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Experimental System ) i
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« gold nanorods
* polymer brush coating
* 5% rods in polymer thin film
* rods confined in the plane of
the film

athermal systems:
PS brush in PS
PEO brush in PEO

What controls nanorod dispersion/aggregation?




Nanorods: PS-Au(N):PS(P) @i
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PEO-AuU(N):PEO(P) )
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P/N=0.43 P/N =1.58 P/N=19.2
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Dispersion “Map” for NRs )
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ignores possible effects of:
* rod curvature

« grafting density

* rod length

squares: PS
triangles: PEO




Modeling ) i,

classical DFT and SCFT

- brush chains length N

- matrix chains length P

- athermal (y = 0)

- nanorods with radius R,
- grafting density

v

polymer melt

goal: calculate polymer-mediated interaction free energy

variables: o = P/N experimental ranges:
R o/R a=P/N=0.15-30
ro g
R, /R,=1.5-3.2
1/2 ro g
o =Moo N o' = 0.95-2.38
ap,
earlier work: Frischknecht, J. Chem. Phys., 128, 224902 (2008) 6




Single Nanorod: Brush Profiles ()
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Rod/Ry=3.2, PIN =0 =3

0.8

0.6
volume
fraction ¢ o4

grafting density important




Single Nanorod: Brush Profiles ()

Laboratories

a=2,06"=238

nanorod curvature important




Single Nanorod: Brush Profiles ()
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Rrod/Ry = 3.2, 0" = 2.38

matrix chain length doesn’t affect brush profiles much




Rod-rod interaction energy s,
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Rod-rod interaction energy @i
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Riog/Rg = 3.2, 6% = 2.4

matrix chain length crucial!
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Rod-rod interaction energy s,

Riog/Rg = 3.2, 6% = 2.4

include van der Waal ALR,,
matrix chain length crucial! Include van der Waals gy . _ =" rod
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Criterion for Aggregation? @i
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Monte Carlo simulations
square-well potential

assume aggregation for E, ;> 5 kT

Hore, M. J. A, et al. (2012), ACS Macro Letters, 1, 115-121. 13




Comparison with experiment @i
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Conclusions ) i,

* brush profiles remarkably insensitive to o
* interaction energy sensitive to ¢*, R4, and o,
 DFT captures correct trends

 transition to aggregation near P/N = 2

» design: promote dispersion for

* small 6%, R4, Or a | ' |
. o 1t [—P=1459 | :
« can potentially control rod spacing in S5 |
S os i
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Frischknecht, Hore, Ford, & Composto, Macromolecules (in press)
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Brush Characteristics vs o
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Brush Characteristics vs o* @i
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Brush-Brush Interactions ) i
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I particle
N T Re20F VS S A<
v D

A >

' AR o N
= | RN
:/\/ (b) particle

autophobic dewetting:

» entropy cost for matrix chains to enter brush
» leads to positive brush-matrix surface tension
* brushes are attracted

free energy

Fq(d)

+ ' ' > ‘ e
do Gmin Ormax d 1 3 10
P/N = O

Matsen, M. W., & Gardiner, J. (2001). J Chem Phys, 115, 2794-2804. 19



Brushes on Curved Surfaces @i

* more volume than on flat surface at same
grafting density

* chains splay out more

* brush is less extended

expect wet to dry transition to occur for
*larger grafting densities
*larger P/N

1

PS-silica in PS

Graft Density (¢)

Graft Density

g> >

Matrix Mn _/ Grafted Mn

0.1 1

Sunday, D., llavsky, J., & Green, D. L. (2012).
Macromolecules, 45, 4007-4011. 20




Interactions vs o* and o ) i
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Surface Plasmon Resonance

Normalized Abs (a.u.)
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Classical (Fluids) Density Functionagiy g
Theory (DFT)

6
U +U

ext m

NN
NN

-
Uext

Qpa(r)] = F[pa(r)] + ¥ [ drpa(e) Vo(r) sl

Helmholtz.free energy F: |d§al gas term, CMS-DET
monomer interactions, bonding (Chandler, McCoy, Singer)

minimize free energy

0Q

=(0 —> equations to solve for p(r)

op(r)




FIuids-DFTImpIementation ) i
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solve nonlinear integral eqtns
« in 3D, Cartesian grid
modified Newton solver
parallel http://software.sandia.gov/tramonto

e 'é?#

inputs
« model of the fluid
» freely-jointed tangent chains
* repulsive LJ interactions
* bulk fluid densities (chemical potentials)
« surface geometry
* NR exclude polymer
 sticky ends attracted with LJ energy

outputs
 fluid density profiles
« equilibrium free energy
* phase diagrams
« adsorption, stress profiles, ...




Our approach: CMS-DFT )
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Chandler, McCoy, Singer (1986);

echains are flexible McCoy et al. (1990s)

« 2" order density expansion

b Ny

G.(r)G(r
pa(r ) = P Z S(_B)U (Srg ) Chain density distribution
N, -, e"™™
U=V _(r)-— J c. (r—=rp, (7')— b]dl" Unknown field
a( ) ext( ) ; OW( ) pY( ) py C(r)zcrep(r)_uatt(r)
v PRISM  RPM
G(r)=e " | wr—r)G_,(r')dr Theory  Approx
G'(r)=e " . w(r -G, (¥)dr Chain Architecture

(freely-jointed chains)
G =G,=e""
1 YN
1

w(r) = o(lr|-o)
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Input to CMS-DFT: PRISM Theory )i,

Curro and Schweizer

Liquid state theory for homogeneous polymer fluids

" intramolecular correlations w,g
= intermolecular correlations g,g(r), cap(r)

Excellent for repulsive interactions
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Calculation Details )
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« parallel cylinders
 athermal (repulsive interactions)
» adsorbed chains
*N =40
* ppa = 0.01
» matrix chains
« P =40,80,120,160
* ppa® =0.85

(U

polymer melt

surface interactions:
* repulsive for matrix chains, all except end on adsorbing chains
» attractive to one end of adsorbing chains, depth ¢,



