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Abstract 

This paper presents a new methodology for analyzing complex networks in which the network of 
interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is 
performed using the abstraction, and analytic conclusions are then mapped back to the original network 
and interpreted there. We begin by identifying a broad and important class of complex networks which 
admit abstractions that are simultaneously dramatically simplifying and property preserving – we call 
these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. 
We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which 
dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) one-
dimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful 
way using a single scalar variable. In each case, the property preserving nature of the abstraction 
process is rigorously established and efficient algorithms are presented for computing the abstraction. 
The considerable potential of the proposed approach to complex networks analysis is illustrated 
through case studies involving vulnerability analysis of technological networks and predictive analysis 
for social processes.  
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1. Introduction  
An enormous range of systems and phenomena of importance in nature and society can be 

profitably represented and analyzed as networks (or graphs), with system components being 

modeled as vertices in the network and relationships or dependencies among these elements 

being encoded as network edges. For example, many advanced technologies (e.g., electric 

power grids, computer networks), biological processes (e.g., metabolism, gene regulation), and 

social phenomena (e.g., organizations, diffusion of innovations) can be naturally modeled in this 

way [see, for instance, Carlson and Doyle 2002, Newman 2003, Barabasi and Oltvai 2004, and 

the references therein]. An interesting aspect of most real world networks is the fact that their 

topologies, while not perfectly uniform (like a lattice), possess considerable structural regularity; 

the topologies of these networks are related to, and indeed largely enable, their myriad 

functionalities. This observation has motivated much recent work in which researchers model a 

system of interest as a network and then attempt to deduce from vertex connectivity patterns 

something about the properties and behaviors of the underlying system. This complex networks 

perspective has already produced significant advances and appears to hold vast potential. 

However, in order to realize this promise we must overcome daunting challenges. For example, 

real world networks are typically very large, nonlinear dynamical systems, their topological 

structures are usually heterogeneous, subtle, and intricate, and the data describing them are 

often noisy and incomplete.  

This paper introduces a new approach to analyzing complex networks which addresses 

these challenges. A key step in the proposed methodology is to abstract the network of interest 

in a manner which is simultaneously dramatically simplifying and property preserving; we call 

this process aggressive abstraction. The network abstraction then becomes the focus of 

analysis, leading to significantly enhanced tractability while ensuring application relevance. In 

particular, any analytic conclusion obtained for the abstraction can be related back to the 

original network because the network and its abstraction are equivalent by construction.  

One should not expect aggressive abstractions to exist for arbitrary networks, of course, 

and in fact one contribution of this paper is to identify classes of networks which admit such 

abstraction. Here we introduce in an informal way perhaps the most important class of such 

networks and defer to subsequent sections a careful, mathematically rigorous discussion of 

these networks and their abstraction properties. Consider, then, those networks that have both 

a set of functions to perform and the opportunity to evolve in order to improve their functionality. 
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 This evolutionary process, which is ubiquitous in both natural and manmade networks, 

frequently yields abstractable networks. To see why this is so, observe first that such evolution 

leads to “robust, yet fragile” (RYF) networks which perform reliably in the presence of familiar, 

expected disturbances but can fail catastrophically in response to a small, new perturbation 

[Carlson and Doyle 2002]. Examples of RYF networks include electric power grids which deliver 

reliable, inexpensive power but are susceptible to continent-spanning cascading outages, 

financial markets which enable flexible, efficient transactions but also experience billion dollar 

crashes, and immune systems that provide responsive, adaptive protection against infection but 

also introduce the possibility of lethal autoimmune disease.  

The evolution underlying RYF increases the robustness of those network components and 

structures which are most susceptible to failure but, simultaneously and inevitably, generates 

fragilities associated with other structures [Carlson and Doyle 2002, Laviolette et all 2008]. A 

canonical example is provided by the feedback control systems which are pervasive in evolved 

networks: feedback regulation greatly improves robustness to variations in network elements 

but also introduces new fragilities (e.g., to a sign change in a feedback loop). The networks that 

result from RYF evolution have “designs” composed of robust and fragile features, and these 

configurations tend to admit aggressive abstraction. The explanation is straightforward. Such 

networks can be accurately modeled using only simple representations for the robust features – 

because network behavior is only weakly dependent on the details of these features – provided 

the fragile features are captured with fidelity. Because so many of the features in evolved 

networks are robust, the overall models can be very simple and still provide a faithful 

representation of the original network. Of course, actually constructing aggressive abstractions 

for complex, real world networks can be very challenging, and much of this paper is devoted to 

providing provably-correct, computationally tractable methods for performing the abstraction.  

While the past decade has seen great advances in our understanding of complex networks 

[e.g., Newman 2003], much remains to be done. In particular, analysis methods are needed 

which can address the scale, complexity, and dynamics of real world systems. A natural 

approach to understanding large-scale systems is to employ model reduction techniques to 

obtain a more tractable system representation, and of course model reduction is a well 

established methodology being employed in a variety of fields [e.g., Gorban et al. 2006]. 

However, very little work has been done to apply model reduction ideas to complex networks, 

particularly in ways that exploit the considerable structure of these networks. Moreover, in many 

complex networks applications it would be of considerable value to derive simplifying system 

representations which are property-preserving, so that conclusions obtained through analysis of 
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 the simplified model also pertain to the original network; classical model reduction methods 

typically cannot provide both dramatic simplification and property equivalence.  

Researchers in theoretical computer science have proposed useful definitions of system 

equivalence and developed algorithms which generate equivalent abstractions for large-scale 

systems [Milner 1989]. However, this work has focused on abstracting finite state systems, 

while the dynamics of most complex networks require infinite (typically uncountable) state 

representations. Recent work in the systems and controls literature has begun to address this 

latter challenge, proposing methods for obtaining equivalent abstractions for infinite state 

systems [e.g., Alur et al. 2000, Tabuada and Pappas 2006]; this work is closer in spirit to our 

approach and, indeed, provides inspiration for some of our development.  

Finally, we mention that using scalar variables to analyze and characterize the dynamics of 

complex systems can also be viewed as a form of model abstraction, and this approach to 

complexity management has a long and rich history. For example, energy-based analysis has 

been used for centuries in mechanics, and methods for extending this basic idea to a broad 

range of systems and analysis/synthesis objectives (e.g., using Lyapunov functions) have 

become a mainstay of systems theory and practice [Sontag 1998]. A major obstacle to the 

adoption of such methods for complex networks analysis is the lack of systematic, 

computationally tractable methods for obtaining the appropriate scalar functions with which to 

conduct the analysis.  

This paper presents a new framework for analyzing complex networks based on aggressive 

abstraction, that is, dramatically simplifying and property preserving abstraction of the network 

of interest. Once an aggressive abstraction is derived, all required analysis is performed using 

the abstraction. The analytic conclusions are then mapped directly to the original network and 

interpreted there; this is possible because of the property preserving nature of the abstraction 

process. Our first contribution is to identify broad and important classes of complex networks 

which are abstractable in this way and which can therefore be analyzed using the proposed 

approach. As indicated above, these networks are typically the result of an evolving process 

which favors systems that are robust to (familiar) environmental perturbations and internal flaws. 

While this characterization of abstractable networks explains why they are common, it does not 

lend itself to computational tests which can be used to determine whether a given network is 

abstractable. Thus we give precise, tractable algorithms for testing whether a complex, evolving 

network of interest can be abstracted using any of our methods.  

The second main contribution of the paper is to introduce and develop two forms of 

aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with 
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 uncountable state spaces are modeled using finite state dynamical systems, and 2.) one-

dimensional abstraction, whereby high dimensional network dynamics are meaningfully 

captured using scalar functions. In each case, the property preserving nature of the abstraction 

process is rigorously established, efficient algorithms for computing the abstraction are 

presented, and the main concepts are illustrated through simple examples.  

Finally, the considerable potential of the proposed approach to complex networks analysis 

is demonstrated through real world case studies. In our first case study, we develop a powerful 

new approach for vulnerability analysis of large, complex networks by leveraging the scalability 

and property preserving character of the finite state abstraction process; the efficacy of this 

vulnerability assessment framework is illustrated through analysis of fairly large-scale electric 

power grids. The second case study focuses on predictive analysis for complex network 

dynamics, with a focus on social processes on networks. This study develops a formal approach 

to predictability and prediction analysis that is enabled by one-dimensional abstraction 

techniques, and the utility of the methodology is illustrated through analysis of social processes 

for which standard approaches to prediction have been ineffective.  

2. Complex Networks  
This section begins with an informal but fairly detailed description of the classes of complex 

networks which are likely to admit aggressive abstraction and then introduces the mathematical 

framework we will use to model and analyze these networks.  

2.1 Evolving networks  
Complex, evolving systems are ubiquitous in nature and society, and recent research has 

clearly demonstrated the considerable utility of modeling and analyzing these systems as net-

works [e.g., Newman 2003]. In particular, focusing on networks which evolve to provide reliable 

performance in the presence of uncertainty and disturbances has revealed that 1.) most real 

world networks of practical interest belong to this class of systems, and 2.) this evolution yields 

networks with sufficient structure to allow informative, tractable analysis. An important example 

of the latter is RYF networks, which evolve robustness to familiar perturbations but become 

increasingly fragile to unexpected disturbances [Carlson and Doyle 2002, Laviolette et al. 2008]. 

Interestingly, the evolution which generates RYF also produces networks which allow deep 

information from limited observations (DILO) [Colbaugh and Glass 2003, Laviolette et al. 2008]. 

An example of DILO is the extent to which significant insight into the operation of complex 

networks can be obtained through topological analysis, with little or no consideration of the 
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 characteristics of the network’s vertices [Colbaugh and Glass 2003, Newman 2003]. The 

possibility to construct aggressive abstractions for complex networks, demonstrated rigorously 

in later sections of this paper, can be viewed as another realization of DILO.  

One of the goals of this paper is to show that complex, evolving networks admit aggressive 

abstraction; for instance, we will show that networks with uncountable state spaces can be 

represented as finite state systems. As indicated above, this surprising fact becomes more 

understandable when viewed through the lens of RYF/DILO. RYF networks evolve to have 

configurations with mainly robust features and a few fragile ones. Because only the fragile 

features must be modeled in detail, the overall system representation can be simple and still 

provide a faithful model of the network.  

One of the most important structures that evolves in RYF/DILO networks is the feedback 

control loop. Feedback regulation “robustifies” network features which are susceptible to failure, 

and this leads to network configurations which are complex but also highly abstractable. Indeed, 

even a cursory inspection of advanced technological and biological networks reveals that most 

of their complexity is associated with feedback control mechanisms. For example, electric power 

grids and the Internet contain vast numbers of feedback controllers which enable reliable and 

inexpensive delivery of electricity and packets, respectively, and the genomes of even simple 

bacteria consist mostly of genes which code for sensors, actuators, and the regulatory networks 

that control them. As a consequence, these networks exhibit remarkable robustness to wide 

variations in both environmental conditions and internal component behavior and thus require 

only simple models for these robust features.  

The above discussion suggests that it is not completely unreasonable to expect advanced 

technologies and biological systems to admit aggressive abstraction. Note that the arguments 

are intuitively appealing in part because generally accepted models are available for these 

systems; among other things, these models make explicit the feedback regulation in the 

networks and the way this feedback robustifies system features. These “noncontroversial” 

models for technological and biological systems are also leveraged in subsequent sections to 

enable rigorous proofs to be given for the existence of aggressive abstractions for these 

networks. However, these arguments may be less persuasive in the case of social systems 

precisely because of the lack of accepted models for phenomena in this domain. We therefore 

present in what follows an alternative argument for the plausibility of the existence of aggressive 

abstractions which is more suited to social processes.  

In contrast to the reasoning used in the discussion of technological and biological networks,  

which is based on network robustness, with social processes we argue that there are strong 
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 incentives for groups of social agents working on complex problems to adopt individually 

simple strategies and to coordinate their actions. The simplicity of agent behavior, relative to the 

complexity of the problem and the overall social process, then leads to the plausibility that the 

overall system is abstractable. Note that in order to make these notions precise in the presence 

of ambiguities and uncertainties associated with social processes, we will work at a fairly high 

level of abstraction.  

Consider a collection of social agents working on a complex problem. Suppose the agents 

can observe their environment and, for each possible environmental “state”, must specify an 

action to be performed. For example, the agents may form the team responsible for planning a 

city’s “portfolio” of responses to natural disasters. Let the agents’ plan be specified in terms of a 

strategy s: I → A which maps the current information state i ∈ I characterizing the 

environment to an action a ∈ A. A particular strategy s defines a response or action for each 

possible information state, and the challenge facing the group is to choose a strategy which 

provides good performance over a broad spectrum of environmental states.  

If the sensors used by agents to observe their “world” produce quantized measurements 

and the candidate strategies which map these sensor readings to actions are implemented on 

digital computers, then the sets of information states I and strategies S are discrete and finite. 

In this case the above set-up can be encoded as a complex systems matrix (CSM), in which 

rows and columns correspond to information states and strategies, respectively, and matrix 

entries denote actions; thus aij is the action specified by strategy j when the world is in state i 

(see Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Complex System Matrix, with rows and columns corresponding to 
information states and strategies, respectively, and matrix entries denoting 
actions associated with the given information state-strategy pair.  
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 Consider now the simple setting of binary actions aij ∈ {0,1} and the problem of choosing 

from the set S of all possible strategies one which provides good performance for all (or an 

important range of) information states. Even in this simple binary setting, selecting a strategy 

through exhaustive exploration of the strategy space is intractable for any real world problem. 

Indeed, real world social groups possess numerous “channels” through which to observe the 

world, and because the set I of information states grows exponentially in the number of these 

channels we can suppose that |I | is large. It is easy to see that the number of possible 

strategies is exponential in |I |: |S | = 2|I |. For instance, if the rows and columns of the CSM are 

arranged to produce a binary “counting matrix”, with leftmost column [0 0 … 0]T and rightmost 

column [1 1 … 1]T, then this encodes all strategies without duplication and has 2|I | columns. If 

we make the standard assumption that computational tractability requires algorithms which 

scale polynomially in the size of the input set, then only a fraction P(|I |)/2|I | of the strategy set 

S can be explored, where P(|I |) is a polynomial in |I |. It follows that only a small portion of the 

strategy set S can be examined by a given agent.  

We now show that an effective way for social groups to implement good strategies despite 

the complexity indicated above is for each agent to adopt a simple strategy and for the group to 

appropriately coordinate the individual strategies. More specifically, we seek an alternative to 

the computationally intractable situation in which one “super agent” would have to learn all |S | = 

2|I | strategies and then choose a good one. We have  

Theorem 1: Each of the following methods enables tractable construction of any strategy which 

appears in the CSM:  

1) Have each of |I | agents choose an elemental strategy ei (i.e., a column with a ‘one’ in the 

ith row and zeros everywhere else) and then form the group strategy using a linear 

combination of these elemental strategies.  

2) Assemble n = f |I | agents (for some small fraction f), partition the information state set I 

into n disjoint subsets Ik, and have each agent formulate a good strategy for one of these 

subsets; then the group monitors the world state, identifies which subset Ik is relevant, and 

adopts the appropriate agent’s (good) strategy.  

Proof (sketch): Assume sufficient agents exist to implement the group strategy in question. In 

Strategy 1), any strategy in the CSM can be implemented as a linear combination of the ei 

because the elemental columns form a basis for the column space of the CSM. Moreover, only 

|I | parameters must be “learned” to implement this scheme for a given problem. In Strategy 2), 
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 it is clear that by construction any strategy in the CSM is implementable in this way. Tractability 

follows from the fact that each agent must search only |Sk | = 2(1/f) strategies.                              

This result suggests that an effective way to deal with the complexity of real world social 

system problems is for individual agents to learn simple strategies, for instance those 

corresponding to a limited domain of expertise (Strategy 2)), and for society to construct (or 

evolve) “social institutions” which enable these individual strategies to be coordinated. Although 

the above analysis is simple and abstract, the result is suggestive of many readily observed 

situations in which simple strategies (e.g., “rules of thumb”) are coordinated via social 

institutions (e.g., markets, cultural norms) to produce good collective outcomes.  

2.2 Network models  
We now present a useful framework within which to model and analyze complex, evolving 

networks. The key observation is that evolution to provide robust performance typically leads to 

networks which have a hybrid structure exhibiting both continuous and discrete dynamics. More 

precisely, these networks are hybrid dynamical systems (HDS) composed of subsystems whose 

dynamics evolves on continuous state spaces (e.g., manifolds) interacting with switching 

systems that possess discrete state sets. The HDS architecture represents an effective way to 

increase robustness and performance in complex systems – indeed, certain robust performance 

goals can be met only through such switching [e.g., Bemporad et al. 2007] – so it is not 

surprising that complex networks evolve HDS structures.  

We have shown that HDS models are a natural, expressive, and tractable way to represent 

broad and important classes of complex networks [Colbaugh et al. 2007]. Consider, for 

example, advanced technologies ranging from compact and ubiquitous “embedded” systems 

made possible by modern electronics to continent-spanning electric power grids and global 

computer networks. These networked systems all consist of control software and hardware, 

which are discrete dynamical systems, interacting with the physical world, which is naturally 

represented in terms of differential equations evolving on continuous state spaces. Biological 

networks also possess a hybrid structure; examples from cell biology include the processes of 

gene regulation, cell growth and division, and cell differentiation. Complex social systems also 

tend to evolve hybrid structures. For instance, the interaction of Central Banks with financial 

markets is naturally represented as an HDS, as is the propagation of epidemics through the 

overlapping social contexts which make up a society.  

The basic structure of an HDS is depicted in Figure 2. The schematic on the left side of the 

figure shows the feedback relationship between the discrete and continuous subsystems which 



 

9

 form the HDS. More quantitatively, the discrete system dynamics depends on the continuous 

system state, often because discrete state transitions are “triggered” by certain continuous state 

behaviors, and the particular continuous system which is “active” at a given time depends on the 

discrete system. The cartoon on the right of Figure 2 illustrates a common way this interaction 

takes place. The continuous system state space is partitioned into subsets, each of which has 

associated to it a different vector field. The continuous system dynamics triggers a discrete state 

transition when the continuous state trajectory passes from one subset to another, and this 

discrete state change can in turn cause switching between the vector fields which define the 

continuous dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now present quantitative definitions for the HDS models we will use in our subsequent 

development.  

Definition 2.1: A continuous-time HDS is a control system  

q+ = h(q,k), 

ΣHDSct                                                           dx/dt = fq(x,u), 

k = p(x),  

where q∈Q (with |Q| finite) and x∈ℜn are the states of the discrete and continuous systems that 

make up the HDS, u∈ℜm is the control input, h defines the discrete system dynamics, the {fq} 

are a family of vector fields characterizing the continuous system dynamics, and p defines a 

partition of the continuous state space into subsets with labels k∈{1, …, K}.  

discrete
system

continuous 
system

inputs

inputs

mode 
outputs

discrete
system

continuous 
system

inputs

inputs

mode 
outputs

Figure 2: Schematic of an HDS (left) and HDS continuous system state space 
(right). The HDS diagram illustrates the feedback structure relating the discrete 
and continuous dynamics, while the state space cartoon provides a simple 
depiction of the way different vector fields can be active on different subsets of 
the continuous state space.  
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 ΣHDSct is thus a feedback interconnection of a discrete system, the dynamics of which evolves 

according to h and depends on the continuous state through subset label k, and a continuous 

system, with dynamics defined by the vector field fq which is presently “active” (see Figure 2). 

Note that in subsequent development we will frequently consider HDS with continuous state 

spaces which are bounded subsets X ⊆ ℜn, as this is usually the case in practical applications.  

We will also find it useful to work with discrete-time HDS:  

Definition 2.2: A discrete-time HDS is the control system   

q+ = h(q,k), 

ΣHDSdt                                                               x+ = fq(x,u), 

k = p(x),  

where the notation is identical to that used in Definition 2.1.  

We sometimes refer to an HDS using the symbol ΣHDS if the nature of the continuous system 

(continuous- or discrete-time) is either unimportant or clear from the context.  

Stochastic versions of HDS can also be specified. For instance, we have  

Definition 2.3: A stochastic HDS (S-HDS) is a feedback interconnection of a continuous state-

dependent Markov chain {Q, P(p(x))} and a collection of stochastic differential equations 

indexed by the Markov chain state q∈Q:  

{Q, P(k)}, 

ΣS-HDS                                                     dx = fq(x)dt + Gq(x)dw, 

k = p(x),  

where P(k) is the (k-dependent) Markov chain transition probability matrix, w is a standard ℜm-

valued Weiner process, and the matrices Gq define the way this stochastic “disturbance” 

impacts the continuous system dynamics.  

An extensive discussion of HDS and S-HDS theory and applications is beyond the scope of this 

paper. Such material may be found in [e.g., Bemporad et al. 2007] and the interested reader is 

directed to that reference for additional details.  

We close this brief introduction to hybrid systems with two simple examples.  

Example 2.1: Electric power grid  
Consider the simple two bus power grid depicted in Figure 3 [Wedeward 2006]. This system 

can be naturally represented as an HDS, with the continuous system modeling the generator 
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 and load dynamics as well as the power flow constraints and the discrete system capturing the 

switching associated with the grid’s “protection logic” (e.g., line tripping, load shedding).  

To provide a simple, concrete illustration of this fact, we assume that the generator and 

load dynamics can be described using standard models and that the sole protection logic 

implemented with the grid is line tripping (without recovery). In this case, we can model the 

generator and load dynamics as  

ref
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where E’q, δ, ω, PL, and QL are state variables, V1, V2, and θ1 are network (algebraic) variables,  

Efd and PM are (generator) control inputs, and all other terms are (constant) parameters.  

 

 

 

 

 

 

 

The power flow constraints can be written  
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−+−+−−−==

−−−−−−==

−+−+−+−==

−−+−−−==

(2.2) 

Figure 3: Two bus power system with generator, two transmission lines, and 
load (left) and simple state diagram illustrating discrete dynamics associated 
with line tripping protection logic (right).  
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 where PG and QG are given by  

))θcos(2(δV
XX2
XX

V
XX2
XX

-)θcos(δVE
X
1Q

))θsin(2(δV
XX2
XX

)θsin(δVE
X
1P

1
2
1

qd

qd2
1

qd

qd
11q

d
G

1
2
1

qd

qd
11q

d
G

−
′
−′

+
′
−′

−′
′

=

−
′
−′

+−′
′

=

 

and Sbus is complex power, θ2 is the final network variable, qlt is a discrete system state variable 

described below, and all terms not yet defined are parameters.  

The HDS continuous system is specified by equations (2.1)-(2.2). More precisely, the four 

algebraic equations (2.2) define the network variables V1, θ1, V2, and θ2 in terms of the state 

variables E’q, δ, ω, PL, and QL, and the latter in turn evolve according to the differential equations 

(2.1). The HDS discrete system defines the evolution of the discrete system state qlt ∈ {0,1}, 

which corresponds to the number of lines tripped out of service. This discrete dynamics is 

specified diagrammatically in Figure 3, with Sline given by  

*iθ
2

iθ
1

iθ
1line Z)/)eVe((VeVS 211 −=  

where Z is the line impedance.  

Example 2.2: Switching diffusion process  
Consider next a class of switching diffusion processes. Such models can be used to study a 

wide range of important phenomena [Prajna et al. 2007] and, indeed, we will use the basic 

structure introduced here to model real world systems later in this paper. Switching diffusion 

processes are a special case of the stochastic hybrid system model given in Definition 2.3. As a 

simple example, consider an S-HDS in which the continuous system is a stochastic differential 

equation with multiplicative noise:  

dx = Aq x dt + σ(x) dw  

where x ∈ℜ2 is the continuous system state, q ∈ {1,2} is the discrete system state, w is a scalar 

Wiener process, σ = [0   0.5x2]T, and the matrices A1, A2 are given by  









−
−−

=







−−
−−

=
220
42

    A,
21
45

A 21  
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 The discrete system is a continuous-time Markov chain with state set Q = {1,2} and continuous 

state-dependent transition probabilities. These transition probabilities are defined in terms of 

transition rates λqq’(x), where λqq’(x) ≥ 0 if q ≠ q’ and Σq’ λqq’(x) = 0 ∀q. The rates λqq’(x) are 

related to the state transition probabilities as follows:  







∆++

∆+
===+

)o((x(t))∆λ1
)o((x(t))∆λ

q}q(t)|q'∆)P{q(t
qq

qq'

q'q if   
q'q if   

=
≠

 

where ∆ > 0 [Bujorianu and Lygeros 2004].  

Figure 4 illustrates the sort of behavior which can be generated by this simple example of  

switching diffusion dynamics. The system trajectory shown (solid curve) corresponds to initial 

conditions x(0) = [0   3]T, q(0) = 1 and discrete state transition rate λ = 10. It is interesting to 

observe the way the two deterministic “components” of the process, dx/dt = A1x (dashed) and 

dx/dt = A2x (dash-dotted), combine to form the S-HDS trajectory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sample trajectory of the switching diffusion process (solid) described 
in Example 2.2 along with trajectories for the two deterministic components of 
the process, dx/dt = A1x (dashed) and dx/dt = A2x (dash-dotted).  
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 3. Finite State Abstraction  
The dynamics of complex networks ordinarily evolve on hybrid state spaces composed of 

both continuous and discrete sets. For example, the states of the simple electric power grid in 

Example 2.1 include five continuous variables, which model the generator and load dynamics, 

and one discrete variable, which specifies the number of tripped lines. This same structure is 

present in larger, more realistic power grid models [Ilic and Zaborszky 2000] and many other 

advanced technologies (e.g., [Glass et al. 2007]). Biological networks describing the behaviors 

of systems ranging from cells to ecosystems are also usefully represented in this way. Cell 

metabolism, for instance, can be modeled using stochastic differential equations for the 

(continuous) concentrations of the various metabolites and discrete switching to capture 

transitions between different modes of metabolism. Social processes from epidemics to opinion 

formation to organizational dynamics also have hybrid state spaces. As one example, recent 

work has revealed that global epidemics can be well-modeled using simple stochastic 

differential equations for the fractions of susceptible, infected, and recovered populations, 

provided that the travel patterns of these populations (e.g., via commercial airlines) are captured 

[Colizza et al. 2006]. We show in [Colbaugh and Glass 2007] that these latter dynamics can be 

represented as a finite state Markov process, making the complete model a hybrid system.  

The large-scale, hybrid nature of complex network dynamics represents a major challenge 

in their analysis. Clearly, developing methods for managing this considerable complexity would 

be an important advance. In this section we present a framework for modeling infinite state 

complex networks with finite state models in a way that preserves the relevant properties of the 

original network. The advantages of obtaining equivalent finite state models cannot be 

overstated. For instance, finite state systems can be analyzed using the powerful methods of 

theoretical computer science (see, e.g., [Milner 1989], [Clarke et al. 1999], [Alur et al. 2000] for 

an introduction to some of these methods), and an equivalence between the original and finite 

state models enables analytic conclusions derived for the latter to be applied directly to the 

former. Additionally, finite state abstractions for infinite state systems usually contain only a 

small subset of the parameters of the original model, so that abstraction provides an effective 

means of managing the parametric uncertainty which is so prevalent in complex network 

models.  

We begin our discussion of finite state abstractions for complex networks by introducing the 

basic abstraction concept and reviewing some technical background which will be useful in our 

development. We then present the main abstraction results, including methods for approximate 

abstraction, and provide efficient computational techniques for realizing these abstractions.  
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3.1 Preliminaries  
The basic notion of a finite state abstraction for an infinite state system is illustrated in the 

cartoon on the left side of Figure 5. Consider a complex network with states that evolve on a 

continuous space and an analysis question of interest. Such a situation is depicted in Figure 5, 

where the continuous dynamics are shown as curves on a continuous state space (blue region 

at bottom left) and the analysis question involves deciding whether states in the green region 

can evolve to the red region. Reachability questions of this sort are quite difficult to answer for 

generic complex networks. However, if it is possible to construct a finite state abstraction of the 

network which possesses equivalent dynamics, then the analysis task becomes much easier. 

To see this, observe from Figure 5 that a finite state abstraction of the original dynamics takes 

the form of a graph, where the states are graph vertices (nodes within the blue region at top left) 

and admissible state transitions define the graph’s directed edges. Reachability analysis is 

straightforward with a graph – check whether there exists a directed path from a green vertex to 

a red vertex – and if the complex network and its abstraction have equivalent reachability 

properties then this graph analysis also characterizes reachability for the original system.  

Figure 5: Basic concepts associated with finite state abstraction. Cartoon at 
left illustrates that abstraction preserves dynamical properties: infinite state 
trajectories of original system (curves in blue region at bottom) are mapped 
to equivalent finite state trajectories (sequences of state transitions at top). 
Diagram at right highlights the focus on property preserving transformations 
of infinite state HDS to feedback interconnections of finite state systems.  
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 Reachability assessment, while valuable, is rarely sufficient to answer real world analysis 

questions. For instance, suppose that the red region in Figure 5 is the set of failure states. It 

may be of interest to determine if all system trajectories which reach the red region first pass 

through the white, observable, region (so there is “warning” of impending failure), or whether all 

trajectories which reach the red region subsequently return to the blue (“normal”) region (and 

thereby “recover” from failure). Addressing these more sophisticated questions requires that the 

analysis be conducted using a language which allows refined, nuanced description of, and 

reasoning about, network dynamics. We propose that linear temporal logic (LTL) provides such 

a language [Clarke et al. 1999]. LTL offers a precise, expressive framework for analyzing 

dynamical phenomena which is similar to natural language and is thus convenient to use. It is 

an extension of propositional logic which enables temporal issues to be considered.  

As we wish to use LTL to analyze the dynamics of complex networks and we model these 

networks as HDS, we tailor our definition of LTL to be compatible with this setting:  

Definition 3.1: The syntax of LTL consists of  

• atomic propositions (q,k), where q ∈ Q is an HDS discrete state and k ∈ K is a label for a 

subset in the continuous system state space partition;  

• formulas composed from atomic propositions using a grammar of Boolean (ϕ ∨ θ, ¬ϕ) and 

temporal (ϕUθ, ϕ) operators.  

The semantics of LTL follows from the interpretation of formulas on trajectories of HDS, that is, 

on sequences of (q, k) pairs: (q, k) = (q0, k0), (q1, k1), …, (qT, kT).  

The Boolean operators ∨ and ¬ are disjunction and negation, as usual. The temporal operators 

U and  are read “until” and “next”, respectively, with ϕUθ specifying that ϕ must hold until θ 

holds and ϕ signifying that ϕ will be true at the next time instant (see [Clarke et al. 1999] for a 

more careful description of these operators).  

We are now in a position to make precise the notion of property preserving abstraction: we 

seek abstractions which preserve LTL, that is, which are such that for any LTL formula φ either 

both the system and its abstraction satisfy φ or neither do. More quantitatively, for system Σ1 and  

abstraction Σ2, the abstraction is property preserving if and only if {Σ1 |= ϕ} ⇔ {Σ2 |= ϕ} for all 

LTL formulas ϕ, where |= denotes formula satisfaction (see Figure 5).  

Bisimulation is a powerful method for abstracting finite state systems to yield simpler finite 

state systems which are equivalent from the perspective of LTL [Milner 1989]. However, the 

problem of constructing finite state bisimulations for continuous state systems is largely 
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 unexplored. Indeed, one of the main contributions of this paper is to develop a collection of 

mathematically rigorous, computationally tractable methods for obtaining finite bisimulations of 

HDS models.  

Bisimulation is typically defined for transition systems, so we first introduce this notion (see 

[Milner 1989] for additional details):  

Definition 3.2: A transition system is a four-tuple T = (S, →, Y, h) with state set S, transition 

relation → ⊆ S × S, output set Y, and output map h: S → Y. T is finite if |S| is finite.  

Transition systems are a very general form of dynamical system, with the transition relation → 

defining the admissible state transitions (so that (q, q’) ∈ →, usually denoted q → q’, if T can 

undergo a state transition from q to q’).  

Bisimilar transition systems share a common output set and have dynamics which are 

equivalent from the perspective of these outputs:  

Definition 3.3: Transition systems TS = (S, →S, Y, hS) and TP = (P, →P, Y, hP) are bisimilar via 

relation R ⊆ S × P iff:  

• s ~ p ⇒ hS(s) = hP(p) (R respects observations);  

• s ~ p, s →S s’ ⇒ ∃ p’ ~ s’ such that p →P p’ (TP simulates TS, denoted TS ∠ TP);  

• p ~ s, p →P p’ ⇒ ∃ s’ ~ p’ such that s →S s’ (TP ∠ TS).  

A standard result from theoretical computer science shows that bisimulation preserves LTL, a 

fact which will be of considerable value in the subsequent development:  

Proposition 3.1 [Milner 1989]: If T1 and T2 are bisimilar transition systems and ϕ is an LTL 

formula then {T1 |= ϕ} ⇔ { T2 |= ϕ}.  

The following alternative definition for bisimulation is easily shown to be equivalent to the 

one presented in Definition 3.3 and provides a convenient basis upon which to develop finite 

bisimulations for continuous state transition systems:  

Definition 3.4: A finite partition Φ: S → P of the state space S of transition system T = (S, →, Y, 

h) naturally induces a quotient transition system T/~ = (P, →~, Y, h~) of T, provided that  

• Φ(s) = Φ(s’) (denoted s ~ s’) ⇒ h(s) = h(s’);  

• h~(p) = h(s) if p = Φ(s);  

• →~ is defined so that Φ(s) →~ Φ(s’) iff s → s’.  
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 Equivalently, the quotient transition system T/~ can be defined by specifying the equivalence 

relation R ⊆ S × S directly.  

Transition system T and its quotient T/~ are bisimilar if an additional condition holds:  

Proposition 3.2: Suppose T/~ is defined as in Definition 3.4 and, in addition, Φ(s) →~ Φ(s’) ⇒ ∀ 

s’’ ~ s ∃ s’’’ ~ s’ such that s’’ → s’’’. Then T and T/~ are bisimilar.  

The proof of Proposition 3.2 follows easily from standard theoretical computer science results 

and is omitted.  

Proposition 3.2, while useful, provides no guidance regarding the actual construction of a 

bisimulation-inducing finite partition Φ. Moreover, the result does not help in the identification of 

systems for which such partitions exists. This latter point is crucial because most continuous 

state transition systems do not admit finite bisimulations [Alur et al. 2000].  

We now introduce a class of continuous state (control) systems which is both important, in 

that many real world systems belong to this class, and finite state abstractable.  

Definition 3.5: The continuous-time system dx/dt = f(x, u), with f: ℜn × ℜm → ℜn, is differentially 

flat if there exists (flat) outputs z ∈ ℜm such that z = H(x), x = F1(z, dz/dt, …, drz/dtr), and u = 

F2(z, dz/dt, …, drz/dtr) for some maps H, F1, and F2.  

Definition 3.6: The discrete-time system x+ = f(x, u) is difference flat (with memory k) if there 

exists (flat) outputs z ∈ ℜm such that z = H(x), x(t) = F1(z(t), z(t+1), …, z(t+k−1)), and u(t) = 

F2(z(t), z(t+1), …, z(t+k−1)).  

Differentially flat systems are discussed at length in the report [Martin et al. 2003]. Our definition 

of difference flat systems is a natural extension of this notion to discrete-time systems. It is easy 

to show that for flat systems, any flat output trajectory z*: [0, T] → ℜm is realizable (provided z* 

is compatible with x(0)), and that specifying a trajectory for the flat outputs completely defines 

the system evolution.  

As indicated above, many real world systems are flat. For example, all controllable linear 

systems are flat, as are all (static or dynamic) feedback linearizable systems. Moreover, 

complex, evolving networks often possess continuous dynamics which are flat. [Martin et al. 

2003] presents a extensive collection of advanced technologies whose dynamics are 

differentially flat. The next example illustrates that naturally evolving systems can also be flat.  
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 Example 3.1: Drosophila circadian rhythm  
Many aspects of the physiology of living organisms oscillate with a period of approximately 

24 hours, corresponding to the duration of a day, and the molecular basis for this circadian 

rhythm has been quantified in several organisms. For instance, a model for the gene regulatory 

network responsible for circadian rhythm in Drosophila (fruit fly) is shown in Figure 6 [Goncalves 

and Yi 2004]. The diagram at the left of Figure 6 depicts the main elements of the network, 

including the regulatory feedback loops. The model itself consists of the six coupled ordinary 

differential equations shown at the right of the figure, where MP, P0, P1, P2, C, and CN are state 

variables corresponding to the concentrations of the constituents of the circadian rhythm gene 

network, vsP can be viewed as an exogenous (control) input associated with the light-dark cycle 

of the environment, and all other terms are constant model parameters.  

 
 

 

 

 

 

 

 

 

 

 
As is evident from Definition 3.5, a differentially flat system possesses (flat) outputs, equal 

in number to the number of inputs, which permit the system states and inputs to be recovered 

through algebraic manipulation of these outputs and their time derivatives. In the case of 

Drosophila circadian rhythm, CN is a flat output. To see this, note that C and its time derivatives 

can be obtained from the sixth equation through manipulation of CN and its derivatives. These 

terms, in turn, permit P2 (and its derivatives) to be obtained from the fifth equation, and 

continuing in this way up the “chain” of equations gives all of the states and the input vsP 

[Colbaugh et al. 2007].  

 

Figure 6: Model for circadian rhythm in Drosophila. Diagram at left shows the 
main elements of the gene regulatory network, including the negative (yellow) 
and positive (black) feedback loops. Differential equations at right quantify the 
network dynamics.  
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 3.2 Basic results  
We now demonstrate that hybrid systems with (difference or differentially) flat continuous 

systems admit finite state bisimulations. As HDS provide a powerful framework within which to 

model complex networks and many real world systems possess flat continuous dynamics, this 

result is of considerable practical as well as theoretical interest.  

Consider, then, an HDS of the form given in Definition 2.1 or 2.2. We begin by providing a 

transition system representation for the continuous system dynamics of HDS:  

Definition 3.7: The transition system model THDSc for the continuous system portion of ΣHDS is 

the collection THDSc = {Tq
k}, with one transition system Tq

k = (Xq
k, →q

k, Yq
k, hq

k) specified for each 

pair (q, k). In this specification, Xq
k and Yq

k are (bounded) state and output sets, respectively, 

and the maps hq
k: Xq

k → Yq
k will be used to specify the relevant quotient partitions (see 

Definition 3.4); the transition relations →q
k are defined as  

• discrete-time continuous system: x →q
k x’ iff ∃ u such that x’ = fq(x, u) on subset k;  

• continuous-time continuous system: x →q
k x’ iff there is a trajectory x: [0, T] → Xq

k of dx/dt = 

fq(x, u), a time t’ ∈ (0, T), and adjacent quotient partitions (labeled) y, y’ ∈ Yq
k such that x(0) 

= x, x(T) = x’, x([0, t’)) ⊆ y, and x((t’, T]) ⊆ y’.  

We make the standard assumption that k: X → K partitions the state space X into polytopes and 

that all HDS discrete system transitions are triggered by k transitions.  

Definition 3.7 allows an HDS to be modeled as a feedback interconnection of two transition 

systems, one with continuous state space and one with finite state set:  

Definition 3.8: The transition system THDS associated with the HDS given in Definition 2.1 or 2.2 

is a feedback interconnection of 1.) the continuous system transition system THDSc = {Tq
k} and 

2.) the transition system associated with the HDS discrete system, defined as THDSd = (Q, →d, Q, 

id), where q →d q’ iff ∃ k such that q’ = h(q, k) and id is the identity map. Thus THDS = (Q × X, 

→HDS,  Q × Y, hHDS), where Q × X = ∪q (∪k {q} × Xq
k), Q × Y = ∪q (∪k {q} × Yq

k), and the 

definitions for →HDS and hHDS follow immediately from the transition relation and output map 

definitions specified for THDSc and THDSd.  

Because the transition system THDSd corresponding to the HDS discrete system is already a 

finite state system, the main challenge in abstracting HDS to finite state systems is associated 

with finding finite state bisimulations for the continuous systems THDSc = {Tq
k}. This is made 

explicit in the following  
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 Theorem 2: If each transition system Tq
k associated with THDS is bisimilar to its finite quotient 

transition system Tq
k/~ = (Yq

k, →~, Yq
k, id) and the state space quotient partitions defined by the 

hq
k satisfy a mild compatibility condition then THDS admits a finite bisimulation.  

Proof: Consider the transition system THDS given in Definition 3.8. Let T be the transition system 

obtained from THDS by replacing each Tq
k in THDS with Tq

k/~, so that T =  (Q × Y, →, Q × Y, id) 

with → defined in the obvious way. Note first that T is finite. Referring to Definition 2.1, consider 

two adjacent state space regions labeled ki, kj and their shared boundary (as defined by p(x)). 

Suppose that the partitions on ki, kj induced by the maps hq
ki, hq

kj “line up” at their common 

boundary, so that the segmentations of the boundary implied by hq
ki and by hq

kj are identical. In 

this case, it is easy to check that the quotient map Φ: Q × X → Q × Y induced by the hq
k satisfies 

1.) Φ(s) = Φ(s’) ⇒ hHDS(s) = hHDS(s’), 2.) Φ(s) → Φ(s’) ⇔ s →HDS s’, and 3.) Φ(s) → Φ(s’) ⇒ ∀ s’’ 

~ s ∃ s’’’ ~ s’ such that s’’ →HDS s’’’. Therefore, from Proposition 3.2, THDS and T are bisimilar.    

While it is possible to relax the state space partition compatibility condition given above, we do 

not pursue this as the condition is mild and straightforward to satisfy in applications.  

Theorem 2 shows that the key step in obtaining a finite state bisimulation for hybrid system 

THDS (and so ΣHDS) is constructing bisimulations for the continuous state transition systems Tq
k. 

We therefore focus on this latter problem for the remainder of this section. Our first basic result 

along these lines concerns difference flat continuous systems and is summarized in  

Theorem 3: Given any finite partition π: Z → Y of the flat output space Z of a difference flat 

system, the associated transition system TF = (X, →, Y, π ° H) admits a bisimilar quotient TF/~.  

Proof: Consider the equivalence relation R that identifies state pairs (x, x’) which generate 

identical sets of k-length output symbol sequences y = y0 y1 … yk−1, and the quotient system 

TF/~ induced by R. Clearly R defines a finite partition of X (both |Y| and k are finite), and x ~ x’ 

⇒ π ° H(x) = π ° H(x’) so that R respects observations. TF ∠ TF/~ follows immediately from the 

definition of quotient systems. To see that TF/~ ∠ TF, note that flatness ensures that any symbol 

string y = yk yk+1 … is realizable by transition system TF; thus x ∼ x’ at time t implies that x and x’ 

can transition to equivalent states at time t + 1, and from Definition 3.3 TF and TF/~ are bisimilar.  

                                                                                                                                                     

 Remark 3.1: Efficient algorithms exist for checking if a given system is difference flat, so that 

Theorem 3 provides a practically implementable means of identifying discrete-time continuous 

state systems which admit finite bisimulation. For instance, discrete-time feedback linearizable 
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 systems are flat [Colbaugh et al. 2007] and there are fast algorithms for checking feedback 

linearizability for both continuous-time and discrete-time systems [e.g., Sontag 1998].  

Remark 3.2: The trajectory of the flat outputs completely defines the evolution of a difference 

flat system. Thus, because any finite partition of flat output space induces a finite bisimilar 

quotient for a flat system, the flat output space partition can be refined to yield any desired 

abstraction resolution.  

An analogous result holds for differentially flat continuous systems. Our development of this 

result requires the following lemmas.  

Lemma 3.1: A control system is differentially flat iff it is dynamic feedback linearizable.  

Proof: See [Aranda-Bricaire et al. 1995].                                                                                      

Lemma 3.2: Control system Σ admits a finite bisimulation iff any representation of Σ obtained 

through coordinate transformation and/or invertible feedback also admits a finite bisimulation.  

Proof: The proof is straightforward.                                                                                             

Taken together, Lemmas 3.1 and 3.2 suggest the following procedure for constructing finite 

bisimulations for differentially flat systems: 1.) transform the flat system of interest into a linear 

control system via feedback linearization (possibly enlarging the state space in the process), 2.) 

compute a finite bisimulation for the linear system, and 3.) map the bisimilar model back to the 

original system representation (if desired). In view of these results, we focus in what follows on 

building finite bisimulations for linear control systems.  

In particular, consider as the control system of interest one “chain” of a Brunovsky normal 

form (BNF) system ΣBNF [Sontag 1998]:  

dx1/dt = x2,  

dx2/dt = x3,  

…  

dxn/dt = u.  

Concentrating on this system entails no loss of generality, as any controllable linear system can 

be modeled as a collection of these single chain systems, one for each input, and the decoupled 

nature of the chains ensures that we can abstract each one independently and then simply 

“patch” the abstractions together to obtain an abstraction for the original (multi-input) system.  

Consider the following partition of the (assumed bounded) state space X ⊆ ℜn of ΣBNF:  
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 Definition 3.9: The partition πε is the map πε: X → Y which partitions X into subsets yis = {x ∈ X 

| x1 ∈ [iε, (i+1)ε), sign(x2) = s1, …, sign(xn) = sn-1}, where i is an integer and s is an (n−1)-vector 

of “signs” corresponding to a particular orthant of X.  

Thus πε partitions X into “slices” of width ε of the orthants of the n-dimensional space X, with 

each slice orthogonal to the x1-axis.  

We are now in a position to state  

Theorem 4: The transition system TBNF = (X, →, Y, πε) associated with system ΣBNF and partition 

πε admits a finite bisimilar quotient TBNF/~ = (Y, →~, Y, id).  

Proof: TBNF/~ is finite because |Y| is finite. Assume →~ is constructed so that πε(x) →~ πε(x’) ⇔ x 

→ x’ (as specified in Definition 3.4). Then all conditions given in Definition 3.4 are satisfied, and 

from Proposition 3.2 we need only show πε(x) →~ πε(x’) ⇒ ∀ x’’ ~ x ∃ x’’’ ~ x’ such that x’’ → x’’’. 

This amounts to demonstrating that if x can be driven through face F of slice πε(x) then any x’’ in 

that slice can be driven through F as well; the latter result follows from straightforward (though 

tedious) checking that this behavior holds for the system x1
(n) = u on each orthant of X.             

Remark 3.3: The result given in Theorem 4 is most useful in situations where the control input u 

can be chosen large relative to the “drift” of the system. Applications in which control authority is 

limited will be addressed in the next subsection.  

We close this discussion with a simple example.  

Example 3.2: Discrete-time BNF control systems  
It is easy to show that the discrete-time linear system in BNF  

x1+ = x2,  

x2+ = x3,  

…  

xn+ = u  

is difference flat with flat output x1, so from Theorem 3 it follows that this system admits a finite 

bisimilar quotient system on any bounded state space X ⊆ ℜn. In particular, let π: X → Y be any 

finite, “hypercubic” partition of X (i.e., π partitions X into regular n-dimensional hypercubes 

whose edges align with the coordinate axes). Then the quotient system T/~ = (Y, →~, Y, id), with 

→~ constructed according to Definition 3.4, is one such finite bisimilar quotient.  

Remark 3.3: An alternative finite bisimulation result for discrete-time linear systems is derived in 

[Tabuada and Pappas 2006].  
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 3.3 Approximate bisimulation  
The previous subsection shows that HDS with continuous systems that are difference flat or 

differentially flat admit finite state bisimulations. Intuitively, a bisimulation relation between THDS, 

the transition system associated with ΣHDS, and a finite state transition system T is a relation 

between the state sets of THDS and T describing how any trajectory of THDS can be mapped to a 

trajectory of T which has an identical output trajectory, and vice versa. Because HDS with flat 

continuous systems are a broad and important class of dynamical system, this result is of 

considerable practical value. However, the requirement that the trajectories of THDS and T 

possess identical output traces is too strong for some applications. For example, it may be 

sufficient to require the output trajectories of the two transition systems to be close, or to 

consider only a subspace of the state space of THDS when relating the state sets of THDS and T. 

This subsection focuses on these notions of approximate bisimulation.  

Consider first the concept of approximate bisimulation introduced in [Girard and Pappas 

2007]. This concept is most naturally defined for labeled, metric transition systems:  

Definition 3.10: A labeled, metric transition system is a tuple Tm = (S, L, →, Y, h), where S and 

h are the state set and output map, as before, the output set Y is equipped with a metric d, L is 

a set of labels, and the dynamics defined by the transition relation → ⊆ S × L × S depends on 

the labels as well as the states.  

The notion of approximate bisimulation introduced in [Girard and Pappas 2007] relaxes the 

requirements of a bisimulation relation as follows:  

Definition 3.11: Let Tm1 = (S1, L, →1, Y, h1) and Tm2 = (S2, L, →2, Y, h2) be two labeled, metric 

transition systems and ε ≥ 0 be a given precision. R ⊆ S1 × S2 is an ε-approximate bisimulation 

relation between S1 and S2 if for all (s1, s2) ∈ R:  

• d(h1(s1), h2(s2)) ≤ ε;  

• ∀ s1 →1
l s1’ ∃ s2 →2

l s2’ such that (s1’, s2’)  ∈ R;  

• ∀ s2 →2
l s2’ ∃ s1 →1

l s1’ such that (s1’, s2’)  ∈ R.  

Transition systems Tm1 and Tm2 which possess an ε-approximate bisimulation relation R are said 

to be approximately bisimilar with precision ε, denoted Tm1 ~ε Tm2.  

The precision ε provides a bound on the proximity of output trajectories of Tm1 and Tm2, in that if 

Tm1 ~ε Tm2 then for any output trajectory y1(0) y1(1) … y1(k) of Tm1 there is an output trajectory 

y2(0) y2(1) … y2(k) of Tm2 such that d(y1(i), y2(i)) ≤ ε ∀i, and conversely.  
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 We now show that differentially flat systems admit finite state approximate bisimulations of 

arbitrarily accurate precision ε and, moreover, that this approximate bisimulation is realizable 

with moderate control authority; thus this result is of significant practical interest. We begin by 

specifying the “time-sampled”, labeled, metric transition system associated with differentially flat 

system ΣF. Let U denote the set of measurable, bounded control input trajectories for ΣF, u ∈ U 

be one such input trajectory, and x(T, x, u) be the state reached by ΣF at time T under input u 

starting from initial condition x.  

Definition 3.12 The labeled, metric transition system TF,T associated with flat system ΣF is the 

tuple TF,T = (X, U, →T
u, X, id), where X and U are the sets of flat system states and input 

trajectories, respectively, (x, u, x’) ∈ →T
u iff x’ = x(T, x, u), and the metric d on X is given by d(y, 

z) = max[|y1−z1|, …, |yn−zn|].  

Note that TF,T is time-sampled in that only state transitions achievable in time T are considered.  

Assume that the state space X of ΣF is a bounded subset of ℜn and let [X]η = {x ∈ X | xi = 

kiη}, with the ki integers, denote a “lattice” discretization of X of ΣF. We are now in a position to 

state our approximate bisimulation result for differentially flat systems:  

Theorem 5: Consider the transition system Tη,T = ([X]η, U, →T
u

app, X, id), with (x, u, x’) ∈ →T
u

app 

iff ||x’ − x(T, x, u)|| ≤ η. Given any desired ε there exist parameters T, η such that Tη,T is finite 

and approximately bisimilar to TF,T with approximation precision ε.  

Proof: Note first that because X is bounded the set [X]η is finite for any η, so Tη,T is finite. We 

claim that the relation R ⊆ X × [X]η, defined by (x, s) ∈ R iff ||x − s|| ≤ ε, is an ε-approximate 

bisimulation relation between TF,T and Tη,T, and demonstrate this by showing that R satisfies the 

three conditions given in Definition 3.11. Consider any (x, s) ∈ R. We have d(x, s) ≤ ε by 

definition. We next show that ∀ x →T
u x’ ∃ s →T

u
app s’ such that (x’, s’) ∈ R. Given any x →T

u x’ ∃ 

ustab which “stabilizes” this trajectory, so that states near x are driven to states near x’ by ustab; 

this follows from flatness of ΣF [Martin et al. 2003]. Additionally, x →T
ustab x’ and ||x(T, x, ustab) − 

x(T, y, ustab)|| ≤ β(||x − y||, T) for some class KL function β (see [Sontag 1998] for background on 

such stabilization concepts). Given x, s ∃ x’’, s’ such that x →T
ustab x’ ⇒ s →T

ustab x’’ and ||x’’ − 

s’|| ≤ η, so that s →T
ustab

app s’. Therefore ||x’ − s’|| ≤ ||x’ − x’’|| + ||x’’ − s’|| ≤ β(||x − s||, T) + η ≤ β(ε, 

T) + η ≤ ε (for proper choice of T, η), from which it follows that (x’, s’) ∈ R. The proof that ∀ s 

→T
u

app s’ ∃ x →T
u x’ such that (x’, s’) ∈ R is analogous.                                                            
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 Theorem 5 shows that relaxing the requirement that the trajectories of a control system 

and its finite abstraction possess identical output traces enables useful approximate 

bisimulations to be derived. Indeed, approximation bisimulations for flat systems can be 

constructed that ensure the output trajectories of the system and its abstraction are as close as 

desired. An alternative approach to developing approximate bisimulations is to restrict attention 

to a subset of system behaviors and to abstract only these dynamics. For example, it may be 

sufficient to focus attention on system behaviors which begin and end at equilibria, as this is 

usually what is important in applications. To make this notion precise, we introduce  

Definition 3.13: The equilibrium manifold E of a control system dx/dt = f(x, u) is the set E = {x* ∈ 

X | ∃u* for which f(x*, u*) = 0}.  

In fact, in many situations of real world interest the initial and final states belong to E and, 

moreover, system trajectories remain close to E, and the problem naturally becomes one of 

abstracting the behavior of the system close to its equilibrium manifold.  

We now pursue this idea for differentially flat control systems. Consider the continuous-time 

BNF system ΣBNF, repeated here for convenience of reference:  

dx1/dt = x2,  

dx2/dt = x3,  

…  

dxn/dt = u.  

Recall that focusing on ΣBNF is without loss of generality, as any flat system can be transformed 

to a set of (decoupled) chains of the form ΣBNF through dynamic feedback linearization. The 

equilibrium manifold for ΣBNF is given by EBNF = {x ∈ X | x2 = x3 = … = xn = 0}, so that EBNF is 

identical to the flat output space Z for ΣBNF. (The fact that EBNF = Z is interesting and currently 

under investigation.)  

Consider the transition system TBNF,eq = (Z, →BNF,eq, Y, π) associated with the system ΣBNF 

near EBNF, where π: Z → Y is any finite partition of Z and Y = {y1, …, yp} is the set of partition 

labels. Admissible state transitions are those which can be made while remaining “near” EBNF. 

More specifically, for any z ∈ y, z’ ∈ y’, (z, z’) ∈ →BNF,eq iff the trajectory connecting z, z’ remains 

arbitrarily close to EBNF and either y = y’ or y, y’ are adjacent partition elements. We are now in a 

position to state  



 

27

 Theorem 6: Let Teq,app = (Y, →eq,app, Y, id), with (y, y’) ∈ →eq,app iff ∃ z ∈ y, z’ ∈ y’ such that z 

→BNF,eq z’. Teq,app is a finite bisimulation for TBNF,eq.  

Proof: The proof is trivial and therefore omitted.                                                                          

Because Teq,app and TBNF,eq are bisimilar, Teq,app is finite, and TBNF,eq is an arbitrarily accurate 

approximation of ΣBNF on EBNF, Theorem 6 gives an approximate bisimulation result for flat 

systems which is useful in many applications.  

Another way to obtain approximate bisimulations is to focus on a particular subspace of the 

system state space, X1 ⊆ X, which is relevant to the problem at hand. For instance, consider the 

system  

dx1/dt = f1(x1, x2, u),  

dx2/dt = f2(x2),  

where x1 ∈ X1, x2 ∈ X2, X = X1 × X2, and the system (i.e., f1(x1, x2, u)) is controllable on X1. If the 

dynamics of x2 are reasonably well-behaved (e.g., stable), it may be sufficient to concentrate on 

the x1 dynamics. In this case, the preceding results imply  

Corollary 3.1: Let π: X → X1 be the state space projection onto X1 and h: X1 → Y define a finite 

bisimulation partition for dx1/dt = f1(x1, x2, u). Then h ◦ π: X → Y is a finite bisimulation partition 

for the complete system.  

Finally, note that given a transition system TΣ associated with control system Σ, it is often 

sufficient to construct a finite abstraction T which simulates TΣ, so that TΣ ∠ T (see Definition 

3.3). For instance, we will show in the case studies that simulating abstractions are very useful 

when Σ is differentially flat. The following corollary is relevant in this situation and is an 

immediate consequence of Definition 3.4:  

Corollary 3.2: Let Φ: X → Y be any finite, hypercubic partition of the state space X of transition 

system T = (X, →, Y, Φ). The quotient transition system T/~ = (Y, →~, Y, id) simulates T if →~ is 

defined so that Φ(x) →~ Φ(x’) iff x → x’.  

We close this discussion of approximate bisimulations with a simple example.  

Example 3.3: Continuous-time BNF control systems  
It is easy to show that the planar continuous-time BNF system  

dx1/dt = x2,  

dx2/dt = u   
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 is differentially flat with flat output x1, so from Theorem 5 it follows that the system admits a 

finite approximate bisimulation on any bounded state space X ⊆ ℜn. In particular, let X = [−1, 1] 

× [−1, 1]. It is straightforward to verify that the transition system Tη,T = ([X]η, U, →T
u

,app, X, id), 

with η = 0.4, T = 2, [X]η = {−2η, −η, 0, η, 2η} × {−2η, −η, 0, η, 2η}, and →T
u

,app specified as in 

Figure 7, provides such an approximate bisimulation with precision ε = 1/4.  

 

 

 

 

 
 
 

 

 

 

3.4 Computation  
We now consider the problem of efficiently computing finite bisimulations for HDS. As in the 

preceding sections we focus on constructing bisimulations for HDS continuous systems, and in 

particular differentially or difference flat continuous systems, as HDS discrete systems already 

possess finite state representations. In fact, Lemmas 3.1 and 3.2 demonstrate that without loss 

of generality we can concentrate on computing finite bisimilar transition systems for controllable 

linear continuous- and discrete-time systems.  

Consider the problem of computing a finite state simulation of continuous-time linear control 

system Σlc: dx/dt = Ax + Bu. The transition system associated with Σlc is Tlc = (X, →lc, Y, h), with  

h: X → Y any finite, hypercubic partition of X and →lc specified as in Definition 3.7. Corollary 3.2 

shows that the quotient transition system Tlc/~ = (Y, →lc~, Y, id) simulates Tlc if →lc~ is defined so 

that h(x) →lc~ h(x’) iff x →lc x’. Additionally, Theorems 4 and 5 indicate that this Tlc/~ is “close” to 

bisimilar to Tlc. Finally, observe that a primary motivation for deriving finite state abstractions for 

continuous state systems is complexity management, implying that many applications of interest 

Figure 7: State transitions associated with Tη,T in Example 3.3.  
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 will involve large-scale systems. Thus there is great interest in developing an efficient algorithm 

for computing →lc~. We now introduce such an algorithm.  

For simplicity of exposition we assume the lattice of hypercubes into which X is partitioned 

have sides of unit length. The algorithm decides whether a transition y →lc~ y’ between two 

adjacent cells of the lattice y, y’ is allowed, and the algorithm is repeated for all transitions of 

interest. We begin by summarizing a simple algorithm, based on a computational linear systems 

result given in [Habets and van Schuppen 2004], for deciding whether y →lc~ y’ is admissible. 

Let k be the number of the coordinate axis orthogonal to the common face between y and y’, V 

be the set of vertices shared by y and y’, and ak
T represent row k of A. Define Πk(x) to be the 

projection of x onto axis k and suppose y < y’. Then y →lc~ y’ iff Πk(Avi + Bu) > 0 for some vi ∈ V 

and u ∈ U. An algorithm which “operationalizes” this observation is  

Algorithm 3.1:  
If y < y’:  

If any element of row k of B is nonzero, y →lc~ y’ is true. STOP.  

Repeat until y →lc~ y’ is determined to be true or all vertices have been checked:  

Select a vertex vi ∈ V.  

Compute the inner product p = ak
T vi.  

If p > 0 then y →lc~ y’ is true. STOP.  

If y →lc~ y’ has not been found to be true it is false.  

If y > y’: Algorithm is the same except that the comparison p > 0 is replaced by p < 0.  

A difficulty with Algorithm 3.1 is that the number of vertices shared by two adjacent cells is 2n−1, 

so that checking them becomes unmanageable even for moderately-sized models. For 

example, if n = 100 then approximately 1030 operations would be required to compute a single 

transition.  

Interestingly, this algorithm can be modified so that feasibility of a transition can be tested 

by considering only a single well-chosen vertex, independent of the size of the model [Gardiner 

and Colbaugh 2006]. The new algorithm is therefore very efficient and can be applied to models 

with n = 10 000 or more without resorting to high performance computers. Let v0 be the lowest 

vertex (in a component-wise sense) shared by y, y’ and let ak
+ (ak

−) be the sum of positive 

(negative) elements of row k of A, excluding the diagonal. We are now in a position to state  

Algorithm 3.2 [Gardiner and Colbaugh 2006]: 
If y < y’:  
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 If any element of row k of B is nonzero, y →lc~ y’ is true. STOP.  

Compute the inner product p = ak
T v0.  

If p + ak
+ > 0 then y →lc~ y’ is true. STOP.  

Otherwise y →lc~ y’ is false.  

If y > y’: Algorithm is the same except that the comparison p + ak
+ > 0 is replaced by p + ak

− < 0.   

Algorithm 3.2 provides an extremely efficient means of constructing the transition relation 

→lc~ and, therefore, the finite abstraction Tlc/~. A Matlab program that implements this algorithm 

has been developed and tested on systems with dimension n = 10 000; this code is provided in 

Appendix A. As an indication of the efficiency of the proposed procedure, the performance of 

Algorithm 3.2 is compared with Algorithm 3.1 (a quite respectable algorithm for this sort of 

computation) in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Next consider the problem of computing a finite state bisimulation for discrete-time linear 

control system Σld: x+ = Ax + Bu. It is assumed without loss of generality that (A, B) is in BNF. 

The transition system associated with Σld is Tld = (X, →ld, Y, h), where h: X → Y is any finite, 

hypercubic partition of X and →ld is specified as in Definition 3.7. Example 3.2 shows that the 

quotient transition system Tld/~ = (Y, →ld~, Y, id) is a finite bisimulation for Tld if →ld~ is defined so 

Figure 8: Results of timing study of Algorithm 3.1 (red curve) and 
Algorithm 3.2 (blue curve) applied to the problem of computing 
finite state abstractions for linear controllable systems (horizontal 
axis is state space dimension and vertical axis is run time in ms). 
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 that h(x) →ld~ h(x’) iff x →ld x’. As mentioned above, a primary motivation for deriving finite state 

abstractions for Σld is complexity management, so that applications of interest often will involve 

large-scale systems and computational efficiency is a central concern.  

We now introduce an efficient algorithm for constructing →ld~.  

Algorithm 3.3: Let yc ∈ X denote the coordinate vector for the centroid of cell y.  

Compute yc for all cells of interest.  

For each cell y:  

Let yc = [c1, c2, …, cn]T.  

y →ld~ y’ is true for any y’ which has its centroid on the line passing through [c2, c3, …, 0]T 

and [c2, c3, …, 1]T.  

Algorithm 3.3 provides an extremely efficient means of constructing the transition relation →ld~ 

and, therefore, the finite abstraction Tld/~. Prototype code implementing the algorithm has been 

developed and tested on systems with dimension n = 10 000 [Ackley 2008].  

For completeness we provide a procedure for computing finite (bi)simulations for HDS:   

Algorithm 3.4 Given a complex network Σ and a class of behaviors of interest:  

1. Develop an HDS model ΣHDS for Σ and check that the continuous systems are (differentially 

or difference) flat. If not: STOP.  

2. Construct a transition system representation THDS for ΣHDS (according to Definition 3.8) in 

such a way that the continuous state space partitions hq
k: Xq

k → Yq
k 1.) are compatible 

(according to Theorem 2) and 2.) allow expression of the system behaviors of interest.  

3. Transform each continuous system into the appropriate form (e.g., through feedback 

linearization).  

4. Compute a finite state abstraction for each continuous system transition system using 

Algorithm 3.2 or 3.3.  

5. Compose the feedback interconnection of the finite state abstractions obtained above with 

the HDS discrete system.  

Observe that if the continuous systems are difference flat then the output of Algorithm 3.4 is a 

finite transition system which is bisimilar to THDS, and if the continuous systems are differentially 

flat then the output transition system simulates THDS. If bisimulation (approximate bisimulation) is 

desired in the case of differentially flat systems then the results given in Theorem 4 (Theorems 

5 or 6) can be used in Step 4 of the algorithm.  
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 4. One-Dimensional Abstraction  
The previous section presented a collection of techniques for transforming the large-scale, 

hybrid dynamics of complex networks into much simpler, but dynamically equivalent, finite state 

models. We now present an alternative approach to managing the complexity of these systems, 

in which high-dimensional network dynamics are captured in a meaningful way using a single 

scalar variable. The advantages of obtaining scalar representations for high dimensional 

systems are, of course, well understood. For instance, one-dimensional systems are amenable 

to simple topological arguments, frequently yielding elegant solutions to otherwise very difficult 

problems. Additionally, by considering sets of parameter values and initial conditions, often 

entire families of complex networks can be analyzed using a single one-dimensional 

abstraction; this strategy provides an effective means of handling the parametric uncertainty 

present in many complex network models.  

We begin our discussion of one-dimensional abstractions for high-dimensional networks by 

introducing the basic abstraction concept and reviewing some technical background which will 

be useful in our development. We then present abstraction results for both nondeterministic and 

stochastic systems, and provide efficient computational methods for realizing the abstractions.  

4.1 Preliminaries  
The basic concept of one-dimensional abstraction for high-dimensional complex networks is 

illustrated in Figure 9. Consider a complex network with dynamics that evolve on a continuous 

state space, depicted in light blue in Figure 9, according to the vector field (arrows) shown in the 

figure. Assume it is of interest to decide whether states in the green region can evolve to the red 

region. Such reachability questions are usually approached by computing the reach set 

associated with the green region and determining if it intersects the red region, and this analysis 

is quite difficult for generic complex networks. Suppose, however, that it is possible to find an 

“altitude” function A(x) which has a level curve, say the A(x) = 0 surface, that separates the 

green and red regions and on which the system vector field points in the direction of the partition 

containing the green region (see Figure 9). In this case we can conclude that the red region is 

not reachable from the green region and, moreover, this conclusion is reached without 

computing system trajectories. The trick, of course, is to find such a function A(x) or prove that 

no such function exists. Recent work in semidefinite programming and semialgebraic geometry 

[Parrilo 2000] provides a computationally tractable framework within which to search for such 

functions, and we will leverage this work in our proposed abstraction methodology.  
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Consider the problem of assessing the reachability of complex processes in the presence of 

uncertainty regarding the process parameters. Particularly desirable are methods that can be 

implemented both in stochastic settings, where probabilistic characterizations of the uncertainty 

are available, and nonstochastic situations, for instance where bounds on the uncertainty are 

known; we refer to the latter situation as nondeterministic, because the uncertainties are 

permitted to vary arbitrarily within their bounds. Additionally, the practical utility of any analytic 

approach is greatly enhanced if it is possible for reachability assessments to be carried out for 

sets of initial conditions and system parameter values. The following two subsections present a 

collection of abstraction-based methods for reachability assessment which possess these 

characteristics.  

4.2 Nondeterministic systems  
As indicated in Section 2, complex networks are naturally modeled as HDS, and indeed the 

focus of this section is abstraction-based reachability analysis of HDS. Before developing this 

methodology in detail, however, we introduce the basic concepts and approach by providing two 

Figure 9: Cartoon of one-dimensional abstraction. The light blue region is the 
system state space, with green and red regions corresponding to sets of initial 
and “undesirable” states and the arrows indicating dynamical system flow. The 
cartoon illustrates that abstraction can enable reachability questions to be 
efficiently decided. The black curve is a level curve of a scalar altitude function 
which divides the state space into two portions, and because the flow points 
from the right portion to the left it can be concluded that the red set is not 
reachable from the green set without computing system trajectories.  
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 simple but very useful results for continuous dynamical systems. Consider, then, a set of 

differential equations  

dx/dt = f(x, d),  

where x ∈ X and d ∈ D are the system state and “disturbance” input, respectively, and X ⊆ ℜn, 

D ⊆ ℜp are assumed bounded. Let X0 ⊆ X, Xu ⊆ X denote the sets of initial and “undesirable” 

states, respectively. Suppose we wish to show that no system trajectory starting from X0 can 

evolve to the set Xu for any admissible disturbance. We adopt an analysis methodology which is 

analogous to the one underlying Lyapunov function-based stability analysis [Sontag 1998]: we 

seek a scalar function A(x) of the system state which permits this reachability question to be 

resolved without computing system trajectories.  

More specifically, we have  

Proposition 4.1 [Prajna et al. 2007]: Suppose there exists a differentiable function A: X → ℜ 

such that  

• A(x) ≤ 0 ∀x ∈ X0;  

• A(x) > 0 ∀x ∈ Xu;  

• (∂A/∂x) f(x,d) ≤ 0 ∀x ∈ X, ∀d ∈ D.  

Then Xu is not reachable from X0 for any disturbance input.  

Proof: The proof is straightforward and given in [Prajna et al. 2007].                                          

Remark 4.1: Observe that in establishing that Xu cannot be reached from X0, no computation of 

system trajectories is required.  

Remark 4.2: The set of altitude functions which satisfy the conditions given in Proposition 4.1 is 

convex: if A1(x) and A2(x) satisfy the conditions then ∀ β ∈ [0, 1], A(x) = β A1(x) + (1 − β) A2(x) 

also satisfies the conditions. This convexity will be exploited to develop efficient computational 

methods for finding altitude functions.  

Although our primary focus is showing that undesirable sets Xu cannot be reached by a 

system of interest, it is also possible to use the altitude function approach to demonstrate that a 

given system is guaranteed to reach a “desirable” set Xd:  

Proposition 4.2: Suppose there exists a differentiable function A: X → ℜ such that  

• A(x) < 0 ∀x ∈ X0,  

• A(x) ≥ 0 ∀x ∈ Xe \ X,  
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 • (∂A/∂x) f(x,d) < 0 ∀x ∈ cl(X \ Xd), ∀d ∈ D,   

where Xe ⊇ X is a global “environment” set. Then the system must reach Xd from X0 in finite time 

∀d ∈ D.  

Proof: Any system trajectory starting from x ∈ X0 must exit cl(X \ Xd) in finite time, because A(x) 

is bounded below, and this exit cannot involve exiting X, because A(x) is nonnegative outside X. 

Thus the system must enter Xd in finite time.                                                                                

We now turn to one-dimensional abstractions for (nondeterministic) HDS. Consider the HDS 

given in Definition 2.1, repeated here for convenience:  

q+ = h(q,k), 

ΣHDSct                                                           dx/dt = fq(x,d), 

k = p(x),  

where the input is denoted by d rather than u to emphasize its role as a disturbance (rather than 

a control signal which can be specified by the designer).  

For hybrid systems we seek a family of scalar abstractions {Aq(x)}q∈Q, one for each discrete 

state q, so that the collection is a function of the HDS state (q, x). The conditions to be satisfied 

by this collection of altitude functions to ensure that the undesirable set Xu is not reachable from 

X0 are given in  

Theorem 7: Suppose there exists a family of differentiable functions {Aq(x)}q∈Q such that  

• Aq(x) ≤ 0 ∀x∈X0, ∀q∈Q;  

• Aq(x) > 0 ∀x∈Xu, ∀q∈Q;  

• (∂Aq/∂x) fq(x,d) ≤ 0 ∀x∈Inv(q), ∀d∈D, ∀q∈Q;  

• Aq’(x) ≤ 0 ∀(x, q, q’) such that q’ = h(q,k(x));  

where Inv(q) is the set of continuous states at which q is a feasible discrete state for the HDS. 

Then no trajectory of ΣHDSct which starts in X0 can reach Xu.  

Proof: Let (q, x) be an admissible trajectory of ΣHDSct and consider the evolution of Aq(t)(x(t)) 

along this trajectory. Aq(x) is nonpositive initially, it is nonincreasing along any continuous flow, 

and it cannot increase during a discrete transition. Thus Aq(t)(x(t)) is nonpositive ∀t , and since 

Aq(x) > 0 on Xu we can conclude that Xu cannot be reached from X0.                                           

Remark 4.3: Results analogous to that given in Proposition 4.2 also can be derived for HDS 

[Colbaugh and Glass 2007].  
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 4.3 Stochastic systems  
While characterizing the uncertainty associated with complex networks in terms of bounds 

on the possible values of parameters and disturbances is useful and natural, in many cases a 

probabilistic characterization of this uncertainty is available. In such situations, application of the 

results presented above may lead to very conservative assessments. Indeed, if a probabilistic 

description of system uncertainty is available then it may be more useful and appropriate to 

seek a probabilistic assessment of system reachability. For example, in many applications it 

would be valuable to prove that the probability of a system trajectory reaching an undesirable 

set is lower than some acceptable “safety” threshold. We now develop such a capability.  

We begin our treatment with a study of continuous state stochastic processes. Consider the 

set of stochastic differential equations which comprise the continuous system portion of the S-

HDS given in Definition 2.3, repeated here for convenience of reference:  

Σsc                                                  dx = f(x, p) dt + G(x, p) dw,  

where p ∈ P ⊆ ℜp is the system parameter vector and all other terms are as in Definition 2.3. 

Denote by X ⊆ ℜn, X0 ⊆ X, and Xu ⊆ X the sets of feasible, initial, and undesirable states, 

respectively, and assume that X and P are bounded.  

We are interested in a probabilistic version of the reachability problem:  

Definition 4.1: Given system Σsc and the sets X, X0, Xu, the stochastic safety problem involves 

computing an upper bound γ ∈ [0,1] on the probability that any trajectory of Σsc will reach Xu; 

thus γ satisfies  

P{x(t) ∈ Xu for some t} ≤ γ,  

for all x0 ∈ X0, where x is the “stopped” process associated with x0 and Σsc (roughly, x(t) is the 

trajectory of Σsc which starts at x0 and is stopped if it encounters the boundary of X [Kushner 

1967]).  

We adopt an analysis methodology which is analogous to the one underlying Lyapunov 

function-based stability analysis [Sontag 1998]: we seek a scalar function of the system state 

that permits the probability upper bound γ to be deduced without computing system trajectories. 

In order to derive such results we require a few additional concepts.  

Definition 4.2: The infinitesimal generator B for the process x(t) is given by  

BA(x0) = limt→0 (E[A(x(t)) | x(0) = x0] − A(x0)) / t,  
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 where A(x) is any differentiable scalar function [Kushner 1967].  

The infinitesimal generator B is the stochastic analog of the Lie derivative and characterizes the 

evolution of the expectation of A(x(t)):  

E[A(x(t2)) | x(t1)] = A(x(t1)) + E[∫ BA(x(t)) dt | x(t1)].  

Definition 4.3: The process A(x(t)) associated with a twice continuously differentiable function 

A(x) and stopped process x(t) is a supermartingale if E[A(x(t2)) | x(t1)] ≤ A(x(t1)) ∀ t2 ≥ t1.  

The following property of supermartingales is proved in [Kushner 1967] and will be 

instrumental in our development:  

Lemma 4.1: If A(x(t)) is a nonnegative supermartingale then for any x0 and λ > 0  

P{ sup A(x(t)) ≥ λ | x(0) = x0 } ≤ A(x0) / λ.  

We are now in a position to state our first result for the stochastic safety problem:  

Theorem 8: γ is an upper bound on the probability of trajectories of Σsc reaching Xu from X0 

while remaining in X if there exists A(x) such that  

• A(x) ≤ γ ∀x∈X0;  

• A(x) ≥ 1 ∀x∈Xu;  

• A(x) ≥ 0 ∀x∈X;  

• (∂A/∂x) f + (1/2) tr [GT (∂2A/∂x2) G] ≤ 0 ∀x∈X, ∀p∈P.  

Proof: Because (∂A/∂x) f + (1/2) tr [GT (∂2A/∂x2) G] is the infinitesimal generator for Σsc, the third 

and fourth conditions of the theorem imply that A(x(t)) is a nonnegative supermartingale ∀p ∈ P. 

Thus from Lemma 4.1 we can conclude that P{x(t)∈Xu for some t} ≤ P{ sup A(x(t)) ≥ 1 | x(0)=x0 } 

≤ A(x0) ≤ γ ∀x∈X0, ∀p∈P.                                                                                                              

Remark 4.4: Theorem 8 extends the analysis given in [Prajna et al. 2007] to allow probability 

upper bounds to be established in the presence of parametric uncertainty.  

Results analogous to Theorem 8 can be derived for stochastic hybrid systems. Let ΣS-HDSg 

denote a general S-HDS with bounded state space Q × X and infinitesimal generator BA(q, x). 

We have:  

Theorem 9: γ is an upper bound on the probability of trajectories of ΣS-HDSg reaching Xu from X0 

while remaining in Q × X if there exists a family of differentiable functions {Aq(x)}q∈Q such that  
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 • Aq(x) ≤ γ ∀x∈X0, ∀q∈Q;  

• Aq(x) ≥ 1 ∀x∈Xu, ∀q∈Q;  

• Aq(x) ≥ 0 ∀x∈X, ∀q∈Q;  

• BAq(x) ≤ 0 ∀x∈X, ∀q∈Q, ∀p∈P.  

Proof: The proof is exactly analogous to the proof of Theorem 8.                                               

The following corollary specializes Theorem 9 to the S-HDS specified in Definition 2.3 and 

Example 2.2 is very useful for analyzing social processes modeled as stochastic hybrid 

systems. More precisely, consider the S-HDS  

{Q, P(x)}, 

ΣS-HDS                                                     dx = fq(x)dt + Gq(x)dw, 

k = p(x),  

where the transition probabilities are defined in terms of transition rates λqq’(x), with λqq’(x) ≥ 0 if 

q ≠ q’ and Σq’ λqq’(x) = 0 ∀q (see Example 2.2). We have  

Corollary 4.1: γ is an upper bound on the probability that trajectories of the S-HDS specified in 

Definition 2.3 will reach Xu from X0 while remaining in Q × X if there exists a family {Aq(x)}q∈Q of 

differentiable functions such that  

• Aq(x) ≤ γ ∀x∈X0, ∀q∈Q;  

• Aq(x) ≥ 1 ∀x∈Xu, ∀q∈Q;  

• Aq(x) ≥ 0 ∀x∈X, ∀q∈Q;  

• (∂Aq/∂x) fq + (1/2) tr [Gq
T (∂2Aq/∂x2) Gq] + Σq’∈Q λqq’ Bq’ ≤ 0 ∀x∈X, ∀q∈Q, ∀p∈P.  

Proof: The proof follows from that of Theorem 9 once it is noted that the infinitesimal generator 

for the above S-HDS is given by (∂Aq/∂x) fq + (1/2) tr [Gq
T (∂2Aq/∂x2) Gq] + Σq’∈Q λqq’ Bq’ [Bujorianu 

and Lygeros 2004].                                                                                                                        

Rather than present examples of one-dimensional abstraction for nondeterministic and/or 

stochastic systems in this section, we refer the reader to Section 6 for a detailed discussion of 

abstraction-based analysis of several real world case studies.  

4.4 Computation  
The preceding theoretical results on one-dimensional abstraction are of significant practical 

interest only if it is possible to efficiently compute altitude functions A(x). Toward that end, 

observe that the results presented in Propositions 4.1 and 4.2, Theorems 7-9, and Corollary 4.1 
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 specify convex conditions which must be satisfied by the associated altitude functions; thus the 

search for altitude functions can be formulated as a convex programming problem [Parrilo 

2000]. Moreover, if the system of interest admits a polynomial description (i.e., the system 

vector fields are polynomials and system sets are semialgebraic) and if we restrict our search to 

polynomial altitude functions then the search can be very efficiently carried out using sum of 

squares (SOS) optimization [SOSTOOLS 2007].  

SOS optimization is a convex relaxation framework based on SOS decomposition of the 

relevant polynomials and semidefinite programming. SOS relaxation involves replacing the 

(non-)negative and (non-)positive conditions to be satisfied by the altitude functions with SOS 

conditions. As a simple example of the basic idea, consider the following relaxation of the 

conditions given in Proposition 4.1:  

A(x) ≤ 0 ∀x∈X0                      →                         −A(x) − λ0
T(x) g0(x) is SOS 

A(x) > 0 ∀x∈Xu                      →                     A(x) − ε − λu
T(x) gu(x) is SOS 

(∂A/∂x) f(x,d) ≤ 0 ∀x∈X, ∀d∈D        →     −(∂A/∂x) f − λX
T(x) gX(x) − λD

T(d) gD(d) is SOS 

where ε is a small positive constant, the entries of the vector functions λ∗ are SOS, and g∗ ≥ 0 

(entry-wise) when x∈X∗ (or d∈D). More complex conditions on A can be relaxed analogously. 

The relaxed SOS conditions are obviously sufficient and typically are not overly conservative.  

The existence of polynomial functions A(x) satisfying SOS conditions can be verified – 

efficiently and constructively – by solving an SOS program, that is, a convex optimization 

problem of the form  

mincj Σj wjcj  

subject to ai(x) + Σj aij(x) cj is SOS for i = 1, 2, …, p,  

where the cj are scalar decision variables and the wj, ai(x), and aij(x) are given. These facts lead 

to the following algorithm for computing A:  

Algorithm 4.1 (sketch):  

1. Parameterize A as A(x) = Σ ck ak(x), where the ak are monomials up to a desired degree 

bound and the ck are unknown coefficients.  

2. Relax all criteria in the relevant theorem to SOS conditions.  

3. Formulate the search for A as an SOS program, map the SOS program to an semidefinite 

program and solve using a standard algorithm, and return A or the information that no such 

A exists.  
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 Computing families of altitude functions, {Aq(x)}q∈Q, is identical. Software for solving SOS 

programs is available as a third-party Matlab toolbox [SOSTOOLS 2007], and example SOS 

programs are given in the discussion of the one-dimensional abstraction case studies (see 

Section 6). Importantly, the approach is tractable: for fixed polynomial degrees, the 

computational complexity of the associated SOS program grows polynomially in the dimensions 

of the continuous state and parameter spaces and the cardinality of the discrete state set.  
We close this discussion of computing one-dimensional abstractions with a simple example 

application.  

Example 4.1: Controller synthesis for nonlinear systems  
Given the close conceptual relationship between altitude functions and Lyapunov functions 

and the utility of Lyapunov functions in control system synthesis [Sontag 1998], it is natural to 

consider applying the computational methodology described above to the problem of designing 

controllers for nonlinear systems. Interestingly, this problem is more difficult than may be 

evident at first glance. To see this, note first that given a Lyapunov function V(x), the search for 

a feedback control law d(x) which makes −(∂V/∂x)f(x, d) SOS (and therefore is guaranteed to 

stabilize the system [Sontag 1998]) can be formulated as an SOS program. Similarly, given a 

feedback control law u(x), the search for an SOS Lyapunov function V(x) which makes 

−(∂V/∂x)f(x, u) SOS also can be formulated as an SOS program. Unfortunately, the set of pairs 

(V(x), u(x)) is not convex, and thus the simultaneous search for V and u cannot be conducted 

using SOS programming.  

Fortunately, there exist controller synthesis methods which permit V(x) to be derived first, 

and which then exploit this V(x) to derive the feedback law u(x); for instance, adaptive control is 

provides a wide range of such methods [Narendra and Annaswamy 1988]. This suggests the 

following approach to computationally tractable controller synthesis: 1.) use SOS programming 

to obtain an SOS Lyapunov function V(x) which has a Lie derivative that satisfied the 

appropriate SOS conditions, and 2.) derive the feedback control law u(x) using this V(x) via 

(say) adaptive control techniques.  
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 5. Case Study One: Vulnerability Analysis  
The first case study considers the problem of identifying and characterizing vulnerabilities of 

complex networks. We begin by introducing the basic problem, then propose a formal approach 

to vulnerability analysis for large-scale networks, and finally apply the proposed methodology to 

an important and challenging infrastructure network: the electric power grid.  

5.1 Introduction  
There is increasing recognition that complex, evolving networks, while impressively robust 

in most circumstances, can fail catastrophically in response to focused attacks. Indeed, this 

fragility appears to be a defining characteristic of these systems [Carlson and Doyle 2002], and 

has been observed in a range of technological networks (e.g., power grids, Internet), biological 

systems (e.g., gene networks, immune systems), and social processes (e.g., financial markets, 

social movements). Moreover, the failures associated with these vulnerabilities can have great 

economic and societal impact. Thus there is considerable motivation to develop a framework 

within which to identify these vulnerabilities and to design strategies for exploiting and mitigating 

them.  

The challenges of vulnerability analysis are particularly daunting in the case of complex 

networks. Most such networks are large-scale “systems of systems”, so that the analysis 

methods must be extremely efficient. Additionally, as discussed earlier in the paper, these 

networks perform reliably almost all of the time and almost all of their features are robust. As a 

consequence, standard techniques for finding vulnerabilities (e.g., computer simulations, “red 

teaming”) can be ineffective and, in any case, are not guaranteed to identify all vulnerabilities.  

In this case study we propose a vulnerability analysis methodology which is 1.) scalable, to 

enable analysis of networks of real world size and complexity; 2.) rigorous, so that for instance 

the vulnerability identification process is guaranteed to find all vulnerabilities of a given class; 3.) 

robust, for implementation in the presence of uncertainty regarding the networks and their 

environments; and 4.) comprehensive, in that a broad range of vulnerability questions can be 

addressed. Given a complex network and a class of failures, we are interested in four main 

vulnerability analysis tasks:  

• Assessment: Can the system be made to experience such failure?  

• Exploitation: What strategies can be used to cause such failure?  

• Mitigation: How can the adverse consequences of attacks be minimized?  

• Warning: What are useful precursors of impending failure?  
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 In this section, we focus on the vulnerability assessment and exploitation tasks. It will be 

shown that the proposed approach to vulnerability exploitation can be employed, in slightly 

modified form, for designing mitigation strategies. The early warning task is the subject of the 

second case study, and a detailed discussion of this problem is presented there (see Section 6).  

The proposed approach to vulnerability analysis for complex networks leverages existence 

of finite bisimulations for these networks. The basic idea is straightforward: given an HDS model 

for a network of interest and a class of failures of concern: 1.) construct a finite (bi)simulation for 

the HDS network model, 2.) conduct the vulnerability analysis on the system abstraction (e.g., 

using the powerful analysis methods available for finite state systems), and 3.) map the analysis 

results back to the original system model. Observe that the proposed approach possesses the 

desired characteristics. First, the analytic process is scalable because it applies sophisticated, 

efficient computer science analysis tools to finite state models. Second, the analysis is rigorous. 

Consider the situation in which the network model and its abstraction are bisimilar. The 

developments in Section 3 show that HDS vulnerabilities and failure/recovery dynamics are 

expressible as LTL formulas and that bisimulation preserves LTL, which implies the original 

system and its abstraction have identical vulnerabilities. Because formal computer science 

analysis tools (e.g., model checking) can be structured to identify all vulnerabilities of the finite 

state abstraction, the proposed approach is guaranteed to find all vulnerabilities of the original 

network as well. A similar, though slightly weaker, argument can be made if the abstraction 

simulates, rather than bisimulates, the original network. The vulnerability analysis is also robust, 

as aggressive abstraction provides a powerful means of managing system uncertainty (e.g., 

because abstraction “projects out” much of the uncertainty [Colbaugh et al. 2007]). Finally, as 

we will show, abstraction-based vulnerability analysis is comprehensive in that it naturally 

accommodates assessment, exploitation, mitigation, and early warning within a common 

framework.  

5.2 Vulnerability analysis methodology  
We now present the proposed approach to vulnerability analysis, with an emphasis on the 

assessment and exploitation tasks. It is supposed that the complex network of interest can be 

modeled as an HDS, ΣHDS, and that the network’s desired or “normal” behavior can be 

characterized with an LTL formula ϕ; the discussion in Sections 2 and 3 indicates that these 

assumptions are reasonable. We begin with the vulnerability assessment problem. Consider the 

following:  
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 Definition 5.1: Given an HDS ΣHDS and an LTL encoding ϕ of the desired network behavior, 

the vulnerability assessment problem involves determining whether ΣHDS can be made to violate 

ϕ.  

The proposed approach to vulnerability assessment uses bounded model checking (BMC), 

a very powerful procedure for checking whether a given finite state transition system satisfies a 

particular LTL specification over a finite, user-specified time horizon [Clarke et al. 1999]. Briefly, 

BMC checks whether a given labeled finite transition system T = (S, L, →, Y, h) satisfies an LTL 

specification ϕ on a time interval [0, k], denoted T |=k ϕ, in two steps:  

1. Translate T |=k ϕ to a proposition [T, ϕ]k which is satisfied by (and only by) transition system 

trajectories that violate the specification ϕ; such a reformulation of T |=k ϕ is always possible. 

For instance, T |=k ϕ = θ(s) (where  means `always’) can be translated to  

[T, ϕ]k = (init(s0)) ∧ (∧0
k−1 trans(si, li, si+1)) ∧ (∨0

k ¬θ(si)),  

where the propositions init(s0) and trans(si, li, si+1) are true if s0 is an admissible initial state 

and (si, li, si+1) ∈ →.  

2. Check if [T, ϕ]k is satisfiable using a SAT solver [Clarke et al. 1999]:  

o if [T, ϕ]k is satisfiable then T can violate ϕ and the “witness” generated by the SAT solver 

is an example violation;  

o if [T, ϕ]k is not satisfiable then T satisfies ϕ on all trajectories of length k or smaller.  

It is stressed that modern SAT solvers are extremely powerful, so that the BMC approach to 

model checking is implementable with problems of real world scale.  

We are now in a position to state our vulnerability assessment algorithm. Let THDS denote 

the transition system associated with ΣHDS (as in Definition 3.8), and consider the vulnerability 

assessment problem given in Definition 5.1. We have:  

Algorithm 5.1: Vulnerability assessment using bisimulation abstraction  
1. Construct a finite bisimilar abstraction T for THDS (using, e.g., the results in Section 3).  

2. Check satisfiability of [T, ϕ]k using BMC:  

o if [T, ϕ]k is not satisfiable then T is not vulnerable and thus ΣHDS is not vulnerable (on time 

horizon k);  

o if [T, ϕ]k is satisfiable then T, and therefore ΣHDS, is vulnerable, and the SAT solver 

witness is a vulnerability.  
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 It is sometimes more convenient to construct a finite transition system T which simulates 

(rather than bisimulates) THDS (i.e., ensures THDS ∠ T). In such cases the following vulnerability 

assessment algorithm is useful:  

Algorithm 5.2: Vulnerability assessment using simulation abstraction  
1. Construct a finite abstraction T which simulates THDS (using, e.g., the results in Section 3).  

2. Check satisfiability of [T, ϕ]k using BMC:  

o if [T, ϕ]k is not satisfiable then T is not vulnerable and thus ΣHDS is not vulnerable (on time 

horizon k);  

o if [T, ϕ]k is satisfiable then T is vulnerable and the witness generated by the SAT solver 

can be checked against THDS to determine vulnerability of ΣHDS.  

Note that checking whether THDS can experience a particular failure trajectory is much easier 

than discovering a reasonable candidate failure trajectory.  

Consider next the vulnerability exploitation problem. We suppose an LTL formula ϕ that 

encodes a failure of interest is available, for example from analysis using Algorithm 5.1 or 5.2.   

Definition 5.2: Given an HDS ΣHDS and an LTL encoding ϕ of a failure behavior of interest, the 

vulnerability exploitation problem involves synthesizing an admissible input trajectory for ΣHDS 

which ensures ϕ is satisfied.  

The proposed approach to vulnerability exploitation uses supervisory control for finite state 

systems (SCFS), a mature body of theory and practice that includes a collection of algorithms 

for designing supervisors which ensure a given finite state transition system satisfies a particular 

LTL specification (see, e.g., [Ramadge and Wonham 1987] and also [Ackley 2008] for a review 

of recent advances). Note that modern SCFS algorithms are very efficient, so that this approach 

to controller design is implementable with finite state systems of real world scale.  

We are now in a position to state our vulnerability exploitation algorithm. Let THDS denote 

the transition system associated with ΣHDS, as before, and consider the vulnerability exploitation 

problem given in Definition 5.2. Assume ΣHDS is vulnerable to failure behavior ϕ, for instance as 

verified via Algorithm 5.1 or 5.2. We have:  

Algorithm 5.3: Vulnerability exploitation using (bi)simulation abstraction  
1. Construct a finite abstraction T which simulates or bisimulates THDS (using, e.g., the results 

in Section 3).  

2. Synthesize a vulnerability exploitation supervisor Tc for T via SCFS:  
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 o design a finite supervisor Tc‘ which ensures (Tc‘ || T) |= ϕ (where  means `eventually’ 

and || is the parallel product operator), plus any other required behavior;  

o Tc = Tc‘ || T is then a finite supervisor which ensures (Tc || THDS) |= ϕ.  

3. Refine Tc to a (hybrid system) vulnerability exploitation strategy which can be implemented 

with ΣHDS (this is a well studied problem in control engineering and its solution is summarized 

in, for instance, [Ackley 2008]).  

Observe that Algorithm 5.3 produces a vulnerability exploitation supervisor which is guaranteed 

to cause ΣHDS to experience failure ϕ provided T simulates THDS; thus T need not be a 

bisimulation.  

Finally, we briefly consider the vulnerability mitigation problem. Both the problem definition 

and the solution algorithm are analogous to those for vulnerability exploitation and are stated 

here for completeness.  

Definition 5.3: Given an HDS ΣHDS and an LTL encoding ϕ of a failure behavior of interest, the 

vulnerability mitigation problem involves synthesizing an admissible input trajectory for ΣHDS 

which prevents and/or recovers from ϕ.  

Algorithm 5.4: Vulnerability mitigation using (bi)simulation abstraction  
1. Construct a finite abstraction T which simulates or bisimulates THDS (using, e.g., the results 

in Section 3).  

2. Synthesize a vulnerability mitigation supervisor Tc for T via SCFS:  

o design a finite supervisor Tc‘ that ensures (Tc‘ || T) |= ( goal) ∧ ( ¬ϕ), thereby providing 

failure prevention, or (Tc‘ || T) |= ( goal) ∧ (( ¬ϕ) ∨ ( (¬ϕ U (ϕ ∧ recover)))), which 

enables recovery if failure is unavoidable;  

o Tc = Tc‘ || T is then a finite supervisor which ensures (Tc || THDS) exhibits the above 

behavior.  

3. Refine Tc to a (hybrid system) vulnerability mitigation strategy which can be implemented 

with ΣHDS.  

5.3 Power grid example  
We now apply the proposed approach to vulnerability analysis to an example problem taken 

from advanced technology: the electric power grid. The focus of the analysis is vulnerability 

assessment, although a few brief remarks are made regarding exploitation of the identified 

vulnerabilities. Electric power grids play an essential role in virtually all aspects of modern life. 

Additionally, power grids are complex, evolving networks that possess the RYF property. For 
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 instance, it has been established that the distribution for power grid outage size is well-

approximated by a power law [Carlson and Doyle 2002], which in this class of networks 

suggests RYF behavior. Figure 10 shows that, while the average number of outages on the 

North American grid is decreasing (over the period for which data is available), the average size 

of large outages is increasing; this is a classic signature of “myopic” evolution leading to RYF 

behavior (see Section 2). Therefore vulnerability analysis for these large-scale technological 

networks is simultaneously crucially important and extremely challenging. In this example, we 

summarize some results obtained when applying the vulnerability analysis process described 

earlier in this section to an HDS model of a real (national scale) electric power system. An 

alternative view of grid vulnerability analysis is given in [Stamp et al. 2008].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As indicated in Example 2.1, electric power grids are naturally represented as HDS, with 

the continuous system modeling the generator and load dynamics as well as the power flow 

constraints and the discrete system capturing protection logic switching (e.g., line tripping, load 

shedding) and other “supervisory control” behavior (e.g., scheduling phenomena). In fact, we 

can make  

Definition 5.4: The (fairly general) HDS power grid model ΣEP takes the form  

Figure 10: Electric power grids as RYF/DILO systems. The plot at left shows 
the evolution of number of outages per year (red) during 1984-1999; it is 
seen that the average number of outages/year for the first eight years is 
larger than for the second eight years of this period (blue). The right plot 
depicts average size of large outages during 1984-2003 and indicates that 
large outages observed during the second ten years of this period are bigger 
than those that occurred during the first ten years. Both plots are assembled 
from NERC data.  

large outages/yeartotal outages/year large outages/yeartotal outages/year large outages/yeartotal outages/year
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 q+ = h(q, k, v), 

ΣEP                                                         dx/dt = fq(x, y, u), 

0 = gq(x, y),  

k = p(x, y),  

where q∈Q and x∈ℜn are the discrete system states (e.g., specifying which lines are in service 

and loads are met) and continuous system states (e.g., angles and frequencies for generators), 

respectively, v∈V and u∈ℜm are exogenous inputs (e.g., from the SCADA system), y∈ℜa is the 

vector of “algebraic variables” (e.g., bus voltages and angles), h defines the discrete dynamics, 

the {fq} and {gq} are families of vector fields characterizing the continuous system dynamics and 

power flow constraints, respectively, and p is a partition of the spaces of continuous state and 

algebraic variables that defines the switching thresholds (e.g., for load shedding).  

Example 2.1 provides a simple, concrete instantiation of this model. Additional information on 

power grid modeling can be found in [Ilic and Zaborszky 2000].  

Power grid models possess considerable structure. For example, it has been shown that 

the continuous system portion of the model in Definition 5.4 is feedback linearizable [Ilic and 

Zaborszky 2000], which implies that the continuous system is differentially flat and consequently 

that ΣEP admits a finite abstraction (see Section 3). It also follows from Section 3 that grid 

vulnerabilities are expressible as LTL formulas composed of atomic propositions which depend 

only on q and k. Therefore the abstraction-based vulnerability analysis methodology developed 

earlier in this case study is directly applicable to power grids.  

To illustrate this, we conduct a vulnerability assessment for the 20bus grid shown in Figure 

11. This grid provides an extremely simple representation of an actual national-scale electric 

power system for which (proprietary) data was obtained. The grid model, denoted ΣEP, is an 

HDS of the form described in Definition 5.4 [Wedeward 2006]; a Matlab encoding of the model 

is presented in Appendix B. Because the model ΣEP corresponds to a real world grid, the 

behaviors of model and grid can be compared. For example, the real grid experienced a large 

cascading voltage collapse for which data was collected. We simulated this cascading outage 

(see Figure 11) and found close agreement between the behavior of the actual grid and the 

model ΣEP. Observe that this result is encouraging given the simplicity of the model and the well-

known difficulties associated with reproducing such cascading dynamics with computer models.   

We conducted a vulnerability assessment for the power grid ΣEP shown in Figure 11 using 

Algorithm 5.2. It was assumed that the grid’s attacker wishes to drive the voltage at bus 11 to 
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 unacceptably low levels, so that the loads at this bus would not be served, and that the 

attacker has only limited grid access. For instance, we considered a scenario in which the 

attacker can gain assess to the generator at bus 2 via cyber means (see [Stamp et al. 2008] for 

a discussion of cyber attacks to power systems). Note that this sort of vulnerability is interesting 

because the access point – the generator at bus 2 – is geographically remote from the target of 

the attack – the loads at bus 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: 20bus electric power grid used in the vulnerability analysis case study. 
The diagram at top is a one-line representation of the grid. The plot at bottom left 
shows voltage time series for all 20 buses during the simulation of a cascading 
voltage collapse observed with the actual grid. The plot at bottom right depicts 
voltage time series which result from a vulnerability exploitation synthesized using 
Algorithm 5.3.  
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 The first step in the vulnerability assessment procedure specified in Algorithm 5.2 involves 

constructing a finite state simulating abstraction T for ΣEP. This abstraction was computed using 

Algorithm 3.2, and a Matlab program for generating the abstraction is given in Appendix B. The 

second step in Algorithm 5.2 is to apply BMC to T to determine if it is possible to realize the 

attack objective, i.e., low voltage at bus 11, through admissible manipulation of the generator at 

bus 2. We employed NuSMV, an open source software tool for formal verification of finite state 

systems, for this analysis [NuSMV 2007]. The vulnerability assessment demonstrates that it is 

possible for the attacker to realize the given objective via the assumed grid access. Specific 

details regarding this vulnerability are considered sensitive and hence are not given in this 

document. Such information can be requested from the authors.  

Finally, we remark that these vulnerability assessment results can serve as a starting point 

for synthesizing a vulnerability exploitation strategy using the analytic procedure given in 

Algorithm 5.3. Briefly, one such exploitation was designed and tested through simulation of ΣEP. 

Sample simulation results are shown in Figure 11 and demonstrate that the attacker’s goals can 

indeed be realized, in this case by initiating a cascading voltage collapse which takes down 

most of the power grid.  
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 6. Case Study Two: Predictive Analysis  
The second case study involves predictive analysis for complex networks, and in particular 

for social processes which have proven to be both practically important and challenging to 

predict. We begin by formulating the predictive analysis problem in mathematically precise 

terms and then consider predictive analysis for two classes of social processes: online markets 

and social movements.  

6.1 Problem formulation  
We formulate prediction problems as questions about the expected dynamics of a system 

of interest, with the system dynamics specified within an LTL framework. Recall that in LTL, 

propositional formulas are obtained by combining “atomic” propositions using a grammar of 

Boolean and temporal operators (see Section 3.1). Defining atomic propositions to correspond 

to problem-relevant subsets of the system’s state space enables expressive characterization of 

the dynamics. As a consequence, predictions about the evolution of the system can be naturally 

posed in terms of (the satisfaction of) LTL formulas. As an illustrative example, consider the 

problem of predicting ultimate market share in a cultural market (e.g., music or films) in which 

“buzz” about a product propagates through various social networks. If, in a market containing 

two products with indistinguishable “intrinsic appeal”, it is possible for one of the products to 

achieve a dominant market share, we might view the market to be unpredictable. Conversely, a 

predictable market would be one in which market shares of indistinguishable products evolve 

similarly and market shares of superior products are typically larger than those of inferior ones. 

Prediction, of course, then involves estimating the ultimate market share of a product of interest, 

perhaps based on measures of appeal. It is easy to see that these intuitive ideas can be 

naturally and quantitatively expressed using LTL. For instance, market share dominance by 

product A is associated with a region of market share state space, and the condition that A 

eventually achieves such dominance and simultaneously possesses an appeal that is 

indistinguishable from product B is easily written as an LTL formula.  

Perhaps the simplest way to formulate prediction questions within an LTL framework is in 

terms of reachability. In this setting, the behavior about which predictions are to be made is 

used to define the system state space subsets of interest (SSI). Available measurables allow 

identification of indistinguishable starting sets (ISS), that is, those sets of initial conditions and 

system parameters which cannot be resolved with the available data. Predictability assessment 

then involves determining which SSI can be reached from ISS. If the system’s reachability 

properties are incompatible with the prediction goals – if, for instance, “hit” and “flop” are both 
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 reachable from a single ISS – then the given prediction question should be refined in some 

way. Possible refinements include relaxing the level of detail to be predicted (by redefining the 

SSI) or using additional measurables to resolve the ISS. If and when a predictable situation is 

obtained, the problem of forming robust, useful predictions can be addressed. This problem is 

also naturally studied within the reachability framework, as it involves determining the most 

likely evolution of the system and quantifying the uncertainty associated with this estimate.  

The preceding discussion motivates the need to develop a rigorous, tractable methodology  

for assessing reachability of complex processes in the presence of uncertainty regarding the 

process parameters. Particularly desirable are methods that can be applied in both stochastic 

and nonstochastic settings and for sets of initial conditions and system parameter values. An 

approach to reachability assessment which possesses these characteristics is developed in 

Section 4 of this paper, and it is this framework that we employ in the following case study.  

6.2 Social processes  
The proposed approach to predictive analysis is now applied to a broad and important class 

of social phenomena. We begin with a brief, qualitative description of the type of social process 

of interest, then introduce a novel framework within which to model and analyze these systems, 

and finally consider two real world case studies which illustrate the considerable potential of the 

proposed analytic methodology.  

In many social situations, individuals are influenced by observations of (or expectations 

about) the behavior of others, for instance seeking to obtain the benefits of coordinated actions, 

infer otherwise inaccessible information, or manage complexity in decision-making. Processes 

in which observing a certain behavior increases an agent’s probability of adopting that behavior 

are often referred to as positive externality processes (PEP), and we use that term here. PEP 

have been widely studied in the social and behavioral sciences (e.g., economics, finance, 

sociology, social psychology) and, more recently, by the computer science and informatics 

communities. As an example of work in the latter domain, Figure 12 shows measurements of 

online purchasing and social networking behavior, each of which clearly exhibits the “micro”, or 

individual-level, response associated with PEP. One hallmark of PEP is their unpredictability: 

phenomena from fads and fashions to financial market bubbles and crashes appear resistant to 

predictive analysis (although there is no shortage of ex post explanations for their occurrence!). 

These considerations are important for national security applications as well. For example, there 

is increasing recognition that collective dynamics are central to social movements, including 

revolution, political and religious radicalization, and cultural/ethnic conflict.  
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A key step in understanding PEP dynamics, and the impact of these dynamics on predictive 

analysis, is the formulation of appropriate social dynamics models. Social system modeling 

typically proceeds along one of two lines: 1.) high level modeling which captures the behavior of 

aggregates of individuals, for instance using ordinary differential equations or statistical 

regressions to characterize the fractions of individuals exhibiting certain behaviors over time 

(see, e.g., [Hedstrom et al. 2000] and the references therein), and 2.) detailed modeling of the 

behavior of individuals and the ways individuals interact, often using agent-based methods [e.g., 

Epstein 2006]. Interestingly, there is often little justification for, or evaluation of, the choices 

made regarding the system features which are included and omitted. As shown in the preceding 

sections of this paper, however, complex systems often evolve so that some system features 

require only simple, abstract models while others demand highly accurate representations, and 

it is often challenging to allocate modeling detail appropriately. For example, recent work has 

clearly demonstrated the importance of capturing social network effects when modeling social 

processes [Newman 2003]. Unfortunately, detailed information concerning the relevant social 

networks is not typically available. Additionally, even when these data can be estimated, it is 

often the case that naïve approaches to network modeling lead to unnecessarily complicated 

models and subsequent analytic difficulties.  

These facts motivate the development of a class of multi-scale models for social processes 

which respect the function and evolution of the underlying systems. The proposed multi-scale 

Figure 12: Positive externality processes. The plot at left demonstrates that 
the probability of purchasing a DVD increases as the number of purchasing  
recommendations increases [Leskovec et al. 2006] and the plot at right 
shows that the probability of joining a LiveJournal community increases as 
the number of friends belonging to the community increases [Kleinberg 
2007].  
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 representation reflects the essential structures present in positive externality social systems 

through the use of three modeling scales:  

• a micro-scale, for modeling the behavior of individuals;  

• a meso-scale, which represents the collective dynamics within social contexts via “fully 

mixed” models for the interaction dynamics (see, e.g., [Hedstrom et al. 2000], [Watts et al. 

2002] for social network-oriented introductions to the concept of social contexts);  

• a macro-scale, which characterizes the interaction between the social contexts.  

A schematic of the basic framework is given in Figure 13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This multi-scale approach alleviates the need for detailed social network data, because 

interactions within social contexts are modeled as fully mixed. Moreover, by distinguishing 

between the way individuals interact within and across social contexts, we simultaneously 

capture the important social network structure and obtain analytically tractable mathematical 

formulations. Note that the characterization of intra-context and inter-context dynamics implicit 

in the proposed multi-scale framework is based on established social science understanding 

(e.g., [Hedstrom et al. 2000], [Watts, et al. 2002]).  

We develop and analyze multi-scale social dynamics models using the S-HDS formalism 

described in Section 2 [Colbaugh and Glass 2007]. Briefly, these S-HDS are feedback 

interconnections of continuous dynamics, such as the dynamics of individuals exchanging ideas 

Figure 13: Multi-scale model for social processes. The cartoon at left illustrates 
the basic model structure, in which individuals (blue and red nodes) interact 
within social contexts (ellipses encircling nodes) via fully mixed dynamics and 
between contexts according to the network topology characterizing context 
interdependencies. The block diagram at right depicts an S-HDS encoding of 
the model, in which the S-HDS continuous system captures intra-context 
dynamics and the discrete system models the inter-context behaviors.  
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 within a social context, and discrete dynamics, capturing for instance the switching behavior 

encountered when an individual from one context moves to another and introduces an idea 

which is novel in the latter context (see Figure 13). An advantage of representing multi-scale 

social dynamics using an S-HDS framework is that the resulting models are amenable to one-

dimensional abstraction-based analysis. In fact, we show in the following two case studies that 

one-dimensional abstraction enables the development of a mathematically rigorous, 

computationally tractable methodology for predictive analysis of PEP.  

Online markets  
Consider an online market in which individuals visit a web site, browse an assortment of 

available items, and choose one or more items to download. A surprising and interesting 

characteristic of these markets – and many other markets as well – is that they are often both 

unequal and unpredictable: a few items capture a large share of the market, but which items 

achieve popularity appears to be hard to anticipate. For instance, the study reported in [Salganik 

et al. 2006] created an artificial music market and demonstrated this phenomenon 

experimentally. Moreover, this work showed that increasing the opportunity for social influence 

increased both the inequality of the ultimate market shares and the unpredictability of which 

songs attain market dominance. Our study of CNET, the online software library, yielded similar 

results: 1.) daily download market share of a software item is positively correlated with 

cumulative item downloads (the market exhibits positive externalities) and not correlated with 

measures of item quality (e.g., expert reviews, user reviews, technical data), and 2.) the 

average quality of the most popular software is indistinguishable from the average quality of all 

software available on the site [Colbaugh and Glass 2007]. The positive externalities present in 

these markets makes predictive analysis using standard methods a challenging undertaking.  

We now apply the predictive analysis framework summarized above to the problem of fore-

casting ultimate market share in online markets. Consider a market visited by a sequence of 

consumers, with each visitor choosing between two items {A, B}; generalizing this simple binary 

choice setting to any finite number of choices is straightforward. We model this situation by 

supposing that each agent i chooses item A with probability  

Σonline                                                     Pi(A) = βπ + (1−β) f  

where f∈[0,1] is item A’s current market share, (1−β) quantifies the intensity of social influence 

(with β∈[0,1]), and π is the probability of an agent choosing A in the “no social influence” case 

(i.e., when β=1); agent i chooses item B with probability 1 − Pi(A). In this model, π can be 
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 interpreted as a measure of the “appeal” of item A (relative to B), f is the social signal, and β 

quantifies the relative importance of appeal and social influence in the decision-making process.  

The model Σonline is extremely simple, perhaps the simplest possible representation which 

captures the effects of both social influence and appeal in an online market. Nevertheless, this 

model is able to reproduce all of the key behavior observed in the music market study described 

in [Salganik et al. 2006], in our investigation of CNET market dynamics, and in other online 

markets (e.g., for books and DVDs) [Colbaugh and Glass 2007]. In particular, as β decreases 

(social influence increases) both the inequality and unpredictability of market shares increase. 

Thus, despite its simplicity, Σonline provides a useful starting point for studying predictability and 

prediction of online markets. In particular, Σonline can be written in the form of the continuous 

system portion of the S-HDS model given in Definition 2.3, so that Theorem 8 is directly 

applicable; see Appendix C for the precise form of the resulting model.  

As a simple illustration of the sorts of predictive analysis questions which can be addressed 

using the proposed framework, consider the problem of identifying measurables which can be 

used to predict ultimate market share. The standard approach is to assume that item appeal is 

such a measurable, estimate appeal in some way, and use this estimate to predict ultimate 

market share. To examine the utility of this approach, we assess the predictability of market 

share for identical items (π=1/2) with identical initial market share (f(0)=1/2). If it is reasonably 

likely that the market will evolve so one or the other item dominates (f becomes large or small), 

then the market dynamics is not (very) dependant on item appeal and therefore is unpredictable 

using standard methods. In this case we should seek a different prediction method, one based 

on other measurables. Alternatively, if market dominance by either item is unlikely then the 

market dynamics depends on item appeal in a more predictable way and standard methods 

may lead to useful prediction.  

Predictability assessment can be conducted using Theorem 8 by setting Xu to correspond 

to large/small f and computing an upper bound on the probability of reaching Xu (see Figure 14). 

More specifically, we compute an upper bound on the probability that Σonline with π=1/2 will 

evolve from X0
1 to Xu in Figure 14, as this corresponds to the probability that indistinguishable 

items with equal initial market shares will evolve so that one item dominates. We consider two 

situations: the low social influence (SI) case, obtained by setting β large in Σonline, and the high SI 

case, corresponding to small β. Theorem 8 is applied to Σonline for sets of initial conditions and 

model parameter values using SOSTOOLS (see Appendix C for the Matlab program used in 

this analysis). In the high SI case, the analysis generates fairly high probability bounds for a 
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 broad range of noise models, with γ∈[0.5, 0.7] being typical, and also shows that large f (A 

dominance) and small f (B dominance) are equally likely. This result is consistent with empirical 

findings (e.g., [Salganik et al. 2006]) and suggests that standard approaches to market share 

predictions are not likely to produce accurate forecasts. When SI is low, however, very small 

upper bounds are found for the probability of reaching Xu (on the order γ~10-3); this result also 

matches empirical findings and indicates that in this case product appeal matters and that 

predicting market share based on appeal can be sensible.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
An advantage of the proposed predictive analysis framework is the convenience with which 

alternative measurables can be examined. For example, it might be supposed that very early 

market share time series data would be useful for prediction in the high SI case. The intuition 

behind this idea is that the “herding” behavior that can arise from SI, and which makes market 

prediction hard using standard methods, may lead to a lock-in effect, in which very early market 

share leaders become difficult to displace. To test this hypothesis, we assess the predictability 

of market share for identical items which have identical early market share time series. Thus we 

compute an upper bound on the probability that Σonline with π=1/2 will evolve from X0
2 to Xu in 

Figure 14. We again apply Theorem 8 to Σonline for sets of initial conditions and model parameter 

values using SOSTOOLS (see Appendix C for the Matlab program used in this analysis). In this 

case, the analysis generates very small upper bounds (γ~10-3 is typical). Thus items with similar 

Figure 14: Predictability analysis setup for online market example. Note 
that in this diagram the x1, x2 coordinates correspond to f (market share 
for item A) and 1/(t+1), respectively.  
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 early market share time series are very unlikely to evolve so that one dominates. This analysis 

suggests that using early time series data to refine the ISS leads to a more tractable prediction 

problem, in which indistinguishable market configurations evolve to indistinguishable outcomes 

even in the presence of high SI.  

We mention in closing that we have developed an algorithm for predicting online market 

share which leverages these insights regarding the role of SI in market evolution and the 

importance of early market dynamics in high SI situations. The algorithm first estimates the 

intensity of SI in the market using a combination of adaptive methods [Narendra and 

Annaswamy 1988] and HDS theory [Colbaugh and Glass 2007]. This estimate then forms the 

basis for choosing either an appeal-based or herding-based prediction strategy to predict 

ultimate market share. Application of this approach to online markets as well as other markets 

(e.g., movie box office revenue) yields predictions of quite respectable accuracy [Colbaugh and 

Glass 2007].  

Social movements  
Social movements are large, informal groupings of individuals and/or organizations focused 

on a particular political, social, economic, or religious issue. Example issues include racial and 

gender equality, temperance, labor rights, political ideology, economic philosophy, religious 

fundamentalism, and environmental concerns. Consider the problem of distinguishing 

successful social movements, that is, movements which attract significant following, from 

unsuccessful ones early in their lifecycle. Here we apply our proposed approach to predictive 

analysis for social processes to this analysis task. As shown above, a crucial step in the 

approach is assessment of the predictability of the process of interest. Among other things, 

predictability assessment enables identification of those measurables which are most useful for 

prediction. We expect this function to be important here, as there are myriad measurables 

associated with radicalization which may have predictive power, and identifying which (if any) 

actually do is both challenging and critical for successful warning analysis.  

The study consists of three parts: 1.) a theoretical investigation of social movement warning 

analysis using models taken from the social movement theory (SMT) literature, 2.) an empirical 

study of social movement warning analysis involving a “data-rich” social movement (i.e., the 

emergence and diffusion through Sweden of their Social Democratic Party), and 3.) a combined 

empirical/theoretical investigation of Islamic mobilization warning analysis involving both 

successful and unsuccessful mobilization events and using online social activity as the main 

data source. We begin with an investigation of general social movements. This broader setting 

is reasonably well-characterized both theoretically and empirically and therefore provides the 
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 opportunity to identify candidate early indicators in a principled way; candidate indicators (if 

any) can then be tested for relevance to particular applications, such as Islamic mobilization and 

radicalization. Consider the problem of identifying measurables which permit successful social 

movements to be distinguished from unsuccessful ones early in their lifecycle. This problem is 

naturally formulated within the proposed predictability assessment framework. Movement 

success is quantified by defining a subset Xu of the social system state space that corresponds 

to a level of movement membership consistent with movement goals, and we seek measurables 

which allow (early) identification of those movements that are likely to evolve to Xu.  

In the theoretical study of social movements, we first collect a family of models from the 

SMT literature and formulate these within our multi-scale framework. This approach yields 

models that appropriately represent social network effects while remaining broadly consistent 

with current SMT thinking. More specifically, we derive an S-HDS representation for social 

movements which is of the form given in Definition 2.3 , and find that this formulation enables 

simultaneous analysis of an entire collection of relevant SMT models. This result is achieved by 

employing the model abstraction methodology presented in [Colbaugh and Glass 2007] to 

derive a “base model” whose parameterization enables any model in the family of interest to be 

recovered through suitable specification of parameter values. We then work with the complete 

family of models all at once by conducting the analysis for the entire set of feasible parameter 

values.  

The continuous system portion of the S-HDS model is a collection of stochastic differential 

equations (SDE), each of which captures a particular instantiation of the intra-context social 

dynamics. This collection is indexed by a discrete “mode” q ∈ Q that specifies which (vector) 

SDE is currently active. The mode q concisely quantifies the history of inter-context interactions, 

and specification of the appropriate active SDE is based on this history. Thus, for example, a 

particular sequence of inter-context communications concerning new information leads to a 

certain distribution of informed individuals across social contexts, and this distribution in turn 

impacts the subsequent intra-context dynamics. Mode q evolves according to a Markov chain 

with state set Q and continuous state dependent transition probabilities; this is the discrete 

system component of the S-HDS (see Definition 2.3 and Example 2.2).  

Predictability assessment is performed for the collection of S-HDS social movement models 

using the result given in Corollary 4.1. That is, we compute provably-correct upper bounds for 

the probability that any model in the collection will reach Xu from X0. Because this computation 

does not require forward simulation and can be conducted for sets of initial states and 

parameter values, we can efficiently explore the way various measurables affect these 
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 probability bounds. Those measurables for which the probability of reaching Xu exhibits 

sensitive dependence are designated to be potentially useful indicators of movement success.  

Briefly, this study produced two main results. First, the degree to which movement-related 

activity shows early diffusion across multiple social contexts is a powerful distinguisher of 

successful and unsuccessful social movements. Indeed, this measurable has considerably more 

predictive power than the volume of such activity and also more power than various system 

intrinsics. Second, significant social movements can occur only if both 1.) the intra-context 

“infectivity” of the movement exceeds a certain threshold and 2.) the inter-context interactions 

associated with the movement occur with a frequency that is larger than another threshold. Note 

that this is reminiscent of, and significantly extends, well-known results for epidemic thresholds 

in disease propagation models. Appendices D and E of this paper present sample Matlab 

programs which implement predictability analysis for S-HDS social system models for epidemics 

(Appendix D) and social movements (Appendix E).   

The empirical investigation of early warning analysis for social movements focuses on the 

emergence and growth of the Swedish Social Democratic Party (SDP). The case of the SDP is 

particularly relevant for our purposes, as the early activities of political “agitators” associated 

with the SDP led to the establishment of a well-defined, and well-documented, network linking 

previously disparate geographically- and demographically-based social contexts in Sweden 

[Hedstrom et al. 2000]. We explore the role played by this inter-context network by analyzing 

archived data and published accounts describing the dynamics of the SDP. Our investigation 

uses standard time series analysis techniques similar to those employed in [Hedstrom et al. 

2000] and reveals that an important predictor of SDP spatio-temporal dynamics is early diffusion 

of SDP-related activity across social contexts. In fact, this measurable has more predictive 

power than demographic and political features of the population.  

We now briefly summarize a few details of the study. The visualization at the top of Figure 

15 depicts the temporal evolution of the concentration of SDP members in approximately 360 

Swedish jurisdictional districts over the period 1885-1947. In this rendering of the data, the 

horizontal coordinate axis is district index, the vertical coordinate is time, and the colors indicate 

variation from minimum member concentration (dark blue) to maximum concentration (red). 

Examination of the figure reveals the expected “contagion” effect in membership evolution, in 

which districts that are close geographically experience similar membership trajectories 

(geographically proximate districts have index values which are close). This visualization also 

shows that in the early years of the party, some geographically disparate districts initiated local 

party chapters almost simultaneously and then experienced similar growth patterns.  
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The cross correlation results shown at the bottom of Figure 15 confirm this observation. The 

time series of district membership concentration (left) and party office founding events in 

districts (right) show both local geographic correlations, corresponding to contagion effects, and 

also non-local effects. Further analysis (not shown) indicates that these correlations are 

significantly larger than those observed in data with randomized district indices. More 

interestingly, we find that the non-local correlations can be explained by the inter-context 

network established by early party activists: those districts which exhibit similar early party 

initiation and growth are also those with direct (activist-induced) inter-context links. Thus inter-

context dynamics played an important role in the emergence and growth of the SDP.  

Figure 15: Sample results for the Swedish SDP case study. The figure at top is a 
visualization of the temporal evolution of the concentration of SDP members in 
approximately 360 Swedish jurisdictional districts over the period 1885-1945. The 
bottom figures show time series cross correlations for membership concentration 
(left) and party office founding events (right), both across districts.  
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 The theoretical and empirical results summarized above suggest social network dynamics 

are critical to social movement success. Moreover, the results show that the features of these 

dynamics which may be useful early indicators of movement success are practically measurable 

in many applications. For instance, diffusion across social contexts often can be inferred from 

analysis of public opinion and demographic data, as this measure requires only incomplete 

information regarding the relevant social networks. Alternatively, we show below that online (i.e., 

Web-based) social activity can sometimes serve as a proxy for these social dynamics.  

We now investigate whether diffusion across social contexts is a useful early indicator for 

successful Islamic mobilization and protest events. The study focuses on Muslim reaction to six 

recent incidents, each of which appeared at their outset to have the potential to trigger 

significant protest activities:  

• publication of photographs and accounts of prisoner abuse at Abu Ghraib in Spring 2004;  

• publication of cartoons depicting the prophet Mohammad in the Danish newspaper Jyllands-

Posten in September 2005;  

• distribution of the DVD I was blind but now I can see in Egypt in October 2005;  

• the lecture given by Pope Benedict XVI in September 2006 in which he quoted controversial 

material concerning Islam;  

• Salman Rushdie being knighted in June 2007;  

• republication of the “Danish cartoons” in various newspapers in February 2008.  

Recall that the first Danish cartoons event ultimately led to substantial Muslim mobilization, 

including massive protests and considerable violence, and that the Egypt DVD event also 

resulted in significant Muslim mobilization and violence. In contrast, Muslim outrage triggered by 

Abu Ghraib, the pope lecture, the Rushdie knighting, and the second Danish cartoons event all 

subsided quickly with essentially no violence. Therefore, taken together, these six events 

provide a useful setting for testing whether the extent of early diffusion across social contexts 

can be used to distinguish nascent Islamic mobilization events which become large and self-

sustaining (and potentially violent) from those that quickly dissipate.  

A central element in the proposed approach to early warning analysis is the measurement, 

and appropriate processing, of social dynamics associated with the process of interest. Indeed, 

the preceding results suggest that in many cases reliable warning analysis requires such data. 

In the present case study we use online social activity as a proxy for “real world” diffusion of 

mobilization-relevant information. More specifically, we use blog-based communications and 

discussions as our primary data set. The “blogosphere” is modeled as a graph composed of two 
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 types of vertices, the blogs themselves and the concepts which appear in them. Two blogs are 

linked if a post in one hyperlinks to a post in the other, and a blog is linked to a concept if the 

blog contains (a significant occurrence of) that concept. See Figure 16 for a schematic 

representation of this sort of blog graph. Among other things, this blog graph model enables the 

identification of blog communities – that is, sets of blogs with intra-group edge densities that are 

significantly higher than expected [Newman 2003]. In what follows, these blog communities 

serve as one proxy for social contexts (see Figure 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
We propose the following procedure for warning analysis using blog data: given a potential 

“triggering” event of interest  

1. Use key words and concepts associated with the triggering event to collect relevant blog 

posts and build the associated blog graph.  

2. Identify the blog social contexts (e.g., graph community-based, language-based).  

3. Construct the post volume time series for each social context. Compute the post/context 

entropy (PCE) time series associated with the post volume time series.  

4. Construct a synthetic ensemble of PCE time series from (actual) post volume dynamics 

using a general S-HDS social diffusion model.  

5. Perform motif detection: compare the actual PCE time series to the synthetic ensemble 

series to determine if the early diffusion of activity across contexts is “excessive”. Flag 

events with excessive early diffusion for further (e.g., manual) analysis.  

Figure 16: Blog graph model. Schematic on left depicts the basic graph structure, 
in which blogs (red vertices) can be connected to each other via hyperlinks (solid 
edges) and also connected to concepts (blue vertices) they contain. Blog graph   
on right corresponds to political blogs; note that in this graph liberal (blue) and 
conservative (red) blogs form two distinct communities [Adamic and Glance 2005]. 



 

63

 We now provide additional details concerning this procedure and its implementation. Step 

1 is by now a standard operation in web mining applications, and various “off the shelf” tools 

exist which can perform this task. For instance, in this study we employ Google Blogs together 

with tools developed by the Artificial Intelligence Laboratory at the University of Arizona [AI Lab 

2007]. In Step 2 we use two definitions for blog social context: graph community-based, in which 

the contexts are graph communities found through standard community extraction applied to the 

blog graph, and language-based, in which contexts are defined based on the language of the 

posts (Google Blogs archives blog posts in 43 languages).  

In Step 3, post volume for a given context i and sampling interval t is obtained by counting 

the number of (relevant) posts made in the blogs comprising context i during interval t, and the 

post volume time series are simply the concatenation of these counts. PCE for a given sampling 

interval t is defined as follows:   

PCE(t) = −Σi fi(t) log(fi(t)),  

where fi(t) is the fraction of total relevant posts during interval t which occur in context i; the 

associated time series is again simply the sequence of these values.  

Given the post volume time series obtained in Step 3, Step 4 involves the construction of an 

ensemble of PCE time series which would be expected under “normal circumstances”, that is, if 

Muslim reaction to the triggering event diffused from a small “seed set” of initiators according to 

SMT social dynamics. For this study, we use the multi-scale S-HDS modeling framework to 

generate the PCE time series ensembles. Finally, motif detection in Step 5 is carried out by 

searching for periods, if any, during which the actual PCE time series is excessive relative to the 

synthetic PCE ensemble (e.g., exceeds the mean of the ensemble by two standard deviations).   

We now apply the proposed approach to early warning analysis to the Islamic mobilization 

case study. If early diffusion of discussions across blog communities is an indicator that the 

associated Islamic mobilization event will be large, we would expect to observe such diffusion 

with the mobilization associated with the first Danish cartoons and Egypt DVD events and not 

with the other four events. Additionally, we would expect this early diffusion to be “excessive”, 

relative to the synthetic ensemble, for the first two events and not for the latter four. As can be 

seen in Figure 17, this is what we find. In the case of the first Danish cartoons event, the 

entropy of diffusion of relevant discussions across blog communities (blue curve) experiences a 

dramatic increase a few weeks before the corresponding increase in the volume of blog 

discussions (red curve); this latter increase, in turn, occurs before any violence (see Figure 17). 

In contrast, in the case of the pope event, the entropy of diffusion of discussions across blog 
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 communities is small relative to the cartoons event, and any increase in this measure lags 

discussion volume. Similar curves are obtained for the other four events. More importantly, the 

proposed motif detection process also yields the expected result: motifs are found only for the 

Danish cartoons and Egypt DVD events, and these motifs precede significant blog volume and 

real world violence. Note that qualitatively similar results are obtained for both the graph 

community-based and language-based definitions of social context. This case study suggests 

that early diffusion of mobilization-related activity (here blog discussions) across disparate social 

contexts (blog communities) may be a useful early indicator of successful mobilization events.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

 

 

Figure 17: Sample results for Islamic mobilization case study. The time series plots 
at the top correspond to the first Danish cartoons event (left) and the pope event 
(right). In each plot, the red curve is blog volume and the blue curve is blog entropy; 
the Danish cartoon plot also shows two measures of violence. Note that while the 
data are scaled to allow multiple data sets to be graphed on each plot, the scale for 
entropy is consistent across plots to enable cross-event comparison. The table at 
the bottom summarizes the results of the motif analysis study. Note that only the 
first Danish cartoons event and Egypt DVD event exhibit time series motifs.  

Time series motif analysis

Event                            Motif 

Danish cartoons 1:      1/1—1/26/2006.
Egypt DVD release:     10/2–10/9/2005.
Abu Ghraib story:        none. 
Pope lecture:     none. 
Rushdie knighting:      none. 
Danish cartoons 2:  none
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7. Concluding Remarks 

This paper presents a new framework for analyzing complex networks based on aggressive 

abstraction, that is, a dramatically simplifying and property preserving abstraction of the network 

of interest. In the proposed analytic procedure, the given network is first abstracted to a much 

simpler (but equivalent) representation, the required analysis is performed using the abstraction, 

and analytic conclusions are then mapped back to the original network and interpreted there. 

The paper makes three main contributions:  

1. We identify broad and important classes of complex networks which are amenable to 

aggressive abstraction. These networks are typically the result of an evolving process which 

favors systems that are robust to (familiar) environmental perturbations and internal flaws. 

We also provide efficient computational algorithms for testing whether a given network can 

be abstracted using any of our methods.  

2. We introduce and develop two forms of aggressive abstraction: i.) finite state abstraction, in 

which dynamical networks with uncountable state spaces are modeled using finite state 

dynamical systems, and ii.) one-dimensional abstraction, whereby high dimensional network 

dynamics are meaningfully captured using scalar functions. In each case, the property 

preserving nature of the abstraction process is rigorously established, efficient algorithms for 

computing the abstraction are presented, and the main concepts are illustrated through 

simple examples.  

3. We demonstrate the considerable potential of the proposed approach to complex networks 

analysis through real world case studies. In our first case study, we develop a powerful new 

approach for vulnerability analysis of large, complex networks by leveraging the scalability 

and property preserving character of the finite state abstraction process; the efficacy of this 

vulnerability assessment framework is illustrated through analysis of fairly large-scale 

electric power grids. The second case study focuses on predictive analysis for complex 

network dynamics, with a focus on social processes on networks. This study develops a 

formal approach to predictability and prediction analysis that is enabled by one-dimensional 

abstraction techniques, and the utility of the methodology is illustrated through analysis of 

social processes for which standard approaches to prediction have been ineffective.  

Future work will involve extending the theoretical and computational foundations as well as 

applying the proposed analytic approach in a broader range of domains. Theoretical extensions 

of interest include developing methods for finite state abstraction of stochastic systems and for 
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 graph topology-based abstraction of complex networks; as an example of the latter, we expect 

to study the problem of “coarse-graining” network topologies by representing certain subgraphs 

of the original network with vertices in the abstraction. Work on computational methods will 

include exploring the utility of massively multi-threaded computer architectures for abstraction 

procedures. Among the application areas anticipated to be of interest are:  

• vulnerability analysis of the large-scale, socio-technical “systems of systems” associated 

with national infrastructures, for instance for problems in the critical infrastructure protection 

and information operation domains;  

• analysis of those biological networks (e.g., gene regulation, metabolic) which are central to 

human disease;  

• predictive analysis for social processes of relevance to national security (e.g., terrorism, 

proliferation) and other (e.g., financial and other markets) domains.  
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Appendix A: Matlab program for fast finite (bi-)simulation of linear control systems  

% Reformulated bisimulation algorithm -- prototype implementation 
% Judy Gardiner and Rich Colbaugh 
% 11/1/05 
  
function dummy = bisim() 
  
%---------- 
% Inputs 
%---------- 
  
% Define continuous state space system 
%   xdot = A*x + B 
  
n = 2           % dimension of state space - max of 64 in this prototype 
m = 1           % number of inputs 
A = [0 1; -1 0]  % system matrix (nxn) 
B = [0; 1]      % input matrix (nxm) 
  
% Define lattice for finite state transition system 
% A state is a box in the lattice defined as an n-vector. 
%   q = [q(1); q(2)2; ... q(n)], with each q(i) ranging from 1 to d(i) 
% The lattice is uniform in each dimension. Vertices defined as: 
%   x(i) = alpha(i)*q(i) + beta(i) for q(i) ranging from 1 to d(i)+1 
  
dimLattice = [4; 4] % dimensions of lattice, i.e., no. of boxes (states?)  
                    % in lattice for each of n dimensions 
alpha = [1; 1]      % scale factor for each of n dimensions 
beta = [-3; -3]     % offset for each of n dimensions 
  
%--------------------- 
% Calculate some sizes 
%--------------------- 
  
numStates = prod(dimLattice)            % size of the discrete state set 
  
%------------------------------ 
% Precompute some common values 
%------------------------------ 
  
ProjB = any(B,2)    % logical projection of B onto each axis (nx1) 
APos = zeros(n) 
ANeg = zeros(n); 
APos(A>0 & ~eye(n)) = A(A>0 & ~eye(n))  % Positive nondiagonal elements of A, 
0 elsewhere 
ANeg(A<0 & ~eye(n)) = A(A<0 & ~eye(n))  % Negative nondiagonal elements of A, 
0 elsewhere 
ProjAPos = sum(APos,2)   % Vector; sum of positive nondiagonal elements of A 
in each row 
ProjANeg = sum(ANeg,2)   % Vector; sum of negative nondiagonal elements of A 
in each row 
clear APos ANeg     % release space 
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%---------- 
% Outputs 
%---------- 
  
% Outputs are two logical arrays defining the possible transitions between  
% adjacent states.  Left is defined to be lower index, right is higher. 
%   TransRight(n, d1, d2, ... dn)       left-to-right arrows 
%   TransLeft(n, d1, d2, ... dn)        right-to-left arrows 
  
% TransRight(i, k1, k2, ... kn) is true if there is a transition into  
%   state q = [k1; k2; ... kn] from the left along dimension i 
  
% TransLeft(i, k1, k2, ... kn) is true if there is a transition out of  
%   state q = [k1; k2; ... kn] to the left along dimension i 
  
TransRight = logical(zeros(n,numStates)); 
TransLeft = logical(zeros(n,numStates)); 
  
%------------------------------------------------------- 
% Determine transitions for each pair of adjacent states 
%------------------------------------------------------- 
  
% For each pair of adjacent states q and q' in the lattice, with q>q',  
% determine q'-->q (transition to right/up) and q-->q' (transition to  
% left/down) based on vertex information. (q' is q prime) 
% Note: Each q (except on edge of lattice) has 2n adjacent states, one 
% left/lower and one right/upper in each dimension. 
% Indices of q are the indices of its lowest numbered vertex. 
  
% loop through all states 
for iState = 1:numStates 
    iState 
    q = vind2sub(dimLattice,iState) % get coordinates for q 
    % Look at left (lower) adjacent state in each dimension 
    for k = 1:n         % loop through dimensions 
        % q' is the same as q except 1 less in dimension i 
        if q(k) == 1     % check for left/lower edge of lattice 
            continue 
        end 
        if ProjB(k) 
            TransRight(k,iState) = true; 
            TransLeft(k,iState) = true; 
        end 
        x = alpha .* q + beta   % Calculate x from q (scalar multiply) 
        p = A(k,:)*x            % Projection of Ax onto axis i 
        if p > 0  ||  p+ProjAPos(k) > 0 
            TransRight(k,iState) = true; 
        end 
        if p < 0  ||  p+ProjANeg(k) < 0 
            TransLeft(k,iState) = true; 
        end 
    end 
end 
  



 

72

  
TransRight 
TransLeft 
  
%--------------------------------------------------------------------- 
% Vector form of ind2sub. Converts a 1-dimensional index into an array 
% of subscripts for an n-dimensional array with dimensions given by d. 
%--------------------------------------------------------------------- 
function y = vind2sub(d,ind) 
n = size(d,1); 
y = zeros(n,1); 
i = ind - 1;         % change from 1-based to 0-based indexing 
if n > 1 
    for k=1:n-1 
        y(k) = mod(i,d(k)); 
        i = (i-y(k)) / d(k); 
    end 
end 
y(n) = i; 
y = y + ones(n,1);   % go back to 1-based indexing 
  
%--------------------------------------------------------------------- 
% Vector form of sub2ind. Finds the 1-dimensional index from an array 
% of subscripts for an n-dimensional array with dimensions given by d. 
%--------------------------------------------------------------------- 
function ind = vsub2ind(d,s) 
n = size(d,1); 
ind = s(n) - 1;      % change from 1-based to 0-based indexing 
if n > 1 
    for k=n-1:-1:1 
        ind = ind*d(k) + s(k) - 1; 
    end 
end 
ind = ind + 1;       % go back to 1-based indexing 
  
% Computes the transitions into and out of a state q (defined by vertex v) 
% with respect to adjacent states q'<q in the dimensions (k) specified. 
% Function bisim_init must be called first. 
% 
function [TransIn, TransOut] = bisim_trans(v,kDim) 
  
% Inputs: 
%   v   -   n-vector; indices of lowest vertex of state q; shared vertex 
%           between q and all q' being considered 
%   kDim -  row vector defining the dimensions of interest; transitions to  
%           be computed are those parallel to these axes; length of kDim is  
%           between 1 and n 
  
% Outputs: 
%   TransIn   - logical row vector of same size as kDim; true if there is a 
%               transition into q from the lower adjacent state in the  
%               dimension specified by the corresponding element of kDim. 
%               These transitions represent arrows to the right or up. 
%   TransOut  - similar to TransIn; indicates transitions out of q into 
%               lower adjacent states; represents arrows to the left or 
%               down. 
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% Global variables -- These must have been set by bisim_init 
global n A ProjB ProjAPos ProjANeg 
global nParts Xmin Xscale 
  
% Initialize transitions to false 
TransIn = logical(zeros(size(kDim))); 
TransOut = logical(zeros(size(kDim))); 
  
% Compute x corresponding to v, the lowest vertex of q 
x = Xscale .* (v-1) + Xmin;   % Calculate x from q (scalar multiply) 
  
% Determine all transitions into and out of q from adjacent states q' in 
% the dimensions listed in kDim, with q'<q.  Each q' is the same as q 
% except 1 less in dimension k. 
for i = 1:size(kDim,2)    % loop through dimensions (axes) 
    k = kDim(i); 
    if v(k) == 1     % check for left/lower edge of lattice 
        continue 
    end 
    p = A(k,:)*x;            % Projection of Ax onto axis k 
    TransIn(i) = ProjB(k)  |  p+ProjAPos(k) > 0; 
    TransOut(i) = ProjB(k)  |  p+ProjANeg(k) < 0; 
end 
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Appendix B: Matlab program for finite (bi-)simulation of HDS model for 20-bus power grid  

% bisim_20bus 
  
% Script to check a trajectory from the 20-bus continuous model against the 
% finite-state-machine bisimulation model 
% Note:  This code is written specifically to work with Kevin's model. 
% Inputs: 
%   System matrices: A0, A1, A2, A3, B 
%   Incidence matrix for line trips: IMat 
%   Thresholds for line trips: dthetamax 
%   Output trajectory: xout, tout 
%   Finite-state partition size: sizeXParts (state variables),  
%     sizeYParts (dtheta variables), 
%     both are uniform along each axis and symmetric about 0 
%   Number of partitions for each trip variable (dtheta) axis: nYParts 
%     Note: Trip variables are treated as system outputs and named y. 
%     They are dtheta values scaled by dthetamax so trip points are +/-1. 
 
% Outputs: 
%   Flag indicating validity of trajectory under bisimulation (true=valid) 
%   Finite-state trajectory with time each state was entered 
%   Time and identity of all trip events 
  
% Clear memory and close figures 
clear all; close all; 
  
% Define global variables, set in bisim_init 
global AA ProjB ProjAPos ProjANeg    % projections used in bisimulation 
global Xscale Xoff                  % grid definition used in bisimulation 
% Load system matrices 
load ABs                % A0, A1, A2, A3, B0, IMat 
dthetamax = 0.01*ones(30,1); dthetamax([6,9,10,14,27]) = 0.025; 
  
% Transform system to use theta differences instead of thetas as state 
% variables.  This function contains a lot of model-specific information. 
% With transformed system, xdot=Ax+Bu; y=Cx; trip if any(abs(y)>1). 
% Transformed state grid is orthogonal. 
% Note:  Outputs are transformed matrices, except T and C. 
[T,A0,A1,A2,A3,B0,C]=transabc(A0,A1,A2,A3,B0,IMat,dthetamax); 
  
% Load trajectory 
load traj               % xout, tout 
npoints=size(xout,1); 
y=C*xout';          % Compute output variables, aka line trip variables 
x=T\xout';          % Transpose and transform state vectors 
tripped=false(30,1);    % which lines have tripped 
% Set finite-state grid information 
[Xscale,Xoff,Yscale,Yoff,qymax] = set_fsgrid; 
  
% Initialize variables, assuming trajectory starts at x=0 
A=A0; 
B=B0; 
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bisim_init(A,B); 
q=zeros(57,1);      % finite state 
qout=q';            % list of finite states 
tqout=0;            % list of times associated with finite states 
teout=[];           % times of trip events 
qeout=[];           % finite state at time of trip events 
ieout=[];           % index of trip events 
validtraj=true; 
xlast=zeros(57,1);  % continuous state 
for k=1:npoints 
    qnext=floor((x(:,k)-Xoff)./Xscale); 
    % Check for valid transition under bisimulation 
    validtraj=check_trans(q,qnext,xlast,x(:,k)); 
    xlast=x(:,k); 
    if ~validtraj 
        qout=[qout; qnext'];    % save invalid state for output 
        tqout=[tqout; tout(k)]; 
        disp(['Invalid transition found at time ',num2str(tout(k))]); 
       break 
    end 
    % Output new finite state 
    q=qnext; 
    qout=[qout; q']; 
    tqout=[tqout; tout(k)]; 
    % Check for line trip 
    qy=floor((y(:,k)-Yoff)./Yscale); 
    itrip=check_trip(qy,qymax,tripped); % ix of newly tripped line or 0 
    if itrip>0 
        tripped(itrip)=true; 
        % Output line trip info 
        teout=[teout; tout(k)]; 
        ieout=[ieout; itrip]; 
        qeout=[qeout; q']; 
        % Update system matrix, projections for bisimulation, fs grid 
        disp(['Event ',num2str(itrip),' found at time ',num2str(tout(k))]); 
        switch itrip 
            case 8 
                A=A2; 
            case 12 
                A=A1; 
            case 30 
                A=A3; 
            otherwise 
                disp(['Response not found for ie = ', num2str(itrip)]); 
        end 
        bisim_init(A,B); 
    end 
end 
  
if validtraj 
    disp('Trajectory is valid under bisimulation.') 
end 
% Bisimulation finished.  Save output variables to file. 
save bisimout.mat validtraj qout tqout teout ieout qeout 
 



 

76

  
Appendix C: Matlab programs for predictability assessment of online market model  

 
% Predictability Assessment for Online Market Model  
  
% SOS-based predictability assessment for online market  
% model: IC uncertainty quantification analysis case.   
  
% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5   
  
clear; echo on; 
  
syms x1 x2;  
  
sigma = 0.1;        % 0.1 1.0  
thresh = 0.8;       % 0.9  
  
% Vector fields 
% f1 = [-x1+0.5*x2; 
%       -2.0*x2]; 
% f2 = [0.5*x2-x1*x2; 
%       -x2*x2]; 
% f1 = [-x1*x2+0.5*x2; 
%       -2.0*x2];  
% g =  10.0*sigma*x2;  
  
  f1 = [-x1*x2+0.5*x2; 
        -2.0*x2]; 
  
  g =  4.0*sigma*x2;  
  
% Degree of the barrier certificates       
deg = 10; 
  
prog = sosprogram([x1; x2]); 
  
% Constructing B1 -- it must be >=0 on \mathcal{X}  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2],0:deg/2)); 
B1 = sos1+mu1*(x1+1.0)*(2.0-x1)+mu2*(x2+1.0)*(2.5-x2); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
expr1 = B1-mu1*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-1; 
%expr1 = B1-mu1*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(0.1-x2)-1; 
prog = sosineq(prog,expr1); 
  
[prog,gamma] = sospolyvar(prog,1); 
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
expr2 = B1+mu1*(x1-0.3)*(0.6-x1)+mu2*(x2-0.9)*(1.0-x2); 
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%expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*(x2-0.9)*(1.0-x2); 
%expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*(x2-0.0)*(0.1-x2); 
%expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*x2*(0.02-x2); 
expr2 = -expr2+gamma; 
prog = sosineq(prog,expr2); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+0.5*g^2*diff(B1,x1,2))... 
        -mu1*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2); 
prog = sosineq(prog,expr3); 
  
prog = sossetobj(prog,gamma); 
  
% Impose a lower bound on gamma, for better termination 
  
prog = sosineq(prog,gamma-0.5);  
  
prog = sossolve(prog); 
  
% ============================================= 
  
% Get solution 
GMA = sosgetsol(prog,gamma)  
 
 
 
% Predictability Assessment for Online Market Model  
  
% SOS-based predictability assessment for online market model:  
% parametric uncertainty quantification analysis case.   
  
% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5 
 
clear; echo on; 
  
syms x1 x2 v;   % v1 \in [0.9, 1.1], v1 \in [0.8, 1.2] 
                % v2 \in [3.0, 5.0], v2 \in [2.0, 6.0]  
  
sigma = 0.1;        % 0.1 1.0  
thresh = 0.8;       % 0.9  
  
% Vector fields 
% f1 = [-x1+0.5*x2; 
%       -2.0*x2]; 
% f2 = [0.5*x2-x1*x2; 
%       -x2*x2]; 
% f1 = [-x1*x2+0.5*x2; 
%       -2.0*x2]; 
% g =  10.0*sigma*x2;  
  
  f1 = [-x1*x2+0.5*x2; 
        -2.0*x2]; 
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  g =  v*sigma*x2;  
  
% Degree of the barrier certificates       
deg = 10; 
  
prog = sosprogram([x1; x2; v]); 
  
% Constructing B1 -- it must be >=0 on \mathcal{X}  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2],0:deg/2)); 
B1 = sos1+mu1*(x1+1.0)*(2.0-x1)+mu2*(x2+1.0)*(2.5-x2); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
expr1 = B1-mu1*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-1; 
%expr1 = B1-mu1*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(0.1-x2)-1; 
prog = sosineq(prog,expr1); 
  
[prog,gamma] = sospolyvar(prog,1); 
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*(x2-0.9)*(1.0-x2); 
%expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*(x2-0.0)*(0.1-x2); 
%expr2 = B1+mu1*(x1-0.4)*(0.5-x1)+mu2*x2*(0.02-x2); 
expr2 = -expr2+gamma; 
prog = sosineq(prog,expr2);  
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,v],0:deg/2-1));  
expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+0.5*g^2*diff(B1,x1,2))... 
    -mu1*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-mu3*(v-3.0)*(5.0-v); 
%expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+0.5*g^2*diff(B1,x1,2))... 
%    -mu1*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2); 
prog = sosineq(prog,expr3); 
  
prog = sossetobj(prog,gamma); 
  
% Impose a lower bound on gamma, for better termination 
  
prog = sosineq(prog,gamma-0.5);  
  
prog = sossolve(prog); 
  
% ============================================= 
  
% Get solution 
GMA = sosgetsol(prog,gamma) 
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Appendix D: Matlab program for SOS analysis of S-HDS epidemic model  

 
% Social Cascading SIR Via Context Switching  
  
% Multi-scale model implemented as an S-HDS with  
% rigorous stochastic SIR continuous dynamics.  
  
% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5 
  
clear; echo on; 
  
syms x1 x2 x3 v;    % v \in [0.9, 1.1], v \in [0.9, 1.2], v \in [0.8, 1.2]  
  
number_contexts = 2.0;   % 1.0, 2.0, 4.0  
little_pop = number_contexts;  
big_pop = 10.0;  % 2.0  
  
Imax = 5.0;  
  
beta = (1.0/(number_contexts*number_contexts));  % 0.5 1.0  
delta = 0.05;  
sigma = 0.02;    % 0.01, 0.02, 0.0225, 0.025   
  
lambda = v*0.001;      % 0.001 0.004  
thresh = 0.01*lambda;  % 0.05*lambda  
  
  
% Initial probability distribution for the discrete state 
%p = 0.5; 
p = 1.0; 
  
% Vector fields 
f1 = [-beta*x1*x2*x2;  
      beta*x1*x1*x2-delta*x2; 
      0.0]; 
  
f2 = [0.0;  
      0.0;  
      x3*(big_pop-x3)]; 
  
%f1 = [-2.0*beta*x1-beta*x1*x2+(beta*pop1-delta)*x1;  
%      delta*x1]; 
  
%f2 = [-2.0*beta*x1-beta*x1*x2+(beta*pop2-delta)*x1;  
%      delta*x1]; 
  
%g = [sigma;  
%     -sigma;  
%     0.0];  
  
g = [-sigma*x2;  
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      sigma*x1;  
     0.0];    
  
 % Degree of the barrier certificates       
deg = 6;  % 6  10  
  
prog = sosprogram([x1; x2; x3; v]); 
  
% Constructing B1, B2 -- they must be >=0 on \mathcal{X}  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2)); 
B1 = sos1+mu1*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)... 
     +mu3*(x3+10.0)*(20.0-x3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2)); 
B2 = sos1+mu1*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)... 
     +mu3*(x3+10.0)*(20.0-x3); 
  
 
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr1 = B1-mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
          -mu3*(x3-Imax)*(20.0-x3)-1; 
prog = sosineq(prog,expr1); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr1 = B2-mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
          -mu3*(x3-Imax)*(20.0-x3)-1; 
prog = sosineq(prog,expr1); 
  
 
[prog,gamma] = sospolyvar(prog,1); 
expr2 = subs(p*B1+(1-p)*B2,{x1,x2,x3},{(number_contexts-0.5),0.5,0.1}); 
expr2 = -expr2+gamma; 
prog = sosineq(prog,expr2); 
  
 
  
%[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
%[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
%[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
%expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+diff(B1,x3)*f1(3)... 
%        +0.5*sigma^2*(diff(B1,x1,2)+diff(B1,x2,2)-
2.0*diff(diff(B1,x1),x2))... 
%        +(lambda*x2-thresh)*B2-(lambda*x2-thresh)*B1)... 
%        -mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
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 %        -mu3*(x3+10.0)*(20.0-x3); 
%prog = sosineq(prog,expr3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu4] = sossosvar(prog,monomials([x1,x2,x3,v],0:deg/2-1)); 
expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+diff(B1,x3)*f1(3)... 
        
+0.5*sigma^2*(diff(B1,x1,2)+diff(B1,x2,2)+2.0*diff(diff(B1,x1),x2))... 
        +(lambda*x2*x2-thresh)*B2-(lambda*x2*x2-thresh)*B1)... 
        -mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
        -mu3*(x3+10.0)*(20.0-x3)-mu4*(v-0.9)*(1.2-v); 
prog = sosineq(prog,expr3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr3 = -(diff(B2,x1)*f2(1)+diff(B2,x2)*f2(2)+diff(B2,x3)*f2(3))... 
        
+0.5*sigma^2*(diff(B2,x1,2)+diff(B2,x2,2)+2.0*diff(diff(B2,x1),x2))... 
        -mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
        -mu3*(x3+10.0)*(20.0-x3); 
prog = sosineq(prog,expr3); 
  
prog = sossetobj(prog,gamma); 
  
% Impose a lower bound on gamma, for better termination 
prog = sosineq(prog,gamma-0.1); 
%prog = sosineq(prog,gamma-0.2); 
%prog = sosineq(prog,gamma-0.346);       
%prog = sosineq(prog,gamma-0.145);       
%prog = sosineq(prog,gamma-0.069);       
  
prog = sossolve(prog); 
  
% ============================================= 
% Get solution 
GMA = sosgetsol(prog,gamma) 
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Appendix E: Matlab program for SOS analysis of S-HDS social movement model  

 
% Social Movement Cascades Via Context Switching  
  
% Multi-scale model implemented as an S-HDS  
% with Hedstrom continuous dynamics.  
  
% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5 
  
  
clear; echo on; 
  
syms x1 x2 x3; 
  
number_contexts = 4.0;   % 1.0, 2.0, 4.0  
little_pop = number_contexts;  
big_pop = 10.0;  % 2.0  
  
Imax = 5.0;  
  
beta = (1.0/number_contexts);  % 0.5 1.0  
delta1 = 0.1;  % 0.1 0.025 0.55  empirical evidence suggests delta1=10*delta2 
delta2 = (0.01/number_contexts);  % 0.002 0.005 0.01 
  
lambda = 0.001; % 0.001 0.004  
  
thresh = 0.05*lambda;  
  
  
% Initial probability distribution for the discrete state 
%p = 0.5; 
p = 1.0; 
  
% Vector fields 
f1 = [-beta*x1*x2;  
      beta*x1*x2-delta1*x2-delta2*x2*(little_pop-x1-x2); 
      0.0]; 
  
f2 = [0.0;  
      0.0;  
      x3*(big_pop-x3)]; 
  
%f1 = [-2.0*beta*x1-beta*x1*x2+(beta*pop1-delta)*x1;  
%      delta*x1]; 
  
%f2 = [-2.0*beta*x1-beta*x1*x2+(beta*pop2-delta)*x1;  
%      delta*x1]; 
  
g = 0.0; 
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 % Degree of the barrier certificates       
deg = 6;  % 6  10  
  
prog = sosprogram([x1; x2; x3]); 
  
% Constructing B1, B2, B3 -- they must be >=0 on \mathcal{X}  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2)); 
B1 = sos1+mu1*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)... 
     +mu3*(x3+10.0)*(20.0-x3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,sos1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2)); 
B2 = sos1+mu1*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)... 
     +mu3*(x3+10.0)*(20.0-x3); 
  
 
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr1 = B1-mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
          -mu3*(x3-Imax)*(20.0-x3)-1; 
prog = sosineq(prog,expr1); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr1 = B2-mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
          -mu3*(x3-Imax)*(20.0-x3)-1; 
prog = sosineq(prog,expr1); 
  
 
[prog,gamma] = sospolyvar(prog,1); 
expr2 = subs(p*B1+(1-p)*B2,{x1,x2,x3},{(number_contexts-0.5),0.5,0.1}); 
expr2 = -expr2+gamma; 
prog = sosineq(prog,expr2); 
  
 
%[prog,mu1] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
%[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1)); 
%expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2) + 0.5*g^2*diff(B1,x2,2)... 
%    + 0.5*B2-0.5*B1)-mu1*(4^2-x1^2)-mu2*(4-x2)*(x2+1.5); 
%prog = sosineq(prog,expr3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr3 = -(diff(B1,x1)*f1(1)+diff(B1,x2)*f1(2)+diff(B1,x3)*f1(3)... 
        +(lambda*x2-thresh)*B2... 
        -(lambda*x2-thresh)*B1)... 
        -mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
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         -mu3*(x3+10.0)*(20.0-x3); 
prog = sosineq(prog,expr3); 
  
[prog,mu1] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1)); 
expr3 = -(diff(B2,x1)*f2(1)+diff(B2,x2)*f2(2)+diff(B2,x3)*f2(3))... 
        -mu1*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2)... 
        -mu3*(x3+10.0)*(20.0-x3); 
prog = sosineq(prog,expr3); 
  
prog = sossetobj(prog,gamma); 
  
% Impose a lower bound on gamma, for better termination 
prog = sosineq(prog,gamma-0.1); 
%prog = sosineq(prog,gamma-0.2); 
%prog = sosineq(prog,gamma-0.346);       
%prog = sosineq(prog,gamma-0.145);       
%prog = sosineq(prog,gamma-0.069);       
  
prog = sossolve(prog); 
  
% ============================================= 
% Get solution 
GMA = sosgetsol(prog,gamma) 
 


