finite elements is limited by stabilization.  

• Future work: add capability to employ mixed velocity/pressure finite elements. 
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Summary and Future Work 

• Development of stress-velocity solver within the MPAS/Trilinos FELIX Dycore of 
PISCEES is well underway.   

• Rapid code development due to leveraging of dozens of Trilinos capabilities. 
• First order (a.k.a. higher-order) Stokes physics implemented and verified. 
• Full Stokes nonlinear physics to be completed after addition of mixed 

pressure/velocity finite element capability into code (coming soon). 
• L1L2 physics coming soon. 
 

• Also coming soon:  
• Interface to MPAS for mesh advection/temperature solve (Perego). 
• Interface to DAKOTA for UQ (Eldred, Jakeman). 
• Optimization algorithms for inversion/calibration (collaboration with C. Jackson). 
• Performance/scalability studies on larger problems/more realistic geometries 

(Worley/Tuminaro).  
• Post-processing and V&V using LIVV (Evans). 
 

Thank you for your attention! 
Questions? 15/15 
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