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2D Plasmons in the Terahertz Band

THE ELECTROMAGNETIC SPECTRUM
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Electronics: RC limited bandwidth

Photonics: kT limited below 1 THz

Plasmonics: ot cutoff
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THz 2D Plasmonic Systems ) 5.
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Antenna Coupled 2DEG Structures @,
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Coherent Sub-Cavity Interaction @z,
370 GHz
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Generalized Plasmonic TL Model ) e,
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Discretized Plasmonic TL )
Gates\ GaAs/AlGaAs
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Incipient Finite Plasmonic Crystal — [@.

Two-period 1D plasmonic
crystal embedded in 10 pm
plasmonic cavity




Plasmonic Crystal Band Structure — @.
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Four Period Plasmonic Crystal ) e
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Defect Probing of Tamm States ) 5.
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Active Control of Plasmonic EIT ) e,
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Source-Drain Bias Cavity Selection @JEz.
370 GHz
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Plasmonic TL Model ) i

High frequency conductivity of the high-mobility two-dimensional
electron gas

Graphene Terahertz Plasmon Oscillators

150
&100 E i
ESU i : z=0 +
mAf=w : . :
sz_ ﬂkiﬂf[ﬂgfate 151;1.1: " E la)C (C()) i |
1
CF“: 0 i i [
g-ﬁﬂ : I - Z,,
100 G)
0
Frequency (GHz)
k
ZZDEG —_ > (1 + l(UT)
We e“n,pTW
lim C(w) = — > from Drude model lim C(w) = 2Weq
qd—0 _d_ L is kinetic inductance qd—oo o
(fully screened limit) (unscreened limit)

16




Generalized Plasmonic TL Model ) &5,
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Homodyne Mixing in a HEMT ) 5.
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Hydrodynamic Model ) .
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FDTD (Full EM) ) .

Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons The plasmonic resonant absorption in GaN double-channel high electron
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Generalized Plasmonic TL Model ) &5,

The 2D plasmon is in general a TM wave:
P =% VI*Is correct only for TEM wave in fully screened limit
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Characteristic Impedance of

%V(x) I*(x) = %(I)(x, 0)I*(x) & (w,d) Microstrip Lines

JOHN R. BREWS, MEMBER, 1EEE

the characteristic impedance £ is obtained.

J. R. Brews, |IEEE Trans. on Microwave
e ———— e ————————— Theory and Techniques 35, 30 (1987)

Above definitions are not unique, but accurately address physics:

1. Effective potential V(x) is continuous

. Power V(x)I*(x) is continuous

3. Discontinuity in real carrier density p(x) and real current I(x) is
consistent with edge charge accumulation at step-like boundary

N

I
" R non-TEM structures such as mucrostnp lines it
' generally is agreed that the characteristic impedance is
: not unigue, It also is agreed that the root of this uncer-
: tainty is the longitudinal field components of non-TEM
I modes, Because of these components, current and voltage
: are not uniquely defined in terms of the usual TEM path
: integrals of the fields. Faced with an ambiguity in the
: meaning of current [ and voltage ¥ a variety of results for
I
I
I
I
]
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Inductance Comparison ) S

Treat gated 2DEG like a single wire loop

Inductance per unit length
along x-direction
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Antenna Coupled THz Detector ) .

mm-wave mm-wave P
radiation detector s

S
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substrate ~

Si lens

Five terminal HEMT at antenna vertex:
S, D and gates (SG, CG and DG)

Self complementary antenna:
iImpedance of ~72 Q2 on substrate

G. C. Dyer et. al., APL 97, 193507 (2010) & APL 100, 083506 (2012) 24




Resonant Terahertz Response 1) ..
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Growth Sheet

EPI-A GROWTH SHEET EA0741

OBJECTIVE: High Mobility Structure
CUSTOMER: Lilly,M
MATERIAL: GaAs, AlGaAs

SAMPLE ID: EA0741
DATE: 02-May-01
GROWER: Reno, J.

Structure
# Material Thickness Dopant Density Temp. SL Comment
1GaAs 10.0 nm undoped 635°C Cap
2 AlGaAs 98.0 nm undoped 635 °C 24.1%
3 delta-dope 0.0 nm Si (n) 1.00E+12 635°C
4 AlGaAs 75.0 nm undoped 635°C Upper Setback 24.1%
5GaAs 30.0 nm undoped 635°C Qw
6 AlGaAs 95.0 nm undoped 635°C Lower Setback24.1%
7 delta-dope 0.0 nm Si (n) 1.00E+12 635°C
8 AlGaAs 98.0 nm undoped 635°C 241%
9GaAs 3.0 nm undoped 635°C  [x300 Smoothing & EtchStop SL
10 AlGaAs 10.0 nm undoped 635°C ] 548%
11 GaAs 100.0 nm undoped 635 °C Buffer
Substrate Information I - ~ Source lnfam'mio'ri o T
Source Temp°C Flux G.R. ML/s Rheed UFG Comment
s e e Tes T e e
. a B . €es es
0‘_:::;';:;:2 8:‘;; AS2C 650.0 0000 No  Yes
Thickness: 625 pm As2X 3%0.0 0000 No  Yes
Diameters 3" Gal 1158.0 0.762 Yes Yes GaAs, 24.1% AlGaAs
Type: undoped Ga9 1090.0 0.199 Yes  Yes 54.8% AlGaAs
Vendor: AXT Rotate -15.0 0.000 No Yes
Rotate -5.0 0.000 No Yes Buffer
Si 1212.0 0.000 No Yes

Notes and Comments:

Duplicate of EA0739 but grown with lower As flux.

Ch Amlderizadoﬁ Results:

Energy Gap [gV]
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Laboratories
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