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2D Plasmons in the Terahertz Band 

Electronics: RC limited bandwidth 

Photonics: kT limited below 1 THz 

Plasmonics: wt cutoff 

2 

from http://web.njit.edu/~barat/RBB_research.html 
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THz 2D Plasmonic Systems 
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Grating Gated Si MOSFETs 

S. J. Allen et. al., PRL 

38, 980 (1977) 

Grating Gated III-V HEMTs 

A. V. Muravjov, et. al., APL 

96, 042105 (2010) 

H. Yan et. al., Nat. Nano. 7, 330 (2012) 

Periodic Graphene Structures 

L. Ju et. al., Nat. Nano. 6, 630 (2011) 
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Antenna Coupled 2DEG Structures 
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G. C. Dyer et. al., PRL 109, 126803 (2012) & G. C. Dyer et. al., APL 100, 083506 (2012) 
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Coherent Sub-Cavity Interaction 
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Strongly coupled 2D 

plasmonic resonators 

G. C. Dyer et. al., PRL 109, 126803 (2012) 

𝜸𝟏,𝟐 =
𝑽𝒕𝒉 − 𝑽𝑮𝟏,𝑮𝟐

𝑽𝒕𝒉
 



Generalized Plasmonic TL Model 
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𝑪 𝝎  

𝑳𝟐𝑫𝑬𝑮 𝑹𝟐𝑫𝑬𝑮 

G. C. Dyer et. al., PRL 109, 126803 (2012) & G. R. Aizin and G. C. Dyer, PRB 86, 235316 (2012)   

𝐶 𝜔 = 𝑊𝜖𝑞 1 + coth 𝑞𝑑  

𝑅2𝐷𝐸𝐺 =
𝑚∗

𝜏𝑒2𝑛2𝐷𝑊
 

𝐿2𝐷𝐸𝐺 = 𝜏𝑅2𝐷𝐸𝐺  

𝑉 𝑥 = Φ 𝑥, 0  

𝐼 𝑥 = 𝐼 𝑥 𝜉 𝜔, 𝑑  

where:  𝜉 𝜔, 𝑑 = 1 −
𝑞 1−𝑒−2𝑞

′𝑑 cos 2𝑞′′𝑑

2𝑞′ 1−𝑒−2𝑞
∗𝑑 +

𝑞 𝑒−2𝑞
′𝑑sin 2𝑞′′𝑑

2𝑞′′ 1−𝑒−2𝑞
∗𝑑  



Discretized Plasmonic TL 
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G. C. Dyer et. al., PRL 109, 126803 (2012) & G. R. Aizin and G. C. Dyer, PRB 86, 235316 (2012)   

𝑍 0 =
1

𝜉 𝜔, 𝑑

𝑅2𝐷𝐸𝐺 + 𝑖𝜔𝐿2𝐷𝐸𝐺
𝑖𝜔𝐶 𝜔

  

𝑖𝑞 = 𝑖𝜔𝐶 𝜔 𝑅2𝐷𝐸𝐺 + 𝑖𝜔𝐿2𝐷𝐸𝐺  

where:  𝜉 𝜔, 𝑑 = 1 −
𝑞 1−𝑒−2𝑞

′𝑑 cos 2𝑞′′𝑑

2𝑞′ 1−𝑒−2𝑞
∗𝑑 +

𝑞 𝑒−2𝑞
′𝑑sin 2𝑞′′𝑑

2𝑞′′ 1−𝑒−2𝑞
∗𝑑  



Incipient Finite Plasmonic Crystal 
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Exp. Thy. 

G. C. Dyer et. al., PRL 109, 126803 (2012) 

g = 1.0 g = 0.3 

Two-period 1D plasmonic 

crystal embedded in 10 mm 

plasmonic cavity 

𝜸 = 𝜸𝟏 = 𝜸𝟐 



Plasmonic Crystal Band Structure 
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1D Kronig-Penney: 

𝒄𝒐𝒔 𝟐𝒌𝒂 = 

𝒄𝒐𝒔 𝒒𝟎𝒂 𝒄𝒐𝒔𝒒𝟏𝒂 −
𝟏

𝟐

𝒁𝟎
𝒁𝟏

+
𝒁𝟏
𝒁𝟎

𝒔𝒊𝒏 𝒒𝟎𝒂 𝒔𝒊𝒏 𝒒𝟏𝒂 
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Finite Crystal: Tamm States 

G. R. Aizin and G. C. Dyer, PRB 86, 235316 (2012) 



Four Period Plasmonic Crystal 

10 

G. R. Aizin and G. C. Dyer, PRB 86, 235316 (2012) & G. C. Dyer et. al., manuscript in preparation 

𝑽𝑮𝟏 → 𝟎, 𝑳𝟏 → ∞ 
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Defect Probing of Tamm States 
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G. C. Dyer et. al., manuscript in preparation 



Active Control of Plasmonic EIT 
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G. C. Dyer et. al., manuscript in preparation 

𝝂𝑪𝒋 =
𝜷𝑪

𝟐𝝅 𝑳𝒋𝑪𝒋
 

 

𝜷𝑪 = 𝝅 𝒂  

 

𝜹𝝂𝑪 = 𝝂𝑪𝟐 − 𝝂𝑪𝟏 

Calculated distributions of 

crystal-defect eigenmodes 

found in crystal in band gap  

210 GHz 
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ADDITIONAL MATERIAL 
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15 

e- 

e- 

I = -500 nA 

Source-Drain Bias Cavity Selection 

I = +500 nA 

370 GHz 

G. C. Dyer et. al., APL 

100, 083506 (2012) 



Plasmonic TL Model 
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(fully screened limit) (unscreened limit) 

𝑍0 =
𝑍2𝐷𝐸𝐺
𝑖𝜔𝐶 𝜔

  

𝑖𝑞 = 𝑖𝜔𝐶 𝜔 𝑍2𝐷𝐸𝐺 

𝑙𝑖𝑚
𝑞𝑑→0

𝐶 𝜔 =
𝑊𝜖

𝑑
                                                              𝑙𝑖𝑚

𝑞𝑑→∞
𝐶 𝜔 = 2𝑊𝜖𝑞 

𝑍2𝐷𝐸𝐺 =
𝑚∗

𝑒2𝑛2𝐷𝜏𝑊
1 + 𝑖𝜔𝜏  

 from Drude model 

L is kinetic inductance 

P. J. Burke et. al., APL 76, 745 (2000) F. Rana,  IEEE Trans. on Nanotechnology  7, 91 (2008) 



Generalized Plasmonic TL Model 
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𝐶 𝜔  

𝐿2𝐷𝐸𝐺 𝑅2𝐷𝐸𝐺 

where 
 

𝜉 𝜔, 𝑑 = 

          1 −
𝑞 1 − 𝑒−2𝑞

′𝑑 cos 2𝑞′′𝑑

2𝑞′ 1 − 𝑒−2𝑞
∗𝑑

+
𝑞 𝑒−2𝑞

′𝑑sin 2𝑞′′𝑑

2𝑞′′ 1 − 𝑒−2𝑞
∗𝑑

 

1
2𝑉
 𝑥 𝐼 ∗ 𝑥 = 1

2Φ 𝑥, 0 𝐼∗ 𝑥  𝜉∗ 𝜔, 𝑑  𝑉 𝑥 ≡ Φ 𝑥, 0  

𝐼 𝑥 ≡ 𝐼 𝑥 𝜉 𝜔, 𝑑  

𝑍 0 ≡
𝑍0

𝜉 𝜔, 𝑑
 

𝐶 𝜔 =
Φ 𝑥, 𝑧 = 0

𝜌 𝑥
= 𝑊𝜖𝑞 1 + coth 𝑞𝑑  



Homodyne Mixing in a HEMT 

18 ∅ is relative phase between gate & channel THz potentials 

THz field coupled to channel (blue) drives 

current across depleted region (red) 

which is rectified by gate THz field 

e- e- e- e- e- e- 

t = 0 

e- e- e- e- e- e- 

t = T/2 

t = T 
e- e- e- e- e- e- 

𝛿𝑉𝑆𝐷 =
𝜕𝑅𝑐ℎ𝑎𝑛
𝜕𝑉𝑔𝑎𝑡𝑒

𝛿𝑉𝑔𝑎𝑡𝑒𝑒
−𝑖(𝜔𝑡+∅) 𝛿𝑉𝑆 − 𝛿𝑉𝐷 𝑒−𝑖𝜔𝑡𝐺𝑐ℎ𝑎𝑛

=
1

2
𝑮𝒄𝒉𝒂𝒏

𝝏𝑹𝒄𝒉𝒂𝒏

𝝏𝑽𝒈𝒂𝒕𝒆
𝛿𝑉𝑔𝑎𝑡𝑒 𝛿𝑉𝑆 − 𝛿𝑉𝐷 𝑐𝑜𝑠 ∅  



Hydrodynamic Model 
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• Pros:  

• little computational overhead 

• accurately predicts both linear and 

non-linear phenomena (absorption, 

mixing, emission) 

• Cons: 

• non-trivial to phrase in Maxwell or 

circuit formalism 

• must choose boundary conditions 

• assumptions about screening 

• simple geometry 

Self-consistent soln. of Euler’s hydrodynamic 

eqn. of motion with continuity eqn. 

M. I. Dyakonov and M. S. Shur, PRL 71, 2465 (1993) & IEEE Trans. on Electron Devices 43, 380 (1996) 



FDTD (Full EM) 
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• Pros:  

• direct solution of EM parameters (fields, 

absorption, transmission, etc.)  

• can embed 2DEG in complex geometry 

including material parameters 

• Maxwell imposes boundary conditions 

• Cons: 

• large computational overhead 

• expensive 

• “intuition before computation” 

L. Wang et. al., APL 99, 063502 (2011) A. R. Davoyan et. al., PRL 108, 127401 (2012) 



Generalized Plasmonic TL Model 
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P 𝑥 = 1
2 𝑆𝑥𝑑𝑦𝑑𝑧 = −

𝑊
2  𝐸𝑧𝐻𝑦𝑑𝑦𝑑𝑧 

          = 1
2Φ 𝑥, 0 I∗ 𝑥  𝜉∗ 𝜔, 𝑑  

𝜉 𝜔, 𝑑 = 1 −
𝑞 1 − 𝑒−2𝑞

′𝑑 cos 2𝑞′′𝑑

2𝑞′ 1 − 𝑒−2𝑞
∗𝑑

+
𝑞 𝑒−2𝑞

′𝑑sin 2𝑞′′𝑑

2𝑞′′ 1 − 𝑒−2𝑞
∗𝑑

 

P 𝑥 →  
lim
𝑞𝑑→0

P 𝑥 = 1
2Φ 𝑥, 0 I∗ 𝑥

lim
𝜏,𝑞𝑑→∞

P 𝑥 = 1
4Φ 𝑥, 0 I∗ 𝑥

 

The 2D plasmon is in general a TM wave: 

P = ½ VI* is correct only for TEM wave in fully screened limit 

fully screened limit 

unscreened limit 



Effective V, I & Z 
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1
2
𝑉 𝑥 𝐼 ∗ 𝑥 = 1

2
Φ 𝑥, 0 𝐼∗ 𝑥  𝜉∗ 𝜔, 𝑑  

𝑉 𝑥 ≡ Φ 𝑥, 0  

 

𝐼 𝑥 ≡ 𝐼 𝑥 𝜉 𝜔, 𝑑  

 

𝑍 0 ≡
𝑍0

𝜉 𝜔, 𝑑
 

Above definitions are not unique, but accurately address physics: 

 

1. Effective potential 𝑉 𝑥  is continuous 

2. Power 𝑉 𝑥 𝐼 ∗ 𝑥  is continuous 

3. Discontinuity in real carrier density 𝜌 𝑥  and real current 𝐼 𝑥  is 

consistent with edge charge accumulation at step-like boundary 

J. R. Brews,  IEEE Trans. on Microwave 

Theory and Techniques 35, 30 (1987) 



Inductance Comparison 
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Treat gated 2DEG like a single wire loop 

𝐿𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
𝑚∗

𝑒2𝑛2𝐷𝑊
 ~ 50 𝜇0 

 

𝐿𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑑

𝑊
𝜇0 ~ 0.05 𝜇0 W 

Φ𝑚~
𝜇0𝐼𝑑

𝑊
= 𝐼𝐿𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 

I 
Inductance per unit length 

along x-direction 

Magnetic flux per unit length 

through x-z plane 



Antenna Coupled THz Detector 

24 G. C. Dyer et. al., APL 97, 193507 (2010) & APL 100, 083506 (2012) 

Five terminal HEMT at antenna vertex: 

S, D and gates (SG, CG and DG) 

 

Self complementary antenna: 

impedance of ~72 W on substrate 
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Resonant Terahertz Response 
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Bolometric Element 

VBG < VTH 

e- 

Resonance of a distributed 2D 

plasmonic absorber detected by 

bolometric sensor 

 

Action is at the bolometer: what if we 

decrease area of detector? 
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Growth Sheet 
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GaAs / AlxGa1-xAs 

 

x = .24 
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