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i Sandia’s Role in the PISCEES™
Project

Objective: Develop Unstructured Grid Finite Element Code for
Velocity-Stress Solves using MPAS/Trilinos
(MPAS/Trilinos “FELIX” Dycore)

= |mplement ice sheet PDE flow models of varying fidelity (Stokes, Higher-Order, L1L2).
= Uses Trilinos very heavily (FASTMath liaison).
= Close connection to Perego/Gunzberger at FSU.
» |nterface to MPAS framework (LANL collaboration) for mesh, advection, temperature solve,
topology data.
= |nterface to DAKOTA software for UQ (QUEST liaison) .
= Collaboration on applications with Jackson at UT Austin.
= Work on scalability: particularly preconditioning (Tuminaro) and performance (Worley).
= Post-processing and V&V through LIVV (Kate Evans).

Sandia Staff: Salinger, Kalashnikova, Eldred, Tuminaro, Jakeman, Perego.

* Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) project
funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and 15 @ Sandia
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“Albany Code”™. Component-Based
Software Development in Action
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MPAS/Trilinos FELIX Dycore:
Leveraging of Albany Code Base

lterative -

Multi-Level

2. Scalable
Solvers

R

y, Pat

Field Manager

4.UQ: Analysis Tools 5. CESM Stev . Matt, Version Control
QUEST./ Optimization | . CISM _ Build System
Dakota uQ Diagnostics Regression Testing
, . Advection
. Temperature
Application Nonlinear Problem
) Model Discretization
Solvers
Nonlinear |
Transient 1. PDEs
e Higher-Ordgy;
* Stokes frina,
Linear Solve e L1L2 Andy
e Coupled
i——¢ ManyCore Node I Irem erature
Linear Solvers | PDE Assembl mplicit
| Node Kernels i y Advection
]
l

Discretization

Sandia

National
Laboratories

4/15 @



‘ Stress-Velocity Solver within the
MPAS/Trilinos Dycore

» Stress-velocity finite element solver with three different fidelity ice flow
models:

O LiL2.

V] First order (a.k.a. higher-order) Stokes.
VI Nonlinear physics implemented, w/o and w/ basal sliding, and
convergence verified.
VI Good agreement with published results for test cases (ISMIP-HOM,
Dome).
V] Preliminary UQ studies.

O Full Stokes.
V] Linear full Stokes physics with PSPG velocity/pressure finite elements
implemented and convergence verified.

I Nonlinear full Stokes physics with PSPG velocity/pressure finite
elements implemented.
® Accuracy limited by stabilization. /15 @Samua
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First Order (a.k.a. Higher-Order)
Stokes Model

Derived as approximation of the Stokes model under the assumption that the aspect ratio
d is small and normals to upper/lower surfaces are almost vertical.

E‘T :( 2€r +*&-yy-.- f‘-.r:y-: €z )
e System of two coupled non-linear PDEs for u and v velocities of ice: T L
L= —( Ery. €rr +2f-yy, €z )
-V - (2ué)) = —pg fr—g.. . L fou; Ouj
, o %= 3 \0z; " omi
_v'{z'”-fg} — _'ﬂgm‘j (e [&.H
A = flow rate factor
with Glen’s law viscosity: n = Glen’s law exponent =3
] { L ] v = regularization parameter
_ —L .9 3 T +3 + 3 + 3 T A = slding coeflicient > ()
p= 5;1 (€2, + €y T Canbyy + €, HEL T )2 g >
* Boundary conditions: ¢, .n =0, & n =0, on I',,
u =, v =10, on 'y

2pu€) n+fu =0, 2pé -n+pfv =0, only

Numerical Method:
* Discretization: classical Galerkin FEM with structured or unstructured mesh.
* Nonlinear solver: Newton’s method
* Automatic differentiation (AD) Jacobians using Sacado package of Trilinos.
 Continuationiny = 1071% using LOCA package of Trilinos.
* Linear solver: preconditioned GMRES with ILU or algebraic multigrid preconditioner.

iandia
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‘ First Order (a.k.a. Higher-Order)
Stokes Model: Convergence Study

* 2D Method of Manufactured Solutions 10
(MMS) problem: source terms f; and f,
are derived such that
-4
u = sin(27z)cos(2my) + dmx, _10 i
. . O
v = —cos(2mr)si(2ry) — 3Ty E
@
is the exact solution to = 10° -
E T 3
~V - (2ué) = f1. 23 Quad 4
~V - (2p&2) = fo 10" Tri 6 -
Quad 9
-10
10 e C
107 107 10"

Mesh size h

* Low order elements attain expected convergence
rates; super-convergence in higher-order elements

observed (above).
s ()
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‘ First Order (a.k.a. Higher-Order)
Stokes Model: ISMIP-HOM Test C

Standard test case of Stokes models with basal sliding.

Bedrock and top surfaces are given by:

0.8
s(r,y) = —rtanca,
blz,y) = slz.y)—1 06
Sliding boundary conditions prescribed on basal 04
boundary with:
0.2
2T 21T
Alr,y) =1 +sin ) sin [ 222
L L 5
0 0.2 04 0.6 0.8
X
Periodic boundary conditions in lateral directions x

Velocity u at top surface

and y.
Y (L = 20)

Excellent agreement between results computed in
Trilinos FELIX dycore and published results.
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-y ' First Order (a.k.a. Higher-Order)
g ~ Stokes Model: ISMIP-HOM Test C
(continued)
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First Order (a.k.a. Higher-Order)
Stokes Model: Dome Test Case

* Test case that simulates 3D flow field
within an isothermal, parabolic shaped

. . . "l‘
dome of ice with circular base. o = solufion. Y
) E?é?0392394
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* No-sliding (no-slip) boundary conditions
at basal boundary.
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» Stress-free boundary conditions at top
surface.
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* No-slip boundary conditions in lateral Trilinos EELIX
directions x and y.

* Robust unstructured mesh generation _
using Sandia in-house Cubit meshing  solytiony

.80

package.

- fa0

* Good agreement between results ,_ LO

computed in Trilinos FELIX dycore and in _%3%3544
Glimmer CISM and LifeV. :

LifeV (Perego et al.) Natonal



i First Order (a.k.a. Higher-Order)
Stokes Model: UQ Study for Dome

 Modified dome test case to have basal sliding boundary condition at bedrock with:

B ~ Normal(mean =1 kPa a/m, std. dev. = 0.2 kPa a/m)
e UQ study with 1000 samples of 5.
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Full Stokes Model

Ice flow modeled as non-Newtonian incompressible fluid obeying Stokes’ equations:

—V - (2ué —pl) = pg
V.u = 0
with Glen’s law viscosity:

Boundary conditions:

(216 — pl)-n =0,
u==~0.

flow rate factor

Glen’s law exponent =3
regularization parameter
sliding coefficient = 0

L= L

u-n =0and [(2ué —pl) -n +pu, =0, only

Numerical Method:

* Discretization: classical Galerkin FEM with structured or unstructured mesh.
* Currently, code only supports equal-order velocity/pressure finite elements with

PSPG stabilization.
* Nonlinear solver: Newton’s method

* Automatic differentiation (AD) Jacobians using Sacado package of Trilinos.
 Continuationin y = 1071% using LOCA package of Trilinos.
e Linear solver: preconditioned GMRES with ILU or algebraic multigrid preconqist/iloSner.

C2J lahoratories



Full Stokes Model: Convergence
Study for Linear and Non-linear Stokes

© Constant-coefficient Stokes flow physics with PSPG velocity/pressure finite elements verified
on MMS problems, e.g., problem with the following exact solution:

ul :( sin(2mx ) sin(27y ),  cos(2mx ) cos(2my) }

p = 2psin( 27 ) sin( 27y )
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@ For non-linear Stokes flow physics with Glen’s law viscosity, accuracy of solution with PSPG
velocity/pressure finite elements is limited by stabilization.
* Future work: add capability to employ mixed velocity/pressure finite elements.
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Summary and Future Work

* Development of stress-velocity solver within the MPAS/Trilinos FELIX Dycore of
PISCEES is well underway.
* Rapid code development due to leveraging of dozens of Trilinos capabilities.
* First order (a.k.a. higher-order) Stokes physics implemented and verified.
* Full Stokes nonlinear physics to be completed after addition of mixed
pressure/velocity finite element capability into code (coming soon).
e L1L2 physics coming soon.

e Also coming soon:

* Interface to MPAS for mesh advection/temperature solve (Perego).

* |nterface to DAKOTA for UQ (Eldred, Jakeman).

* Optimization algorithms for inversion/calibration (collaboration with C. Jackson).
Performance/scalability studies on larger problems/more realistic geometries
(Worley/Tuminaro).

Post-processing and V&V using LIVV (Evans).

Thank you for your attention!
Questions? 15715 |
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