



# Stabilization of Reduced Order Models (ROMs) via Controllers and ROM-Based Control

SAND2013-2270C

Irina Kalashnikova<sup>1</sup> and Srinivasan Arunajatesan<sup>2</sup>

<sup>1</sup> Numerical Analysis & Applications Department, Sandia National Laboratories\*, Albuquerque, NM, U.S.A.

<sup>2</sup> Aerosciences Department, Sandia National Laboratories\*, Albuquerque, NM, U.S.A.

Florida State University (FSU) Visit  
Tuesday, March 26, 2013

- \* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.





# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \mathbf{A}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$



# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \mathbf{A}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$

**Problem:**  $\mathbf{A}_N$  stable  $\not\Rightarrow \mathbf{A}_M$  stable!



# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \mathbf{A}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$

**Problem:**  $\mathbf{A}_N$  stable  $\not\Rightarrow \mathbf{A}_M$  stable!

- Idea:** make  $\mathbf{A}_M$  stable through eigenvalue assignment (pole placement).



# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \mathbf{A}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M + \mathbf{B}_C \mathbf{u}_C \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$

**Problem:**  $\mathbf{A}_N$  stable  $\not\Rightarrow \mathbf{A}_M$  stable!

- Idea:** make  $\mathbf{A}_M$  stable through eigenvalue assignment (pole placement).
  - Pick control matrix  $\mathbf{B}_C$ . Add control  $\mathbf{B}_C \mathbf{u}_C$  to ROM system.



# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \mathbf{A}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M + \mathbf{B}_C \mathbf{u}_C \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$

**Problem:**  $\mathbf{A}_N$  stable  $\not\Rightarrow \mathbf{A}_M$  stable!

- Idea:** make  $\mathbf{A}_M$  stable through eigenvalue assignment (pole placement).

- ▶ Pick control matrix  $\mathbf{B}_C$ . Add control  $\mathbf{B}_C \mathbf{u}_C$  to ROM system.
- ▶ Pick desired poles of  $\mathbf{A}_M$ . Assume control  $\mathbf{u}_C = -\mathbf{K}_C \mathbf{x}_M$ .



# ROM Stabilization via Pole Placement: Problem Statement

## Full Order Model (FOM)

$$\begin{aligned}\dot{\mathbf{x}}_N &= \mathbf{A}_N \mathbf{x}_N + \mathbf{B}_N \mathbf{u}_N \\ \mathbf{y}_N &= \mathbf{C}_N \mathbf{x}_N\end{aligned}$$

## Reduced Order Model (ROM)

$$\begin{aligned}\dot{\mathbf{x}}_M &= \underbrace{(\mathbf{A}_M - \mathbf{B}_C \mathbf{K}_C)}_{\tilde{\mathbf{A}}_M} \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

- Approximate FOM solution  $\mathbf{x}_N \in \mathbb{R}^N$  by ROM solution  $\mathbf{x}_M \in \mathbb{R}^M$ , with  $M \ll N$ :

$$\mathbf{x}_N = \Phi_M \mathbf{x}_M$$

where  $\Phi_M$  = reduced basis (e.g., POD basis).

- ROM system matrices are given by:

$$\mathbf{A}_M = \Phi_M^T \mathbf{A}_N \Phi_M, \quad \mathbf{B}_M = \Phi_M^T \mathbf{B}_N, \quad \mathbf{C}_M = \mathbf{C}_N \Phi_M$$

**Problem:**  $\mathbf{A}_N$  stable  $\not\Rightarrow \mathbf{A}_M$  stable!

- Idea:** make  $\mathbf{A}_M$  stable through eigenvalue assignment (pole placement).
  - Pick control matrix  $\mathbf{B}_C$ . Add control  $\mathbf{B}_C \mathbf{u}_C$  to ROM system.
  - Pick desired poles of  $\mathbf{A}_M$ . Assume control  $\mathbf{u}_C = -\mathbf{K}_C \mathbf{x}_M$ .
  - Compute feedback  $\mathbf{K}_C$  such that  $\mathbf{A}_M - \mathbf{B}_C \mathbf{K}_C$  has desired poles.

# Naïve Algorithm

- ➊ Pick a matrix  $\mathbf{B}_C$ .
- ➋ Use Kalman decomposition to isolate controllable and observable part of  $\mathbf{A}_M$  and  $\mathbf{B}_C$ , call them  $\mathbf{A}_M^{co} = \mathbf{U}\mathbf{A}_M\mathbf{U}^T$  and  $\mathbf{B}_C^{co} = \mathbf{U}\mathbf{B}_C$ .
- ➌ Compute eigenvalues  $\lambda_1, \dots, \lambda_{N_{co}}$  of  $\mathbf{A}_M^{co}$ .
- ➍ For  $i = 1$  to  $N_{co}$ , set<sup>1</sup>

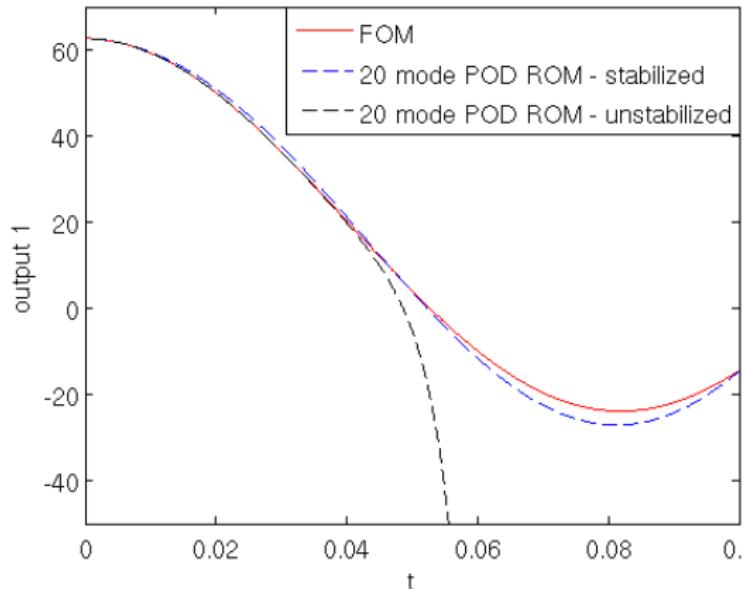
$$\bar{\lambda}_i = \min\{Re(\lambda_i), -Re(\lambda_i)\} + i \cdot Im(\lambda_i)$$

- ➎ Solve pole placement problem: find  $\mathbf{K}_C$  such that  $\mathbf{A}_M^{co} - \mathbf{B}_C^{co}\mathbf{K}_C$  has eigenvalues  $\bar{\lambda}_i$ .
- ➏ Set  $\mathbf{A}_M = \mathbf{U}^T(\mathbf{A}_M^{co} - \mathbf{B}_C^{co}\mathbf{K}_C)\mathbf{U}$ .
- ➐ Run ROM with this new (stable)  $\mathbf{A}_M$ .

<sup>1</sup>If  $\bar{\lambda}_i = \min\{Re(\lambda_i), 0\} + i \cdot Im(\lambda_i)$ , there seem to be issues placing poles with multiplicity  $> 1$ .

# Numerical Experiment: ISS Structural Model [1]

- FOM = stable LTI system, 1 input, 1 output.
- Input:  $\mathbf{u}(t) = (1 \times 10^4)\delta_{t=0}$ .
- POD basis of size  $M = 20$  constructed from 2000 snapshots until  $t = 0.1$ .
- $\mathbf{B}_C = \mathbf{1}_M$ .
- $M = 20$  ROM has 4 unstable eigenvalues, which are modified.



# Open Questions

- How to pick control matrix  $\mathbf{B}_C$ ?
- How to pick desired eigenvalues of  $\mathbf{A}_M - \mathbf{B}_C \mathbf{K}_C$ ?
- Need to ensure that modified ROM system dynamics are not “too far” from FOM system dynamics, e.g., through optimization problem:

$$\min_{\mathbf{B}_C, \mathbf{K}_C} \sum_{k=1}^K (\mathbf{y}_M^k - \hat{\mathbf{y}}_M^k)^T (\mathbf{y}_N^k - \hat{\mathbf{y}}_M^k)$$

subject to constraints:

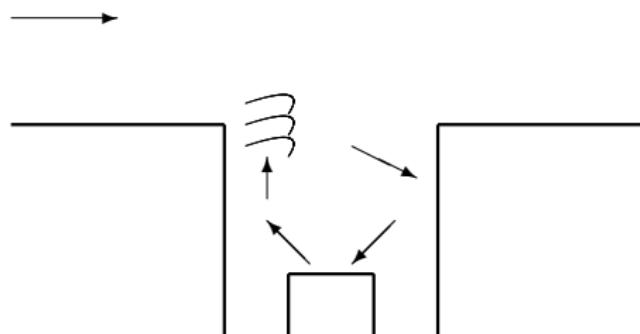
$$\begin{aligned}\dot{\mathbf{x}}_M &= \tilde{\mathbf{A}}_M \mathbf{x}_M + \mathbf{B}_M \mathbf{u}_M \\ \mathbf{y}_M &= \mathbf{C}_M \mathbf{x}_M\end{aligned}$$

and

$$\tilde{\mathbf{A}}_M \equiv \mathbf{A}_M - \mathbf{B}_C \mathbf{K}_C$$

is stable.

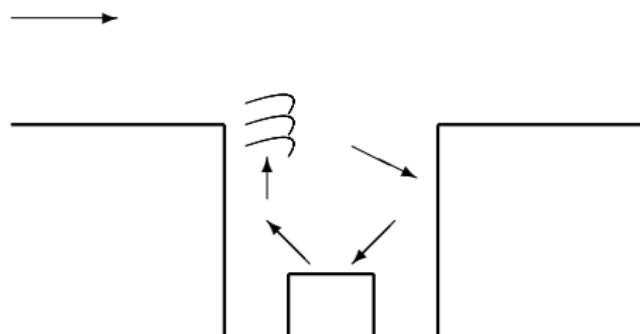
## Target Cavity Flow Control Problem



- **Configuration/Plant:** compressible non-linear fluid flow over open cavity containing components.

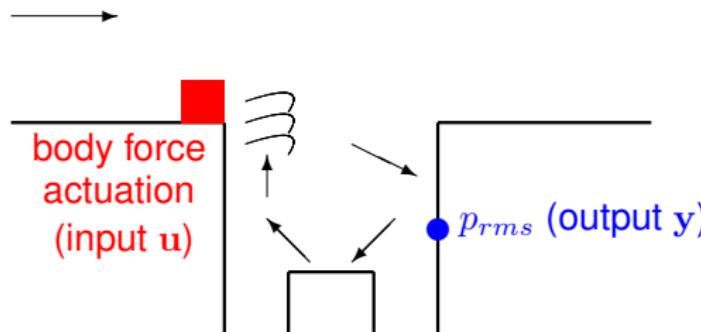


## Target Cavity Flow Control Problem



- **Configuration/Plant:** compressible non-linear fluid flow over open cavity containing components.
- **Physical Control Problem:** using upstream actuation, control oscillations within cavity caused by pressure fluctuations propagating between downstream wall and shear layer.

# Target Cavity Flow Control Problem



- **Configuration/Plant:** compressible non-linear fluid flow over open cavity containing components.
- **Physical Control Problem:** using upstream actuation, control oscillations within cavity caused by pressure fluctuations propagating between downstream wall and shear layer.
- **Mathematical Control Problem:** compute optimal body-force actuation input  $u_{opt}$  to minimize the RMS pressure halfway up the downstream wall.

$$\text{input } \mathbf{u} : \mathbf{q}^T = (0, f(t), 0 \ 0 \ 0)^T$$
$$\text{output } y : p_{rms} = \sqrt{\frac{1}{K} \sum_{i=1}^K (p(t_k) - \bar{p})^2}$$

# ROM-Based Cavity Flow Control Road Map

- 1 Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}_i), \quad \mathbf{y}_i = \mathbf{h}(\mathbf{x}, \mathbf{u}_i)$$

for some set of inputs  $\{\mathbf{u}_i(t)\}$ , and construct empirical basis (POD, BPOD) from this snapshot set.

$$\{\mathbf{u}_i(t)\}$$

**Plant (Cavity)**  
Non-linear CFD

$$\mathbf{y}_i(t)$$

# ROM-Based Cavity Flow Control Road Map

- 1 Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}_i), \quad \mathbf{y}_i = \mathbf{h}(\mathbf{x}, \mathbf{u}_i)$$

for some set of inputs  $\{\mathbf{u}_i(t)\}$ , and construct empirical basis (POD, BPOD) from this snapshot set.

$$\{\mathbf{u}_i(t)\}$$

**Plant (Cavity)**  
Non-linear CFD

$$\mathbf{y}_i(t)$$

- 2 Build a ROM for the fluid system, or approximation of fluid system.

# ROM-Based Cavity Flow Control Road Map

- 1 Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}_i), \quad \mathbf{y}_i = \mathbf{h}(\mathbf{x}, \mathbf{u}_i)$$

for some set of inputs  $\{\mathbf{u}_i(t)\}$ , and construct empirical basis (POD, BPOD) from this snapshot set.

- 2 Build a ROM for the fluid system, or approximation of fluid system.
- 3 Compute optimal controller  $\mathbf{u}_{opt}(t)$  using ROM.

$$\{\mathbf{u}_i(t)\}$$

**Plant (Cavity)**  
Non-linear CFD

$$\mathbf{y}_i(t)$$

**Estimator**  
Linear ROM

$$\mathbf{u}_{opt}(t)$$

**Controller**  
Linear ROM

dia  
ional  
laborato  
ries

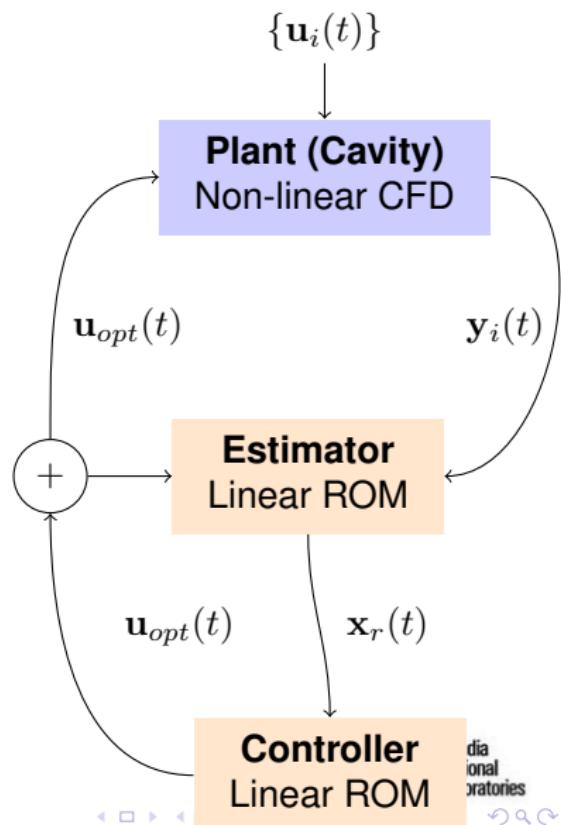
# ROM-Based Cavity Flow Control Road Map

- 1 Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}_i), \quad \mathbf{y}_i = \mathbf{h}(\mathbf{x}, \mathbf{u}_i)$$

for some set of inputs  $\{\mathbf{u}_i(t)\}$ , and construct empirical basis (POD, BPOD) from this snapshot set.

- 2 Build a ROM for the fluid system, or approximation of fluid system.
- 3 Compute optimal controller  $\mathbf{u}_{opt}(t)$  using ROM.
- 4 Apply ROM-based controller to non-linear cavity problem.



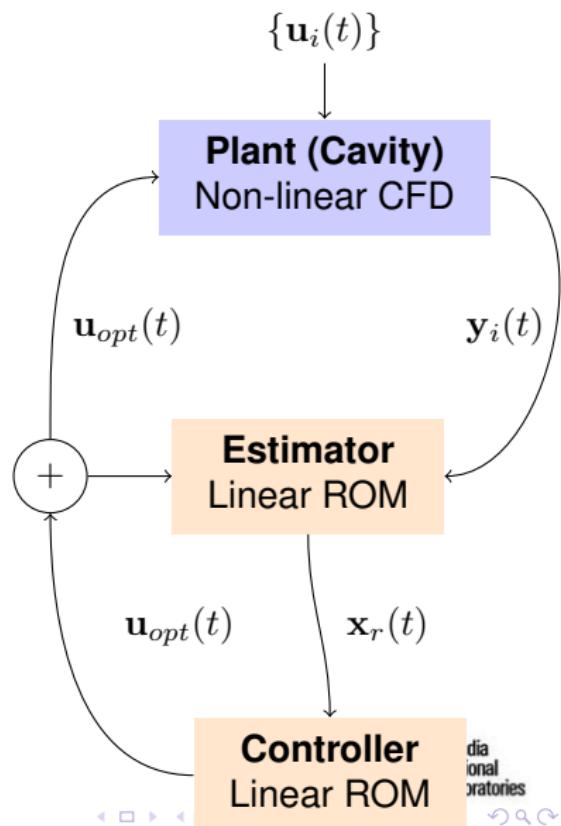
# ROM-Based Cavity Flow Control Road Map

- 1 Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}_i), \quad \mathbf{y}_i = \mathbf{h}(\mathbf{x}, \mathbf{u}_i)$$

for some set of inputs  $\{\mathbf{u}_i(t)\}$ , and construct empirical basis (POD, BPOD) from this snapshot set.

- 2 Build a ROM for the fluid system, or ***approximation of fluid system.***
- 3 Compute optimal controller  $\mathbf{u}_{opt}(t)$  using ROM.
- 4 Apply ROM-based controller to non-linear cavity problem.





# Questions

- Rules of thumb for checking controllability?
- Rules of thumb for tuning of controller parameters?



## References

- [1] A.C. Antoulas, D.C. Sorensen, S. Gugercin. A survey of model reduction methods for large-scale systems. *Contemporary Mathematics* **280** 2001.
- [2] K.J. Astrom, R.M. Murray. Feedback systems: an introduction for scientists and engineers. Princeton University Press, 2008.
- [3] S.J. Illingworth, A.S. Morgans, C.W. Rowley. Feedback control of flow resonances using balanced reduced-order models. *J. Sound and Vibration* **330**(8) 1567–1581 (2001).