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Experimental System
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• gold nanorods
• polymer brush coating
• 5% rods in polymer thin film

• rods confined in the plane of 
the film

athermal systems:
PS brush in PS
PEO brush in PEO

What controls nanorod dispersion/aggregation?



Nanorods: PS-Au(N):PS(P)

3Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115–121.



PEO-Au(N):PEO(P)
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P/N = 0.43 P/N = 1.58 P/N = 19.2



Dispersion “Map” for NRs
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ignores possible effects of:
• rod curvature
• grafting density
• rod length

Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115.

dispersion for P < 2N
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Modeling
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- brush chains length N
- matrix chains length P
- athermal ( = 0)
- nanorods with radius Rrod

- grafting density 

goal: calculate polymer-mediated interaction free energy

variables:   = P/N

Rrod/Rg

  
6N1/2

a0

experimental ranges: 

 = P/N = 0.15 – 30

Rrod/Rg = 1.5-3.2

 = 0.95-2.38

earlier work: Frischknecht, J. Chem. Phys., 128, 224902 (2008)  

classical DFT and SCFT



Single Nanorod: Brush Profiles
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Rrod/Rg = 3.2, P/N =  = 3

grafting density important
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Single Nanorod: Brush Profiles
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 = 2,  = 2.38

nanorod curvature important
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Single Nanorod: Brush Profiles
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Rrod/Rg = 3.2,  = 2.38

matrix chain length doesn’t affect brush profiles much
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Rod-rod interaction energy
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deeper attractive well as:
grafting density increases
Rrod increases

P/N  = 3
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Rod-rod interaction energy
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Rrod/Rg = 3.2, * = 2.4

matrix chain length crucial!
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Rod-rod interaction energy
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Rrod/Rg = 3.2, * = 2.4

matrix chain length crucial!
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Criterion for Aggregation?
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Monte Carlo simulations
square-well potential

assume aggregation for Etot > 5 kT

Hore, M. J. A., et al. (2012), ACS Macro Letters, 1, 115–121.
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Comparison with experiment
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good overall agreement

1 <  < 1.41.9 <  < 2.4

circles = DFT
squares = PS/PS
triangles = PEO/PEO



Conclusions
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• brush profiles remarkably insensitive to 

• interaction energy sensitive to , Rrod, and 

• DFT captures correct trends

• transition to aggregation near P/N = 2

• design: promote dispersion for

• small , Rrod, or 

• can potentially control rod spacing in 

aggregates

• to control optical properties

Frischknecht, Hore, Ford, & Composto, Macromolecules (in press)
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Brush Characteristics vs 
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Brush Characteristics vs *
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Brush-Brush Interactions
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autophobic dewetting:
• entropy cost for matrix chains to enter brush
• leads to positive brush-matrix surface tension
• brushes are attracted

Matsen, M. W., & Gardiner, J. (2001). J Chem Phys, 115, 2794–2804.

free energy

P/N = 



Brushes on Curved Surfaces
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• more volume than on flat surface at same 
grafting density

• chains splay out more
• brush is less extended

expect wet to dry transition to occur for
• larger grafting densities
• larger P/N

Sunday, D., Ilavsky, J., & Green, D. L. (2012). 
Macromolecules, 45, 4007–4011. 

PS-silica in PS aggregated

dispersed



Interactions vs  and 
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grafting density

chain ratio

• depth of well decreases with both 
• rmin increases with increasing , decreases with increasing 



Surface Plasmon Resonance
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Hore, M. J. A., Frischknecht, A. L., & Composto, R. J. (2012), ACS Macro Letters, 1, 115–121.

N = 48 N = 110

N = 191



Classical (Fluids) Density Functional 
Theory (DFT)
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Uext

Uext + Um

Helmholtz free energy F:  ideal gas term, 
monomer interactions, bonding

minimize free energy

equations to solve for (r)

CMS-DFT
(Chandler, McCoy, Singer)



Fluids-DFT Implementation
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• inputs
• model of the fluid

• freely-jointed tangent chains
• repulsive LJ interactions

• bulk fluid densities (chemical potentials)
• surface geometry

• NR exclude polymer
• sticky ends attracted with LJ energy

• outputs
• fluid density profiles
• equilibrium free energy

• phase diagrams
• adsorption, stress profiles, ...

solve nonlinear integral eqtns
• in 3D, Cartesian grid
• modified Newton solver
• parallel http://software.sandia.gov/tramonto



Our approach: CMS-DFT

 (r) 


b

N

Gs(r)Gs
i(r)

eU (r)

s1

N



U (r) Vext (r)  c (r  r')[ (r')  
b ]



 dr'

Gs(r)  eU ,s w(r  r')Gs1(r')dr'
Gs

i(r)  eU ,s w(r  r')Gs1
i (r')dr'

G1 GN
i  eU (r)

)|(|
4
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)(
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


 rrw

Chain density distribution

Unknown field

Chain Architecture
(freely-jointed chains)

c(r)  crep (r)  uatt (r)
PRISM 
Theory

RPM
Approx

Chandler, McCoy, Singer (1986); 
McCoy et al. (1990s)

•chains are flexible
• 2nd order density expansion



Input to CMS-DFT: PRISM Theory

 Liquid state theory for homogeneous polymer fluids
 intramolecular correlations AB 

 intermolecular correlations gAB(r), cAB(r)

 Excellent for repulsive interactions

Curro and Schweizer

gAB ABCAB
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Calculation Details

• parallel cylinders

• athermal (repulsive interactions)

• adsorbed chains 

• N = 40

•ba
3 = 0.01

• matrix chains

• P = 40,80,120,160

•ba
3 = 0.85

surface interactions:

• repulsive for matrix chains, all except end on adsorbing chains

• attractive to one end of adsorbing chains, depth e


