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ROM Stabilization via Pole
Placement: Problem Statement

Full Order Model (FOM)

ẋN = ANxN + BNuN

yN = CNxN

Reduced Order Model (ROM)

ẋM = AMxM + BMuM

+BCuC

yM = CMxM

Approximate FOM solution xN ∈ RN by ROM solution xM ∈ RM , with M << N :

xN = ΦMxM

where ΦM =reduced basis (e.g., POD basis).

ROM system matrices are given by:

AM = ΦT
MANΦM , BM = ΦT

MBN , CM = CNΦM

Problem: AN stable 6⇒ AM stable!

Idea: make AM stable through eigenvalue assignment (pole placement).

I Pick control matrix BC . Add control BCuC to ROM system.
I Pick desired poles of AM . Assume control uC = −KCxM .
I Compute feedback KC such that AM −BCKC has desired poles.
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ẋN = ANxN + BNuN

yN = CNxN

Reduced Order Model (ROM)
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Naı̈ve Algorithm

1 Pick a matrix BC .
2 Use Kalman decomposition to isolate controllable and observable part of

AM and BC , call them Aco
M = UAMUT and Bco

C = UBC .

3 Compute eigenvalues λ1, ..., λNco
of Aco

M .

4 For i = 1 to Nco, set1

λ̄i = min{Re(λi),−Re(λi)}+ i · Im(λi)

5 Solve pole placement problem: find KC such that Aco
M −Bco

C KC has
eigenvalues λ̄i.

6 Set AM = UT (Aco
M −Bco

C KC)U.

7 Run ROM with this new (stable) AM .

1If λ̄i = min{Re(λi), 0}+ i · Im(λi), there seem to be issues placing poles with
multiplicity > 1.
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Numerical Experiment:
ISS Structural Model [1]

FOM = stable LTI system, 1 input, 1 output.
Input: u(t) = (1× 104)δt=0.
POD basis of size M = 20 constructed from 2000 snapshots until t = 0.1.
BC = 1M .
M = 20 ROM has 4 unstable eigenvalues, which are modified.

4 / 9



Open Questions

How to pick control matrix BC?
How to pick desired eigenvalues of AM −BCKC?
Need to ensure that modified ROM system dynamics are not “too far”
from FOM system dynamics, e.g., through optimization problem:

min
BC ,KC

K∑
k=1

(yk
M − yk

M )T (yk
N − yk

M )

subject to constraints:

ẋM = ÃMxM + BMuM

yM = CMxM

and
ÃM ≡ AM −BCKC

is stable.

5 / 9



Target Cavity Flow Control Problem
-

HHj

��	@@I

6

uprms (output y)

body force
actuation
(input u)

Configuration/Plant: compressible non-linear fluid flow over open
cavity containing components.

Physical Control Problem: using upstream actuation, control
oscillations within cavity caused by pressure fluctuations propagating
between downstream wall and shear layer.
Mathematical Control Problem: compute optimal body-force actuation
input uopt to minimize the RMS pressure halfway up the downstream
wall.

input u : qT =
(

0, f(t), 0 0 0
)T

output y : prms =
√

1
K

∑K
i=1(p(tk)− p̄)2
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ROM-Based Cavity Flow Control
Road Map

1 Collect snapshots from non-linear
high-fidelity CFD cavity simulation

ẋ = f(x,ui), yi = h(x,ui)

for some set of inputs {ui(t)}, and
construct empirical basis (POD, BPOD)
from this snapshot set.

2 Build a ROM for the fluid system, or

3 Compute optimal controller uopt(t) using
ROM.

4 Apply ROM-based controller to non-linear
cavity problem.

{ui(t)}

Plant (Cavity)
Non-linear CFD

uopt(t)

yi(t)

+
Estimator

Linear ROM

uopt(t) xr(t)

Controller
Linear ROM
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ẋ = f(x,ui), yi = h(x,ui)

for some set of inputs {ui(t)}, and
construct empirical basis (POD, BPOD)
from this snapshot set.

2 Build a ROM for the fluid system, or
approximation of fluid system.

3 Compute optimal controller uopt(t) using
ROM.

4 Apply ROM-based controller to non-linear
cavity problem.

{ui(t)}

Plant (Cavity)
Non-linear CFD

uopt(t)

yi(t)

+
Estimator

Linear ROM

uopt(t) xr(t)

Controller
Linear ROM

7 / 9



ROM-Based Cavity Flow Control
Road Map

1 Collect snapshots from non-linear
high-fidelity CFD cavity simulation
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Questions

Rules of thumb for checking controllability?

Rules of thumb for tuning of controller parameters?
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