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Motivation

 Ionomers: polymers with a small fraction of 
covalently bound ionic groups

 Potential application as solid electrolytes in batteries

 Ionomer structure/morphology relationships poorly 
understood
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Background

• Polyethylene backbone with precisely spaced acrylic acid functional groups 
(ADMET synthesis1):

• Nomenclature:

p9AA –43%LiPrecise spacer 
length (p9, p15, 
p21)

Acrylic acid

Counterion 
type (Li+, Na+, 
Cs+, Zn2+)

Neutralization 
level

1Baughman et al, Macromolecules, 40, 6564
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Background

• Experimental X-ray scattering data1

Spherical, liquid-like order
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1 Karen Winey group

• Low wavevector peak associated with inter-aggregate scattering in all 
ionomers

• Shape and size of aggregates inaccessible to experiments  motivation for
simulations
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MD methods

 Variations in:
 Counterion type: M = Li+, Na+, Cs+, Zn2+

 spacer length: p9, p15, p21
 neutralization level: 0, 10%, 25%, 43%, 75%, 100%

 80-200 molecules, n = 4 repeat units
 ~64 X 64 X 64 Å box, total of ~25,000 atoms

 OPLS-AA fully atomistic force field

 PBCs, NVT ensemble, 150°C  well above Tg

 LAMMPS used for MD production runs (~30 ns each)
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Results: lithium counterion

Variations in neutralization level

Variations in spacer length

p9AA-10%Li p9AA-43%Li

p9AA-100%Li p21AA-43%Li

SHORT STRINGS 
(SS)

LONG STRINGS 
(LS)

FULLY PERCOLATED 
(FP)

COMPACT, ISOLATED 
(CI)
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Relating aggregates to S(q)

q = 2π/L  2π/1.7nm to 2π/1.2nm

q range ~ 3.7 to 5.2 nm-1

Ionomer peak is indeed due to 
interaggregate scattering!



8

Closer look at aggregates

Two mechanisms of aggregate formation:
1. Counterion-oxygen association  dominant at moderate to high neutralization
2. Hydrogen-bonded networks  dominant at low neutralization

p9AA-10%Li p9AA-43%Li p9AA-100%Li
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Variation in cation type

p9AA-43%Zn p9AA-43%Li

p9AA-43%Na p9AA-43%Cs

Cations: Zn2+, Li+, Na+, Cs+
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Aggregate classification

Several morphologies distinguishable:
• Compact, roughly spherical (CI)
• Short, stringy (SS)
• Long, stringy (LS)
• Partially percolated (PP)
• Fully percolated (FP)

CI LS FP

10% 25% 43% 75% 100%

Zn LS LS SS SS SS/CI

Li SS/LS LS LS LS/PP PP/FP

Na SS SS/LS PP FP FP

Cs LS PP FP FP FP

p9 p15 p21

Zn SS SS/CI CI

Li LS SS SS/CI

Na PP SS SS/CI

Cs FP LS/PP LS/SS
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Summary

 Unexpected aggregate morphologies suggest need for novel interpretation of scattering 
data

 Significant variation in morphology as a function of neutralization, spacer length and 
cation type

 Two mechanisms of aggregate structure formation: counterion-oxygen association and 
hydrogen bonding  also explains aggregation in acid forms (0% neut.)
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QUESTIONS?
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Extra slides
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Analysis of aggregates

• Aggregates defined by pairwise cluster search over all ion-oxygen and oxygen-hydroxyl
hydrogen pairs

• Oxygens and hydrogens on same carboxyl group always included in same aggregate
• Pairwise cutoff distance based on g(r):

• Aggregates with less than 2 ions not included in analysis
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Results: structure factor convergence

• Most simulations run for ~30 ns
• To check convergence: compare to longer simulation, parallel tempering

 Simulations appear to be well-converged after 30 ns
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Quantifying aggregates

• Aggregate size ranking: Cs > Na > Li > Zn
• Increased neutralization, decreased spacer 

length leads to larger aggregates
• Percolated morphologies apparent in sharp

size increase

Aggregate size distribution for 
p9AA-43% cases
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Quantifying ion-oxygen interactions

fon : mean fraction of simulation time a particular cation-oxygen pair is associated

OH:

OM:

• Ion-OM association: Zn > Li > Na > Cs
• Follows expected Coulombic interaction strength, BUT 

exact reverse order of aggregate size rankings

 Weaker ionic association promotes aggregate growth
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Quantifying ion-oxygen interactions

Distribution of coordination numbers
Oxygen around cations

• Higher Coulombic attraction leads to 
tighter coordination structures

• Tight coordination structures not 
favorable for aggregate growth!
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Results: structure factors

Li+

Na+Cs+ Zn2+

* Experimental data from Karen Winey group
# Waasmaier and Kirfel, Acta Cryst. A51, 416-431 (1995)

#


