SANDIA REPORT

SAND2008-7327
Unlimited Release
Printed October 2008

Analysis of Complex Networks Using Aggressive
Abstraction

Richard Colbaugh, Kristin Glass, and Gerald Willard

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

1

SAND2008-7327
Unlimited Release
Printed October 2008

Analysis of Complex Networks Using
Aggressive Abstraction

Richard Colbaugh
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Kristin Glass
New Mexico Institute of Mining Technology
801 Leroy Place
Socorro, NM 87801

Gerald Willard
Department of Defense
9800 Savage Road
Ft. Meade, MD 20755-6000

Abstract

This paper presents a new methodology for analyzing complex networks in which the network of
interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is
performed using the abstraction, and analytic conclusions are then mapped back to the original network
and interpreted there. We begin by identifying a broad and important class of complex networks which
admit abstractions that are simultaneously dramatically simplifying and property preserving — we call
these aggressive abstractions -- and which can therefore be analyzed using the proposed approach.
We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which
dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) one-
dimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful
way using a single scalar variable. In each case, the property preserving nature of the abstraction
process is rigorously established and efficient algorithms are presented for computing the abstraction.
The considerable potential of the proposed approach to complex networks analysis is illustrated
through case studies involving vulnerability analysis of technological networks and predictive analysis
for social processes.

111

Contents

. Introduction

. Complex Networks

. Finite State Abstraction

. One-Dimensional Abstraction

. Case Study One: Vulnerability Analysis
. Case Study Two: Predictive Analysis

. Concluding Remarks

. References

Appendix A: Matlab program for fast finite (bi-)simulation of linear control
systems

Appendix B: Matlab program for finite (bi-)simulation of HDS model for 20-bus
power grid

Appendix C: Matlab program for predictability assessment of online market
model

Appendix D: Matlab program for predictability assessment of S-HDS epidemic
model

Appendix E: Matlab program for predictability assessment of S-HDS social
movement model

0 NO O~ WN -

Figures

Figure 1: Complex system matrix

Figure 2: Schematic of hybrid dynamical system

Figure 3: lllustration of two bus power system

Figure 4: Sample trajectory of switching diffusion process

Figure 5: lllustration of basic concepts associated with finite state abstraction
Figure 6: Model for Circadian rhythm in Drosophila

Figure 7: State transitions associated with T, r in Example 3.3

Figure 8: Results of timing study

Figure 9: Cartoon of one-dimensional abstraction

Figure 10: Electric power grids as RYF/DILO systems

Figure 11: Diagram and sample results from vulnerability analysis case study
Figure 12: Positive externality processes

Figure 13: Multi-scale model for social processes

Figure 14: Predictability analysis setup for online market example

Figure 15: Sample results for the Swedish SDP case study

Figure 16: Blog graph model

Figure 17: Sample results for Islamic mobilization case study

v

14
32
41
50
65
67

70

74

76

79

82

11
13
15
19
28
30
33
46
48
52
53
56
60
62
64

Acronyms

BMC bounded model checking

BNF Brunovsky normal form

CSM complex system matrix

DILO deep information from limited observation
HDS hybrid dynamical systems

ISS indistinguishable starting sets

LTL linear temporal logic

PCE post/context entropy

PEP positive externality processes

RYF robust yet fragile

SDP social democratic party

Sl social influence

SMT social movement theory

SSI state space subsets of interest

SDE stochastic differential eugation

S-HDS stochastic hybrid dynamical system

SOS sum of squares

SCFS supervisory control for finite state systems

1. Introduction

An enormous range of systems and phenomena of importance in nature and society can be
profitably represented and analyzed as networks (or graphs), with system components being
modeled as vertices in the network and relationships or dependencies among these elements
being encoded as network edges. For example, many advanced technologies (e.g., electric
power grids, computer networks), biological processes (e.g., metabolism, gene regulation), and
social phenomena (e.g., organizations, diffusion of innovations) can be naturally modeled in this
way [see, for instance, Carlson and Doyle 2002, Newman 2003, Barabasi and Oltvai 2004, and
the references therein]. An interesting aspect of most real world networks is the fact that their
topologies, while not perfectly uniform (like a lattice), possess considerable structural regularity;
the topologies of these networks are related to, and indeed largely enable, their myriad
functionalities. This observation has motivated much recent work in which researchers model a
system of interest as a network and then attempt to deduce from vertex connectivity patterns
something about the properties and behaviors of the underlying system. This complex networks
perspective has already produced significant advances and appears to hold vast potential.
However, in order to realize this promise we must overcome daunting challenges. For example,
real world networks are typically very large, nonlinear dynamical systems, their topological
structures are usually heterogeneous, subtle, and intricate, and the data describing them are
often noisy and incomplete.

This paper introduces a new approach to analyzing complex networks which addresses
these challenges. A key step in the proposed methodology is to abstract the network of interest
in a manner which is simultaneously dramatically simplifying and property preserving; we call
this process aggressive abstraction. The network abstraction then becomes the focus of
analysis, leading to significantly enhanced tractability while ensuring application relevance. In
particular, any analytic conclusion obtained for the abstraction can be related back to the
original network because the network and its abstraction are equivalent by construction.

One should not expect aggressive abstractions to exist for arbitrary networks, of course,
and in fact one contribution of this paper is to identify classes of networks which admit such
abstraction. Here we introduce in an informal way perhaps the most important class of such
networks and defer to subsequent sections a careful, mathematically rigorous discussion of
these networks and their abstraction properties. Consider, then, those networks that have both

a set of functions to perform and the opportunity to evolve in order to improve their functionality.

This evolutionary process, which is ubiquitous in both natural and manmade networks,
frequently yields abstractable networks. To see why this is so, observe first that such evolution
leads to “robust, yet fragile” (RYF) networks which perform reliably in the presence of familiar,
expected disturbances but can fail catastrophically in response to a small, new perturbation
[Carlson and Doyle 2002]. Examples of RYF networks include electric power grids which deliver
reliable, inexpensive power but are susceptible to continent-spanning cascading outages,
financial markets which enable flexible, efficient transactions but also experience billion dollar
crashes, and immune systems that provide responsive, adaptive protection against infection but
also introduce the possibility of lethal autoimmune disease.

The evolution underlying RYF increases the robustness of those network components and
structures which are most susceptible to failure but, simultaneously and inevitably, generates
fragilities associated with other structures [Carlson and Doyle 2002, Laviolette et all 2008]. A
canonical example is provided by the feedback control systems which are pervasive in evolved
networks: feedback regulation greatly improves robustness to variations in network elements
but also introduces new fragilities (e.g., to a sign change in a feedback loop). The networks that
result from RYF evolution have “designs” composed of robust and fragile features, and these
configurations tend to admit aggressive abstraction. The explanation is straightforward. Such
networks can be accurately modeled using only simple representations for the robust features —
because network behavior is only weakly dependent on the details of these features — provided
the fragile features are captured with fidelity. Because so many of the features in evolved
networks are robust, the overall models can be very simple and still provide a faithful
representation of the original network. Of course, actually constructing aggressive abstractions
for complex, real world networks can be very challenging, and much of this paper is devoted to
providing provably-correct, computationally tractable methods for performing the abstraction.

While the past decade has seen great advances in our understanding of complex networks
[e.g., Newman 2003], much remains to be done. In particular, analysis methods are needed
which can address the scale, complexity, and dynamics of real world systems. A natural
approach to understanding large-scale systems is to employ model reduction techniques to
obtain a more tractable system representation, and of course model reduction is a well
established methodology being employed in a variety of fields [e.g., Gorban et al. 2006].
However, very little work has been done to apply model reduction ideas to complex networks,
particularly in ways that exploit the considerable structure of these networks. Moreover, in many
complex networks applications it would be of considerable value to derive simplifying system

representations which are property-preserving, so that conclusions obtained through analysis of

the simplified model also pertain to the original network; classical model reduction methods
typically cannot provide both dramatic simplification and property equivalence.

Researchers in theoretical computer science have proposed useful definitions of system
equivalence and developed algorithms which generate equivalent abstractions for large-scale
systems [Milner 1989]. However, this work has focused on abstracting finite state systems,
while the dynamics of most complex networks require infinite (typically uncountable) state
representations. Recent work in the systems and controls literature has begun to address this
latter challenge, proposing methods for obtaining equivalent abstractions for infinite state
systems [e.g., Alur et al. 2000, Tabuada and Pappas 2006]; this work is closer in spirit to our
approach and, indeed, provides inspiration for some of our development.

Finally, we mention that using scalar variables to analyze and characterize the dynamics of
complex systems can also be viewed as a form of model abstraction, and this approach to
complexity management has a long and rich history. For example, energy-based analysis has
been used for centuries in mechanics, and methods for extending this basic idea to a broad
range of systems and analysis/synthesis objectives (e.g., using Lyapunov functions) have
become a mainstay of systems theory and practice [Sontag 1998]. A major obstacle to the
adoption of such methods for complex networks analysis is the lack of systematic,
computationally tractable methods for obtaining the appropriate scalar functions with which to
conduct the analysis.

This paper presents a new framework for analyzing complex networks based on aggressive
abstraction, that is, dramatically simplifying and property preserving abstraction of the network
of interest. Once an aggressive abstraction is derived, all required analysis is performed using
the abstraction. The analytic conclusions are then mapped directly to the original network and
interpreted there; this is possible because of the property preserving nature of the abstraction
process. Our first contribution is to identify broad and important classes of complex networks
which are abstractable in this way and which can therefore be analyzed using the proposed
approach. As indicated above, these networks are typically the result of an evolving process
which favors systems that are robust to (familiar) environmental perturbations and internal flaws.
While this characterization of abstractable networks explains why they are common, it does not
lend itself to computational tests which can be used to determine whether a given network is
abstractable. Thus we give precise, tractable algorithms for testing whether a complex, evolving
network of interest can be abstracted using any of our methods.

The second main contribution of the paper is to introduce and develop two forms of

aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with

uncountable state spaces are modeled using finite state dynamical systems, and 2.) one-
dimensional abstraction, whereby high dimensional network dynamics are meaningfully
captured using scalar functions. In each case, the property preserving nature of the abstraction
process is rigorously established, efficient algorithms for computing the abstraction are
presented, and the main concepts are illustrated through simple examples.

Finally, the considerable potential of the proposed approach to complex networks analysis
is demonstrated through real world case studies. In our first case study, we develop a powerful
new approach for vulnerability analysis of large, complex networks by leveraging the scalability
and property preserving character of the finite state abstraction process; the efficacy of this
vulnerability assessment framework is illustrated through analysis of fairly large-scale electric
power grids. The second case study focuses on predictive analysis for complex network
dynamics, with a focus on social processes on networks. This study develops a formal approach
to predictability and prediction analysis that is enabled by one-dimensional abstraction
techniques, and the utility of the methodology is illustrated through analysis of social processes

for which standard approaches to prediction have been ineffective.

2. Complex Networks
This section begins with an informal but fairly detailed description of the classes of complex
networks which are likely to admit aggressive abstraction and then introduces the mathematical

framework we will use to model and analyze these networks.

2.1 Evolving networks

Complex, evolving systems are ubiquitous in nature and society, and recent research has
clearly demonstrated the considerable utility of modeling and analyzing these systems as net-
works [e.g., Newman 2003]. In particular, focusing on networks which evolve to provide reliable
performance in the presence of uncertainty and disturbances has revealed that 1.) most real
world networks of practical interest belong to this class of systems, and 2.) this evolution yields
networks with sufficient structure to allow informative, tractable analysis. An important example
of the latter is RYF networks, which evolve robustness to familiar perturbations but become
increasingly fragile to unexpected disturbances [Carlson and Doyle 2002, Laviolette et al. 2008].
Interestingly, the evolution which generates RYF also produces networks which allow deep
information from limited observations (DILO) [Colbaugh and Glass 2003, Laviolette et al. 2008].
An example of DILO is the extent to which significant insight into the operation of complex

networks can be obtained through topological analysis, with little or no consideration of the

characteristics of the network’s vertices [Colbaugh and Glass 2003, Newman 2003]. The
possibility to construct aggressive abstractions for complex networks, demonstrated rigorously
in later sections of this paper, can be viewed as another realization of DILO.

One of the goals of this paper is to show that complex, evolving networks admit aggressive
abstraction; for instance, we will show that networks with uncountable state spaces can be
represented as finite state systems. As indicated above, this surprising fact becomes more
understandable when viewed through the lens of RYF/DILO. RYF networks evolve to have
configurations with mainly robust features and a few fragile ones. Because only the fragile
features must be modeled in detail, the overall system representation can be simple and still
provide a faithful model of the network.

One of the most important structures that evolves in RYF/DILO networks is the feedback
control loop. Feedback regulation “robustifies” network features which are susceptible to failure,
and this leads to network configurations which are complex but also highly abstractable. Indeed,
even a cursory inspection of advanced technological and biological networks reveals that most
of their complexity is associated with feedback control mechanisms. For example, electric power
grids and the Internet contain vast numbers of feedback controllers which enable reliable and
inexpensive delivery of electricity and packets, respectively, and the genomes of even simple
bacteria consist mostly of genes which code for sensors, actuators, and the regulatory networks
that control them. As a consequence, these networks exhibit remarkable robustness to wide
variations in both environmental conditions and internal component behavior and thus require
only simple models for these robust features.

The above discussion suggests that it is not completely unreasonable to expect advanced
technologies and biological systems to admit aggressive abstraction. Note that the arguments
are intuitively appealing in part because generally accepted models are available for these
systems; among other things, these models make explicit the feedback regulation in the
networks and the way this feedback robustifies system features. These “noncontroversial’
models for technological and biological systems are also leveraged in subsequent sections to
enable rigorous proofs to be given for the existence of aggressive abstractions for these
networks. However, these arguments may be less persuasive in the case of social systems
precisely because of the lack of accepted models for phenomena in this domain. We therefore
present in what follows an alternative argument for the plausibility of the existence of aggressive
abstractions which is more suited to social processes.

In contrast to the reasoning used in the discussion of technological and biological networks,

which is based on network robustness, with social processes we argue that there are strong

incentives for groups of social agents working on complex problems to adopt individually
simple strategies and to coordinate their actions. The simplicity of agent behavior, relative to the
complexity of the problem and the overall social process, then leads to the plausibility that the
overall system is abstractable. Note that in order to make these notions precise in the presence
of ambiguities and uncertainties associated with social processes, we will work at a fairly high
level of abstraction.

Consider a collection of social agents working on a complex problem. Suppose the agents
can observe their environment and, for each possible environmental “state”, must specify an
action to be performed. For example, the agents may form the team responsible for planning a
city’s “portfolio” of responses to natural disasters. Let the agents’ plan be specified in terms of a
strategy s: 1 — A which maps the current information state i € | characterizing the
environment to an action a € A. A particular strategy s defines a response or action for each
possible information state, and the challenge facing the group is to choose a strategy which
provides good performance over a broad spectrum of environmental states.

If the sensors used by agents to observe their “world” produce quantized measurements
and the candidate strategies which map these sensor readings to actions are implemented on
digital computers, then the sets of information states 1 and strategies S are discrete and finite.
In this case the above set-up can be encoded as a complex systems matrix (CSM), in which
rows and columns correspond to information states and strategies, respectively, and matrix
entries denote actions; thus a; is the action specified by strategy j when the world is in state i
(see Figure 1).

Complex strategies
System
Matrix s, S,
i 857 Aapp
info Iy 3 8y
states

Figure 1: Complex System Matrix, with rows and columns corresponding to
information states and strategies, respectively, and matrix entries denoting
actions associated with the given information state-strategy pair.

Consider now the simple setting of binary actions a; € {0,1} and the problem of choosing
from the set S of all possible strategies one which provides good performance for all (or an
important range of) information states. Even in this simple binary setting, selecting a strategy
through exhaustive exploration of the strategy space is intractable for any real world problem.
Indeed, real world social groups possess numerous “channels” through which to observe the
world, and because the set 1 of information states grows exponentially in the number of these
channels we can suppose that |1 | is large. It is easy to see that the number of possible
strategies is exponential in |1 |: |S | = 2""!. For instance, if the rows and columns of the CSM are
arranged to produce a binary “counting matrix”, with leftmost column [0 O ... 0]" and rightmost
column [1 1 ... 1]", then this encodes all strategies without duplication and has 2" columns. If
we make the standard assumption that computational tractability requires algorithms which
scale polynomially in the size of the input set, then only a fraction P(|1 |)/2!"! of the strategy set
S can be explored, where P(|1 |) is a polynomial in |1 |. It follows that only a small portion of the
strategy set S can be examined by a given agent.

We now show that an effective way for social groups to implement good strategies despite
the complexity indicated above is for each agent to adopt a simple strategy and for the group to
appropriately coordinate the individual strategies. More specifically, we seek an alternative to
the computationally intractable situation in which one “super agent” would have to learn all |S | =

2"l strategies and then choose a good one. We have

Theorem 1: Each of the following methods enables tractable construction of any strategy which

appears in the CSM:

1) Have each of |1 | agents choose an elemental strategy e (i.e., a column with a ‘one’ in the
ith row and zeros everywhere else) and then form the group strategy using a linear

combination of these elemental strategies.

2) Assemble n =f |l | agents (for some small fraction f), partition the information state set 1
into n disjoint subsets Iy, and have each agent formulate a good strategy for one of these
subsets; then the group monitors the world state, identifies which subset Iy is relevant, and

adopts the appropriate agent’s (good) strategy.

Proof (sketch): Assume sufficient agents exist to implement the group strategy in question. In
Strategy 1), any strategy in the CSM can be implemented as a linear combination of the e;
because the elemental columns form a basis for the column space of the CSM. Moreover, only

|1 | parameters must be “learned” to implement this scheme for a given problem. In Strategy 2),

it is clear that by construction any strategy in the CSM is implementable in this way. Tractability

follows from the fact that each agent must search only |Sy | = 2" strategies. |

This result suggests that an effective way to deal with the complexity of real world social
system problems is for individual agents to learn simple strategies, for instance those
corresponding to a limited domain of expertise (Strategy 2)), and for society to construct (or
evolve) “social institutions” which enable these individual strategies to be coordinated. Although
the above analysis is simple and abstract, the result is suggestive of many readily observed
situations in which simple strategies (e.g., “rules of thumb”) are coordinated via social

institutions (e.g., markets, cultural norms) to produce good collective outcomes.

2.2 Network models

We now present a useful framework within which to model and analyze complex, evolving
networks. The key observation is that evolution to provide robust performance typically leads to
networks which have a hybrid structure exhibiting both continuous and discrete dynamics. More
precisely, these networks are hybrid dynamical systems (HDS) composed of subsystems whose
dynamics evolves on continuous state spaces (e.g., manifolds) interacting with switching
systems that possess discrete state sets. The HDS architecture represents an effective way to
increase robustness and performance in complex systems — indeed, certain robust performance
goals can be met only through such switching [e.g., Bemporad et al. 2007] — so it is not
surprising that complex networks evolve HDS structures.

We have shown that HDS models are a natural, expressive, and tractable way to represent
broad and important classes of complex networks [Colbaugh et al. 2007]. Consider, for
example, advanced technologies ranging from compact and ubiquitous “embedded” systems
made possible by modern electronics to continent-spanning electric power grids and global
computer networks. These networked systems all consist of control software and hardware,
which are discrete dynamical systems, interacting with the physical world, which is naturally
represented in terms of differential equations evolving on continuous state spaces. Biological
networks also possess a hybrid structure; examples from cell biology include the processes of
gene regulation, cell growth and division, and cell differentiation. Complex social systems also
tend to evolve hybrid structures. For instance, the interaction of Central Banks with financial
markets is naturally represented as an HDS, as is the propagation of epidemics through the
overlapping social contexts which make up a society.

The basic structure of an HDS is depicted in Figure 2. The schematic on the left side of the

figure shows the feedback relationship between the discrete and continuous subsystems which

form the HDS. More quantitatively, the discrete system dynamics depends on the continuous
system state, often because discrete state transitions are “triggered” by certain continuous state
behaviors, and the particular continuous system which is “active” at a given time depends on the
discrete system. The cartoon on the right of Figure 2 illustrates a common way this interaction
takes place. The continuous system state space is partitioned into subsets, each of which has
associated to it a different vector field. The continuous system dynamics triggers a discrete state
transition when the continuous state trajectory passes from one subset to another, and this
discrete state change can in turn cause switching between the vector fields which define the

continuous dynamics.

inputs :
discrete
system

m
outputs ode
continuous
system -
inputs

Figure 2: Schematic of an HDS (left) and HDS continuous system state space
(right). The HDS diagram illustrates the feedback structure relating the discrete
and continuous dynamics, while the state space cartoon provides a simple
depiction of the way different vector fields can be active on different subsets of
the continuous state space.

We now present quantitative definitions for the HDS models we will use in our subsequent

development.

Definition 2.1: A continuous-time HDS is a control system

g+ = h(q,k),
Y HDSct dx/dt = fy(x,u),
k = p(x),

where gqeQ (with |Q] finite) and xeR" are the states of the discrete and continuous systems that
make up the HDS, ueR™ is the control input, h defines the discrete system dynamics, the {f.}
are a family of vector fields characterizing the continuous system dynamics, and p defines a

partition of the continuous state space into subsets with labels ke{1, ..., K}.

Zhpsct is thus a feedback interconnection of a discrete system, the dynamics of which evolves
according to h and depends on the continuous state through subset label k, and a continuous
system, with dynamics defined by the vector field f; which is presently “active” (see Figure 2).
Note that in subsequent development we will frequently consider HDS with continuous state
spaces which are bounded subsets X c R", as this is usually the case in practical applications.

We will also find it useful to work with discrete-time HDS:

Definition 2.2: A discrete-time HDS is the control system

q+ = h(q,k),
st x+ = fy(x,u),
k= p(x),

where the notation is identical to that used in Definition 2.1.

We sometimes refer to an HDS using the symbol Z,ps if the nature of the continuous system

(continuous- or discrete-time) is either unimportant or clear from the context.

Stochastic versions of HDS can also be specified. For instance, we have

Definition 2.3: A stochastic HDS (S-HDS) is a feedback interconnection of a continuous state-
dependent Markov chain {Q, P(p(x))} and a collection of stochastic differential equations

indexed by the Markov chain state qeQ:

{Q, P(k)},
2s-HDS dx = fy(x)dt + G4(x)dw,
k = p(x),

where P(k) is the (k-dependent) Markov chain transition probability matrix, w is a standard R™-
valued Weiner process, and the matrices G, define the way this stochastic “disturbance”

impacts the continuous system dynamics.

An extensive discussion of HDS and S-HDS theory and applications is beyond the scope of this
paper. Such material may be found in [e.g., Bemporad et al. 2007] and the interested reader is
directed to that reference for additional details.

We close this brief introduction to hybrid systems with two simple examples.

Example 2.1: Electric power grid
Consider the simple two bus power grid depicted in Figure 3 [Wedeward 2006]. This system

can be naturally represented as an HDS, with the continuous system modeling the generator

10

and load dynamics as well as the power flow constraints and the discrete system capturing the
switching associated with the grid’s “protection logic” (e.g., line tripping, load shedding).

To provide a simple, concrete illustration of this fact, we assume that the generator and
load dynamics can be described using standard models and that the sole protection logic
implemented with the grid is line tripping (without recovery). In this case, we can model the
generator and load dynamics as

X X4 - X
T}, dEj /dt = —X—j’E;, + %V@os(é -84)+Egq
d

d
dd/dt = 2m60(w — w,)

Mdw/dt = P,, —Pg —D(w - w,) (2.1)

T, dP_/dt = Vo[
L L/dt__PL+PO(t)V

ref

B
_ [Va|
TL dQL/dt—_QL +Q0(t)v—

ref

where E'q, 3, o, P, and Q_ are state variables, V4, V,, and 0, are network (algebraic) variables,

E:«s and Py are (generator) control inputs, and all other terms are (constant) parameters.

I'l *0, Va0,

s R+iX S St = S

R+iX @ S s S st >®

Figure 3: Two bus power system with generator, two transmission lines, and
load (left) and simple state diagram illustrating discrete dynamics associated
with line tripping protection logic (right).

The power flow constraints can be written

0 =imag(S,, (1)) = (1-0.5q,)(BVZ - V,V,(Gsin(8, —8,)+Bcos(8, —8,))) - Qg

0 =imag(S,,(2)) = (1-0.5q,)(BVZ + V,V,(Gsin(8, - 8,) +Bcos(8, —8,)))+ (1-0.05q,,)Q,
0 =real(S,, (1)) = (1-0.5q,)(GV{? - V,V,(Gcos(8, —8,)-Bsin(8, -8,))) - Pg

0 =real(S,,(2)) = (1-0.5q,)(GV? - V,V,(Gcos(8, —8,) +Bsin(8, —8,)))+ (1-0.05q,,)P,

(2.2)
) =
):

11

where Pg and Qg are given by

1 Xy =X
PG =X—8EqV1SIn(6—91) WV S|n((6—91))
1 Xy—Xq ., Xy=X,
Qg = —-E,V,cos(6-6,)- Vi + VZcos(2(5-8,))
X 2X4X, 2X4X,

and Sy is complex power, 0, is the final network variable, q; is a discrete system state variable
described below, and all terms not yet defined are parameters.

The HDS continuous system is specified by equations (2.1)-(2.2). More precisely, the four
algebraic equations (2.2) define the network variables V4, 64, V2, and 0, in terms of the state
variables E’q, 3, o, P., and Q, and the latter in turn evolve according to the differential equations
(2.1). The HDS discrete system defines the evolution of the discrete system state q; € {0,1},
which corresponds to the number of lines tripped out of service. This discrete dynamics is

specified diagrammatically in Figure 3, with S;,e given by
[Sine| = [Vi€™ (V,e® ~V,6%)/2)

where Z is the line impedance.

Example 2.2: Switching diffusion process

Consider next a class of switching diffusion processes. Such models can be used to study a
wide range of important phenomena [Prajna et al. 2007] and, indeed, we will use the basic
structure introduced here to model real world systems later in this paper. Switching diffusion
processes are a special case of the stochastic hybrid system model given in Definition 2.3. As a
simple example, consider an S-HDS in which the continuous system is a stochastic differential

equation with multiplicative noise:
dx = Agx dt + o(x) dw

where x eR? is the continuous system state, q {1,2} is the discrete system state, w is a scalar

Wiener process, ¢ = [0 0.5x2]T, and the matrices A4, A; are given by

5 _4 2 4
-1 -2 20 -2

12

The discrete system is a continuous-time Markov chain with state set Q = {1,2} and continuous
state-dependent transition probabilities. These transition probabilities are defined in terms of
transition rates Aqq(X), where Lqq(x) 2 0if g = @’ and Zq Aqq(X) = 0 Vq. The rates Aqq(X) are

related to the state transition probabilities as follows:

Pla(t+ 8) = a1 9() = o) = {?j“';:jt()x)ﬁ);‘)ﬁ)m) e
where A > 0 [Bujorianu and Lygeros 2004].

Figure 4 illustrates the sort of behavior which can be generated by this simple example of
switching diffusion dynamics. The system trajectory shown (solid curve) corresponds to initial
conditions x(0) = [0 3]", q(0) = 1 and discrete state transition rate A = 10. It is interesting to
observe the way the two deterministic “components” of the process, dx/dt = A:x (dashed) and
dx/dt = A.x (dash-dotted), combine to form the S-HDS trajectory.

351

b

3 3
N

25|

2 F o J
/ i
\.‘ ‘."‘
15} Sig .'
~
-
! 1 s
3
-~
| et
05 | i iy
= .4
[e
o .
05} 3 % dw
4 o™
: [T ;
; ot |
; . b e Yl i
A5 | i ey L :
T2 =1.5 -1 05 0 05 1

Figure 4: Sample trajectory of the switching diffusion process (solid) described
in Example 2.2 along with trajectories for the two deterministic components of
the process, dx/dt = A;x (dashed) and dx/dt = A,x (dash-dotted).

13

3. Finite State Abstraction

The dynamics of complex networks ordinarily evolve on hybrid state spaces composed of
both continuous and discrete sets. For example, the states of the simple electric power grid in
Example 2.1 include five continuous variables, which model the generator and load dynamics,
and one discrete variable, which specifies the number of tripped lines. This same structure is
present in larger, more realistic power grid models [llic and Zaborszky 2000] and many other
advanced technologies (e.g., [Glass et al. 2007]). Biological networks describing the behaviors
of systems ranging from cells to ecosystems are also usefully represented in this way. Cell
metabolism, for instance, can be modeled using stochastic differential equations for the
(continuous) concentrations of the various metabolites and discrete switching to capture
transitions between different modes of metabolism. Social processes from epidemics to opinion
formation to organizational dynamics also have hybrid state spaces. As one example, recent
work has revealed that global epidemics can be well-modeled using simple stochastic
differential equations for the fractions of susceptible, infected, and recovered populations,
provided that the travel patterns of these populations (e.g., via commercial airlines) are captured
[Colizza et al. 2006]. We show in [Colbaugh and Glass 2007] that these latter dynamics can be
represented as a finite state Markov process, making the complete model a hybrid system.

The large-scale, hybrid nature of complex network dynamics represents a major challenge
in their analysis. Clearly, developing methods for managing this considerable complexity would
be an important advance. In this section we present a framework for modeling infinite state
complex networks with finite state models in a way that preserves the relevant properties of the
original network. The advantages of obtaining equivalent finite state models cannot be
overstated. For instance, finite state systems can be analyzed using the powerful methods of
theoretical computer science (see, e.g., [Milner 1989], [Clarke et al. 1999], [Alur et al. 2000] for
an introduction to some of these methods), and an equivalence between the original and finite
state models enables analytic conclusions derived for the latter to be applied directly to the
former. Additionally, finite state abstractions for infinite state systems usually contain only a
small subset of the parameters of the original model, so that abstraction provides an effective
means of managing the parametric uncertainty which is so prevalent in complex network
models.

We begin our discussion of finite state abstractions for complex networks by introducing the
basic abstraction concept and reviewing some technical background which will be useful in our
development. We then present the main abstraction results, including methods for approximate

abstraction, and provide efficient computational techniques for realizing these abstractions.

14

-

equivalent for
any pe LTL

infinite
Z state

Figure 5: Basic concepts associated with finite state abstraction. Cartoon at
left illustrates that abstraction preserves dynamical properties: infinite state
trajectories of original system (curves in blue region at bottom) are mapped
to equivalent finite state trajectories (sequences of state transitions at top).
Diagram at right highlights the focus on property preserving transformations
of infinite state HDS to feedback interconnections of finite state systems.

3.1 Preliminaries

The basic notion of a finite state abstraction for an infinite state system is illustrated in the
cartoon on the left side of Figure 5. Consider a complex network with states that evolve on a
continuous space and an analysis question of interest. Such a situation is depicted in Figure 5,
where the continuous dynamics are shown as curves on a continuous state space (blue region
at bottom left) and the analysis question involves deciding whether states in the green region
can evolve to the red region. Reachability questions of this sort are quite difficult to answer for
generic complex networks. However, if it is possible to construct a finite state abstraction of the
network which possesses equivalent dynamics, then the analysis task becomes much easier.
To see this, observe from Figure 5 that a finite state abstraction of the original dynamics takes
the form of a graph, where the states are graph vertices (nodes within the blue region at top left)
and admissible state transitions define the graph’s directed edges. Reachability analysis is
straightforward with a graph — check whether there exists a directed path from a green vertex to
a red vertex — and if the complex network and its abstraction have equivalent reachability

properties then this graph analysis also characterizes reachability for the original system.

15

Reachability assessment, while valuable, is rarely sufficient to answer real world analysis
questions. For instance, suppose that the red region in Figure 5 is the set of failure states. It
may be of interest to determine if all system trajectories which reach the red region first pass
through the white, observable, region (so there is “warning” of impending failure), or whether all
trajectories which reach the red region subsequently return to the blue (“normal”) region (and
thereby “recover” from failure). Addressing these more sophisticated questions requires that the
analysis be conducted using a language which allows refined, nuanced description of, and
reasoning about, network dynamics. We propose that linear temporal logic (LTL) provides such
a language [Clarke et al. 1999]. LTL offers a precise, expressive framework for analyzing
dynamical phenomena which is similar to natural language and is thus convenient to use. It is
an extension of propositional logic which enables temporal issues to be considered.

As we wish to use LTL to analyze the dynamics of complex networks and we model these

networks as HDS, we tailor our definition of LTL to be compatible with this setting:
Definition 3.1: The syntax of LTL consists of

e atomic propositions (q,k), where g € Q is an HDS discrete state and k € K is a label for a
subset in the continuous system state space partition;
o formulas composed from atomic propositions using a grammar of Boolean (¢ v 6, —¢) and

temporal (pU6, O¢) operators.

The semantics of LTL follows from the interpretation of formulas on trajectories of HDS, that is,

on sequences of (q, k) pairs: (q, k) = (qo, ko), (a1, K1), ..., (qr, k7).

The Boolean operators v and — are disjunction and negation, as usual. The temporal operators
U and O are read “until” and “next”, respectively, with oUB specifying that ¢ must hold until 6
holds and Og signifying that ¢ will be true at the next time instant (see [Clarke et al. 1999] for a
more careful description of these operators).

We are now in a position to make precise the notion of property preserving abstraction: we
seek abstractions which preserve LTL, that is, which are such that for any LTL formula ¢ either
both the system and its abstraction satisfy ¢ or neither do. More quantitatively, for system X, and
abstraction X,, the abstraction is property preserving if and only if {Z |= ¢} < {Z; |= ¢} for all
LTL formulas ¢, where |= denotes formula satisfaction (see Figure 5).

Bisimulation is a powerful method for abstracting finite state systems to yield simpler finite
state systems which are equivalent from the perspective of LTL [Milner 1989]. However, the

problem of constructing finite state bisimulations for continuous state systems is largely

16

unexplored. Indeed, one of the main contributions of this paper is to develop a collection of
mathematically rigorous, computationally tractable methods for obtaining finite bisimulations of
HDS models.
Bisimulation is typically defined for transition systems, so we first introduce this notion (see
[Milner 1989] for additional details):

Definition 3.2: A transition system is a four-tuple T = (S, —, Y, h) with state set S, transition

relation - < S x S, output set Y, and output map h: S — Y. T is finite if |S] is finite.

Transition systems are a very general form of dynamical system, with the transition relation —
defining the admissible state transitions (so that (q, q’) € —, usually denoted q — q’, if T can
undergo a state transition from q to q’).

Bisimilar transition systems share a common output set and have dynamics which are

equivalent from the perspective of these outputs:

Definition 3.3: Transition systems Ts = (S, —s, Y, hs) and Te = (P, —p, Y, hp) are bisimilar via

relation R = S x P iff:

e s~p = hs(s) =hp(p) (R respects observations);
e Ss~p,s—ss = 3p ~s suchthat p —p p’ (Te simulates Ts, denoted Ts £ Tp);

e p~s,popp =>3Is ~p suchthats »ss (Tp L Ts).

A standard result from theoretical computer science shows that bisimulation preserves LTL, a

fact which will be of considerable value in the subsequent development:
Proposition 3.1 [Milner 1989]: If T, and T, are bisimilar transition systems and ¢ is an LTL
formula then {T¢ |= ¢} < { T2 |= ¢}

The following alternative definition for bisimulation is easily shown to be equivalent to the
one presented in Definition 3.3 and provides a convenient basis upon which to develop finite

bisimulations for continuous state transition systems:

Definition 3.4: A finite partition ®: S — P of the state space S of transition system T = (S, —, Y,
h) naturally induces a quotient transition system T/~ = (P, —-, Y, h.) of T, provided that

e ®(s)=®d(s’) (denoted s ~ s’) = h(s) = h(s’);

* h-(p)=h(s)if p=d(s);

e —._is defined so that ®(s) >~ d(s’) iff s > s’

17

Equivalently, the quotient transition system T/~ can be defined by specifying the equivalence

relation R ¢ S x S directly.
Transition system T and its quotient T/~ are bisimilar if an additional condition holds:

Proposition 3.2: Suppose T/~ is defined as in Definition 3.4 and, in addition, ®(s) —»-. ®(s’) = V

L2}

s’ ~s3s” ~s’ such thats” — s’”. Then T and T/~ are bisimilar.

The proof of Proposition 3.2 follows easily from standard theoretical computer science results
and is omitted.

Proposition 3.2, while useful, provides no guidance regarding the actual construction of a
bisimulation-inducing finite partition ®. Moreover, the result does not help in the identification of
systems for which such patrtitions exists. This latter point is crucial because most continuous
state transition systems do not admit finite bisimulations [Alur et al. 2000].

We now introduce a class of continuous state (control) systems which is both important, in

that many real world systems belong to this class, and finite state abstractable.

Definition 3.5: The continuous-time system dx/dt = f(x, u), with f: R" x R™ — R", is differentially
flat if there exists (flat) outputs z € R™ such that z = H(x), x = F4(z, dz/dt, ..., d'z/dt'), and u =
F.(z, dz/dt, ..., d'z/dt") for some maps H, F;, and F..

Definition 3.6: The discrete-time system x+ = f(x, u) is difference flat (with memory k) if there
exists (flat) outputs z € R™ such that z = H(x), x(t) = F1(z(t), z(t+1), ..., z(t+k-1)), and u(t) =
Fa(z(t), z(t+1), ..., z(t+k—1)).

Differentially flat systems are discussed at length in the report [Martin et al. 2003]. Our definition
of difference flat systems is a natural extension of this notion to discrete-time systems. It is easy
to show that for flat systems, any flat output trajectory z*: [0, T] — R" is realizable (provided z*
is compatible with x(0)), and that specifying a trajectory for the flat outputs completely defines
the system evolution.

As indicated above, many real world systems are flat. For example, all controllable linear
systems are flat, as are all (static or dynamic) feedback linearizable systems. Moreover,
complex, evolving networks often possess continuous dynamics which are flat. [Martin et al.
2003] presents a extensive collection of advanced technologies whose dynamics are

differentially flat. The next example illustrates that naturally evolving systems can also be flat.

18

Example 3.1: Drosophila circadian rhythm

Many aspects of the physiology of living organisms oscillate with a period of approximately
24 hours, corresponding to the duration of a day, and the molecular basis for this circadian
rhythm has been quantified in several organisms. For instance, a model for the gene regulatory
network responsible for circadian rhythm in Drosophila (fruit fly) is shown in Figure 6 [Goncalves
and Yi 2004]. The diagram at the left of Figure 6 depicts the main elements of the network,
including the regulatory feedback loops. The model itself consists of the six coupled ordinary
differential equations shown at the right of the figure, where Mp, Py, P4, P,, C, and Cy are state
variables corresponding to the concentrations of the constituents of the circadian rhythm gene
network, vsp can be viewed as an exogenous (control) input associated with the light-dark cycle

of the environment, and all other terms are constant model parameters.

e Ky M
o - SPK]”P‘I'C;\![”me.u-\-;'WP dMp

dry Iy P

— = kgpMp-—-V Va —kaP

7 spMp IFK|P+PD+ PP dro

(fP] PD P] P] P_:
=y RTA A v kP
dr YKpth “Kpth CKpth - YRt !
db P] P))

O Ve Vi kP ki C - vgp—— kP
dr YKot Kt B, 2 wPKdP‘l'P? ¢
iC o

[T = kP2 kyC ki C 1 kaCy — kacC

a

1C;

(TN — 1C kaCy K

a

Figure 6: Model for circadian rhythm in Drosophila. Diagram at left shows the
main elements of the gene regulatory network, including the negative (yellow)
and positive (black) feedback loops. Differential equations at right quantify the
network dynamics.

As is evident from Definition 3.5, a differentially flat system possesses (flat) outputs, equal
in number to the number of inputs, which permit the system states and inputs to be recovered
through algebraic manipulation of these outputs and their time derivatives. In the case of
Drosophila circadian rhythm, Cy is a flat output. To see this, note that C and its time derivatives
can be obtained from the sixth equation through manipulation of Cy and its derivatives. These
terms, in turn, permit P, (and its derivatives) to be obtained from the fifth equation, and
continuing in this way up the “chain” of equations gives all of the states and the input v¢p
[Colbaugh et al. 2007].

19

3.2 Basic results
We now demonstrate that hybrid systems with (difference or differentially) flat continuous
systems admit finite state bisimulations. As HDS provide a powerful framework within which to
model complex networks and many real world systems possess flat continuous dynamics, this
result is of considerable practical as well as theoretical interest.
Consider, then, an HDS of the form given in Definition 2.1 or 2.2. We begin by providing a

transition system representation for the continuous system dynamics of HDS:

Definition 3.7: The fransition system model Typs. for the continuous system portion of Zyps is
the collection Typse = {T4}, with one transition system T, = (X, =4, Y4, hy") specified for each
pair (g, k). In this specification, qu and qu are (bounded) state and output sets, respectively,
and the maps hy: X, — Y, will be used to specify the relevant quotient partitions (see

Definition 3.4); the transition relations —,* are defined as

- discrete-time continuous system: x —¢ x’ iff 3 u such that x’ = f,(x, u) on subset k;

e continuous-time continuous system: x —>q" X’ iff there is a trajectory x: [0, T] — Xqk of dx/dt =
fq(x, u), atime t' € (0, T), and adjacent quotient partitions (labeled) y, y’ € Yqk such that x(0)
=X X(T) =x, x([0, t)) cy, and x((t', T]) c y'.

We make the standard assumption that k: X — K partitions the state space X into polytopes and
that all HDS discrete system transitions are triggered by k transitions.
Definition 3.7 allows an HDS to be modeled as a feedback interconnection of two transition

systems, one with continuous state space and one with finite state set:

Definition 3.8: The fransition system Typs associated with the HDS given in Definition 2.1 or 2.2
is a feedback interconnection of 1.) the continuous system transition system Typsc = {qu} and
2.) the transition system associated with the HDS discrete system, defined as Typsq = (Q, —4, Q,
id), where g —¢ q’ iff 3 k such that @’ = h(q, k) and id is the identity map. Thus Typs = (Q x X,
—hps, Q x Y, hups), where Q x X = Ug (U {q} x Xg), Q x Y = Uq (Uk {@} x Y49, and the
definitions for —ps and hyps follow immediately from the transition relation and output map

definitions specified for Typsc and Tppsa.

Because the transition system Typsq corresponding to the HDS discrete system is already a
finite state system, the main challenge in abstracting HDS to finite state systems is associated
with finding finite state bisimulations for the continuous systems T ps. = {qu}. This is made

explicit in the following

20

Theorem 2: If each transition system Tqk associated with Typs is bisimilar to its finite quotient
transition system T4/~ = (Y4, —-, Y%, id) and the state space quotient partitions defined by the
hqk satisfy a mild compatibility condition then Typs admits a finite bisimulation.

Proof: Consider the transition system Tps given in Definition 3.8. Let T be the transition system
obtained from Typs by replacing each T4 in Typs with T4/~, sothat T= (Qx Y, -, Q x Y, id)
with — defined in the obvious way. Note first that T is finite. Referring to Definition 2.1, consider
two adjacent state space regions labeled k;, k; and their shared boundary (as defined by p(x)).

Y “line up” at their common

Suppose that the partitions on k;, k; induced by the maps hy“, h,
boundary, so that the segmentations of the boundary implied by h, and by h, are identical. In
this case, it is easy to check that the quotient map ®: Q x X — Q x Y induced by the hqk satisfies
1.) @(s) = D(s’) = hpps(S) = hyps(s’), 2.) D(s) > ®(S’) < s >pps S, and 3.) D(s) > O(s’) => V §”

~s 38" ~¢’ such that s” —ps s’”. Therefore, from Proposition 3.2, Typs and T are bisimilar. Wl

While it is possible to relax the state space partition compatibility condition given above, we do
not pursue this as the condition is mild and straightforward to satisfy in applications.

Theorem 2 shows that the key step in obtaining a finite state bisimulation for hybrid system
Thps (and so Zyps) is constructing bisimulations for the continuous state transition systems qu.
We therefore focus on this latter problem for the remainder of this section. Our first basic result

along these lines concerns difference flat continuous systems and is summarized in

Theorem 3: Given any finite partition n: Z — Y of the flat output space Z of a difference flat
system, the associated transition system Tr = (X, —, Y, © ° H) admits a bisimilar quotient Tg/~.
Proof: Consider the equivalence relation R that identifies state pairs (x, x’) which generate
identical sets of k-length output symbol sequences y = yp y1 ... yk-1, and the quotient system
Tr/~ induced by R. Clearly R defines a finite partition of X (both |Y| and k are finite), and x ~ X’
= 1 ° H(x) = n ° H(X’) so that R respects observations. Tr £ T¢/~ follows immediately from the
definition of quotient systems. To see that Te/~ £ Tg, note that flathess ensures that any symbol
string y = Y« Yk+1 ... is realizable by transition system Tg; thus x ~ X’ at time t implies that x and X’

can transition to equivalent states at time t + 1, and from Definition 3.3 Tr and T¢/~ are bisimilar.
[|

Remark 3.1: Efficient algorithms exist for checking if a given system is difference flat, so that
Theorem 3 provides a practically implementable means of identifying discrete-time continuous

state systems which admit finite bisimulation. For instance, discrete-time feedback linearizable

21

systems are flat [Colbaugh et al. 2007] and there are fast algorithms for checking feedback

linearizability for both continuous-time and discrete-time systems [e.g., Sontag 1998].

Remark 3.2: The trajectory of the flat outputs completely defines the evolution of a difference
flat system. Thus, because any finite partition of flat output space induces a finite bisimilar
quotient for a flat system, the flat output space partition can be refined to yield any desired

abstraction resolution.

An analogous result holds for differentially flat continuous systems. Our development of this

result requires the following lemmas.

Lemma 3.1: A control system is differentially flat iff it is dynamic feedback linearizable.
Proof: See [Aranda-Bricaire et al. 1995]. n

Lemma 3.2: Control system X admits a finite bisimulation iff any representation of X obtained
through coordinate transformation and/or invertible feedback also admits a finite bisimulation.

Proof: The proof is straightforward. |

Taken together, Lemmas 3.1 and 3.2 suggest the following procedure for constructing finite
bisimulations for differentially flat systems: 1.) transform the flat system of interest into a linear
control system via feedback linearization (possibly enlarging the state space in the process), 2.)
compute a finite bisimulation for the linear system, and 3.) map the bisimilar model back to the
original system representation (if desired). In view of these results, we focus in what follows on
building finite bisimulations for linear control systems.

In particular, consider as the control system of interest one “chain” of a Brunovsky normal
form (BNF) system Zgne [Sontag 1998]:

dx4/dt = x5,
dxo/dt = xa,
dx,/dt = u.

Concentrating on this system entails no loss of generality, as any controllable linear system can
be modeled as a collection of these single chain systems, one for each input, and the decoupled
nature of the chains ensures that we can abstract each one independently and then simply
“patch” the abstractions together to obtain an abstraction for the original (multi-input) system.

Consider the following partition of the (assumed bounded) state space X < R" of Zgng:

22

Definition 3.9: The partition =, is the map n.: X — Y which partitions X into subsets yis = {x € X
| X1 € [ig, (i+1)e), sign(x2) = sS4, ..., Sign(Xn) = Sn.1}, Where i is an integer and s is an (n—1)-vector

of “signs” corresponding to a particular orthant of X.

Thus =, partitions X into “slices” of width ¢ of the orthants of the n-dimensional space X, with
each slice orthogonal to the x;-axis.

We are now in a position to state

Theorem 4: The transition system Tgne = (X, —, Y, ;) associated with system Zgne and partition
n, admits a finite bisimilar quotient Tgne/~ = (Y, —-, Y, id).

Proof: Tgne/~ is finite because |Y| is finite. Assume —- is constructed so that n.(x) —- m.(X’) < X
— X’ (as specified in Definition 3.4). Then all conditions given in Definition 3.4 are satisfied, and
from Proposition 3.2 we need only show m,(x) —-~ n(X') = V X" ~x 3 X ~ X’ such that x” — x"”.
This amounts to demonstrating that if x can be driven through face F of slice n.(x) then any x” in
that slice can be driven through F as well; the latter result follows from straightforward (though

tedious) checking that this behavior holds for the system x;™ = u on each orthant of X. |

Remark 3.3: The result given in Theorem 4 is most useful in situations where the control input u
can be chosen large relative to the “drift” of the system. Applications in which control authority is

limited will be addressed in the next subsection.
We close this discussion with a simple example.

Example 3.2: Discrete-time BNF control systems

It is easy to show that the discrete-time linear system in BNF

X1+ =Xy,
X2t = X3,
X+ = U

is difference flat with flat output x4, so from Theorem 3 it follows that this system admits a finite
bisimilar quotient system on any bounded state space X < R". In particular, let n: X — Y be any
finite, “hypercubic” partition of X (i.e., = partitions X into regular n-dimensional hypercubes
whose edges align with the coordinate axes). Then the quotient system T/~ = (Y, —-, Y, id), with

—~ constructed according to Definition 3.4, is one such finite bisimilar quotient.

Remark 3.3: An alternative finite bisimulation result for discrete-time linear systems is derived in
[Tabuada and Pappas 2006].

23

3.3 Approximate bisimulation

The previous subsection shows that HDS with continuous systems that are difference flat or
differentially flat admit finite state bisimulations. Intuitively, a bisimulation relation between Typs,
the transition system associated with X,ps, and a finite state transition system T is a relation
between the state sets of Typs and T describing how any trajectory of Typs can be mapped to a
trajectory of T which has an identical output trajectory, and vice versa. Because HDS with flat
continuous systems are a broad and important class of dynamical system, this result is of
considerable practical value. However, the requirement that the trajectories of Typs and T
possess identical output traces is too strong for some applications. For example, it may be
sufficient to require the output trajectories of the two transition systems to be close, or to
consider only a subspace of the state space of Typs when relating the state sets of Typs and T.
This subsection focuses on these notions of approximate bisimulation.

Consider first the concept of approximate bisimulation introduced in [Girard and Pappas

2007]. This concept is most naturally defined for labeled, metric transition systems:

Definition 3.10: A /abeled, metric transition system is a tuple T,, = (S, L, —, Y, h), where S and
h are the state set and output map, as before, the output set Y is equipped with a metric d, L is
a set of labels, and the dynamics defined by the transition relation - < S x L x S depends on

the labels as well as the states.

The notion of approximate bisimulation introduced in [Girard and Pappas 2007] relaxes the

requirements of a bisimulation relation as follows:
Definition 3.11: Let T,y = (S4, L, =4, Y, hy) and T2 = (S, L, —», Y, hy) be two labeled, metric

transition systems and ¢ > 0 be a given precision. R < Sy x S, is an g-approximate bisimulation

relation between Sy and S, if for all (s4, s2) € R:

e d(hi(s1), ha(s2)) <;
o Vs 35,5y suchthat (si, sy) eR;

e Vs;—7'sy 3814 sy suchthat(ss,s?) €R.

Transition systems T4 and T, which possess an g-approximate bisimulation relation R are said

to be approximately bisimilar with precision &, denoted T4 ~; Tma.

The precision ¢ provides a bound on the proximity of output trajectories of T,y and T, in that if
Tm1 ~ Tmz then for any output trajectory y41(0) y4(1) ... y1(k) of Trq there is an output trajectory
y2(0) y2(1) ... y2(k) of Tz such that d(y.(i), y2(i)) < € Vi, and conversely.

24

We now show that differentially flat systems admit finite state approximate bisimulations of
arbitrarily accurate precision & and, moreover, that this approximate bisimulation is realizable
with moderate control authority; thus this result is of significant practical interest. We begin by
specifying the “time-sampled”, labeled, metric transition system associated with differentially flat
system Zr. Let U denote the set of measurable, bounded control input trajectories for X, u € U
be one such input trajectory, and x(T, X, u) be the state reached by X¢ at time T under input u

starting from initial condition x.

Definition 3.12 The labeled, metric transition system Tr r associated with flat system X is the
tuple Te 1 = (X, U, =", X, id), where X and U are the sets of flat system states and input
trajectories, respectively, (x, u, x’) e —1" iff X' = x(T, x, u), and the metric d on X is given by d(y,

z) = max[|y1—z4|, ..., |yn—2zall-

Note that Tr 7 is time-sampled in that only state transitions achievable in time T are considered.
Assume that the state space X of ¢ is a bounded subset of R" and let [X],, = {x € X | x; =
km}, with the k; integers, denote a “lattice” discretization of X of Z. We are now in a position to

state our approximate bisimulation result for differentially flat systems:

Theorem 5: Consider the transition system T, 1 = ([X],, U, =51 app, X, id), with (x, u, X’) € —>1"app
iff ||x" — x(T, x, u)|]| £n. Given any desired ¢ there exist parameters T, n such that T,, 1 is finite
and approximately bisimilar to Te 1 with approximation precision «.

Proof: Note first that because X is bounded the set [X], is finite for any n, so T, 1 is finite. We
claim that the relation R c X x [X],, defined by (x, s) € Riff ||x — s|| < ¢, is an e-approximate
bisimulation relation between Tr 1 and T, 1, and demonstrate this by showing that R satisfies the
three conditions given in Definition 3.11. Consider any (x, s) € R. We have d(x, s) < ¢ by
definition. We next show that v x —1" x’ 3 s —>1"3pp 8" such that (X', s’) € R. Given any x —»1" x’ 3
Ustap Which “stabilizes” this trajectory, so that states near x are driven to states near X’ by Ugp;
this follows from flatness of = [Martin et al. 2003]. Additionally, x —»7"5%® x’ and ||x(T, X, Ustab) —
X(T, Y, Uswap)|| < B(|Ix = y||, T) for some class KL function 3 (see [Sontag 1998] for background on
such stabilization concepts). Given x, s 3 x”, s’ such that x -5 x’ = s 1" x” and ||x” -
s’|| <£n, sothats —>T”Stabapp s’. Therefore [|X’ = S'|| < |IX' = X"|| + [|X" = S’|| < B(||[x = s||, T) + n < B(g,
T) + n < ¢ (for proper choice of T,), from which it follows that (x’, s’) € R. The proof that V s

—1app S’ 3 X &1 X’ such that (x, s’) € R is analogous.]

25

Theorem 5 shows that relaxing the requirement that the trajectories of a control system
and its finite abstraction possess identical output traces enables useful approximate
bisimulations to be derived. Indeed, approximation bisimulations for flat systems can be
constructed that ensure the output trajectories of the system and its abstraction are as close as
desired. An alternative approach to developing approximate bisimulations is to restrict attention
to a subset of system behaviors and to abstract only these dynamics. For example, it may be
sufficient to focus attention on system behaviors which begin and end at equilibria, as this is

usually what is important in applications. To make this notion precise, we introduce

Definition 3.13: The equilibrium manifold E of a control system dx/dt = f(x, u) is the set E = {x* ¢

X'| Ju* for which f(x*, u*) = 0}.

In fact, in many situations of real world interest the initial and final states belong to E and,
moreover, system trajectories remain close to E, and the problem naturally becomes one of
abstracting the behavior of the system close to its equilibrium manifold.

We now pursue this idea for differentially flat control systems. Consider the continuous-time

BNF system Zgne, repeated here for convenience of reference:

dX1/dt = Xo,
dXz/dt = Xa,
dx,/dt = u.

Recall that focusing on gy is without loss of generality, as any flat system can be transformed
to a set of (decoupled) chains of the form Zgne through dynamic feedback linearization. The
equilibrium manifold for Zgne is given by Egne = {X € X | X2 = X3 = ... = X, = 0}, so that Egne is
identical to the flat output space Z for Zgne. (The fact that Egne = Z is interesting and currently
under investigation.)

Consider the transition system Tgnreq = (Z, —BNFeq, Y,) @ssociated with the system Zgne
near Egnr, Where m: Z — Y is any finite partition of Zand Y = {y, ..., yp} is the set of partition
labels. Admissible state transitions are those which can be made while remaining “near” Egne.
More specifically, forany z e y, Z' € y’, (z, Z’) € —Bnr.eq iff the trajectory connecting z, z' remains
arbitrarily close to Egne and either y =y’ ory, y’ are adjacent partition elements. We are now in a

position to state

26

Theorem 6: Let Teqapp = (Y, 2eqapps Y, id), With (Y, ¥') € —eqapp iff 3z €y, Z' € ¥’ such that z
—BNF.eq Z - Teqapp IS @ finite bisimulation for Tenr eq-

Proof: The proof is trivial and therefore omitted. |

Because Teqapp and Tenreq are bisimilar, Teqapp is finite, and Tenreq IS @n arbitrarily accurate
approximation of Zgnr 0N Egnr, Theorem 6 gives an approximate bisimulation result for flat
systems which is useful in many applications.

Another way to obtain approximate bisimulations is to focus on a particular subspace of the
system state space, X, < X, which is relevant to the problem at hand. For instance, consider the

system

dxq/dt = fi(x4, X2, u),
dX2/dt = fz(Xz),

where x; € X4, Xo € Xy, X = X4 x Xy, and the system (i.e., fi(x4, X2, u)) is controllable on X. If the
dynamics of x, are reasonably well-behaved (e.g., stable), it may be sufficient to concentrate on

the x4 dynamics. In this case, the preceding results imply

Corollary 3.1: Let 1: X — X4 be the state space projection onto X, and h: X; — Y define a finite
bisimulation partition for dx,/dt = f;(x4, X2, u). Then h - : X — Y is a finite bisimulation partition

for the complete system.

Finally, note that given a transition system Ts associated with control system X, it is often
sufficient to construct a finite abstraction T which simulates Ty, so that Tz £ T (see Definition
3.3). For instance, we will show in the case studies that simulating abstractions are very useful
when X is differentially flat. The following corollary is relevant in this situation and is an

immediate consequence of Definition 3.4:

Corollary 3.2: Let ®: X — Y be any finite, hypercubic partition of the state space X of transition
system T = (X, —, Y, ®). The quotient transition system T/~ = (Y, —-, Y, id) simulates T if —- is
defined so that ®(x) »~ ®(xX') iff x > X'.

We close this discussion of approximate bisimulations with a simple example.

Example 3.3: Continuous-time BNF control systems

It is easy to show that the planar continuous-time BNF system

dx4/dt = x5,
dxo/dt = u

27

is differentially flat with flat output x4, so from Theorem 5 it follows that the system admits a
finite approximate bisimulation on any bounded state space X < R". In particular, let X = [-1, 1]
x [-1, 1]. Itis straightforward to verify that the transition system T, 1 = ([X],, U, =>1"app, X, id),
withn =04, T =2, [X], ={-2n, -, 0, n, 2n} x {~-2n, -, 0, n, 2n}, and —+" 5, specified as in

Figure 7, provides such an approximate bisimulation with precision ¢ = 1/4.

Figure 7: State transitions associated with T, in Example 3.3.

3.4 Computation

We now consider the problem of efficiently computing finite bisimulations for HDS. As in the
preceding sections we focus on constructing bisimulations for HDS continuous systems, and in
particular differentially or difference flat continuous systems, as HDS discrete systems already
possess finite state representations. In fact, Lemmas 3.1 and 3.2 demonstrate that without loss
of generality we can concentrate on computing finite bisimilar transition systems for controllable
linear continuous- and discrete-time systems.

Consider the problem of computing a finite state simulation of continuous-time linear control
system X.: dx/dt = Ax + Bu. The transition system associated with 2 is T = (X, =, Y, h), with
h: X — Y any finite, hypercubic partition of X and —; specified as in Definition 3.7. Corollary 3.2
shows that the quotient transition system T./~ = (Y, —~, Y, id) simulates T if —- is defined so
that h(x) — - h(X’) iff X —c X'. Additionally, Theorems 4 and 5 indicate that this T\./~ is “close” to
bisimilar to T.. Finally, observe that a primary motivation for deriving finite state abstractions for

continuous state systems is complexity management, implying that many applications of interest

28

will involve large-scale systems. Thus there is great interest in developing an efficient algorithm
for computing —.-. We now introduce such an algorithm.

For simplicity of exposition we assume the lattice of hypercubes into which X is partitioned
have sides of unit length. The algorithm decides whether a transition y —.- y’ between two
adjacent cells of the lattice y, y’ is allowed, and the algorithm is repeated for all transitions of
interest. We begin by summarizing a simple algorithm, based on a computational linear systems
result given in [Habets and van Schuppen 2004], for deciding whether y — .- y’ is admissible.
Let k be the number of the coordinate axis orthogonal to the common face between y and y’, V
be the set of vertices shared by y and y’, and a,' represent row k of A. Define IT¥(x) to be the
projection of x onto axis k and suppose y <y’. Then y —». Y’ iff IT(Av; + Bu) > 0 for some v, e V

and u € U. An algorithm which “operationalizes” this observation is

Algorithm 3.1:
Ify<y:
If any element of row k of B is nonzero, y —- Y’ is true. STOP.
Repeat until y — - y’ is determined to be true or all vertices have been checked:
Select a vertex v; e V.
Compute the inner product p = a,' V.
If p>0theny —- Yy is true. STOP.
If y =~ ¥’ has not been found to be true it is false.

If y > y’: Algorithm is the same except that the comparison p > 0 is replaced by p < 0.

A difficulty with Algorithm 3.1 is that the number of vertices shared by two adjacent cells is 2",
so that checking them becomes unmanageable even for moderately-sized models. For
example, if n = 100 then approximately 10> operations would be required to compute a single
transition.

Interestingly, this algorithm can be modified so that feasibility of a transition can be tested
by considering only a single well-chosen vertex, independent of the size of the model [Gardiner
and Colbaugh 2006]. The new algorithm is therefore very efficient and can be applied to models
with n = 10 000 or more without resorting to high performance computers. Let v, be the lowest
vertex (in a component-wise sense) shared by y, y’ and let a,* (ax~) be the sum of positive

(negative) elements of row k of A, excluding the diagonal. We are now in a position to state

Algorithm 3.2 [Gardiner and Colbaugh 2006]:
Ify<y:

29

If any element of row k of B is nonzero, y —.- y’ is true. STOP.
Compute the inner product p = a," vo.
If p+a,” >0theny —- Yy is true. STOP.
Otherwise y —c- Y’ is false.

If y > y’: Algorithm is the same except that the comparison p + a,” > 0 is replaced by p + a, < 0.

Algorithm 3.2 provides an extremely efficient means of constructing the transition relation
—~ and, therefore, the finite abstraction T\.//~. A Matlab program that implements this algorithm
has been developed and tested on systems with dimension n = 10 000; this code is provided in
Appendix A. As an indication of the efficiency of the proposed procedure, the performance of
Algorithm 3.2 is compared with Algorithm 3.1 (a quite respectable algorithm for this sort of

computation) in Figure 8.

018

a1

042

W
E
é .08
0.08
0.0d / /
.02

a H 4 [8 L R R [B o®m 2 M B w N
Dimension

Figure 8: Results of timing study of Algorithm 3.1 (red curve) and
Algorithm 3.2 (blue curve) applied to the problem of computing

finite state abstractions for linear controllable systems (horizontal
axis is state space dimension and vertical axis is run time in ms).

Next consider the problem of computing a finite state bisimulation for discrete-time linear
control system Z4: x+ = Ax + Bu. It is assumed without loss of generality that (A, B) is in BNF.
The transition system associated with X4 is Tig = (X, =4, Y, h), where h: X — Y is any finite,
hypercubic partition of X and —4 is specified as in Definition 3.7. Example 3.2 shows that the

quotient transition system T4/~ = (Y, —~, Y, id) is a finite bisimulation for T 4 if >4~ is defined so

30

that h(x) —4- h(X’) iff x =4 X’. As mentioned above, a primary motivation for deriving finite state
abstractions for X4 is complexity management, so that applications of interest often will involve
large-scale systems and computational efficiency is a central concern.

We now introduce an efficient algorithm for constructing —g-.

Algorithm 3.3: Let y. € X denote the coordinate vector for the centroid of cell y.
Compute y. for all cells of interest.
For each cell y:
Lety, =[cy, Co, ..., Cal'-
y > Y’ is true for any y’ which has its centroid on the line passing through [c;, c3, ..., 0]

and [c;, Cs, ..., 1]".

Algorithm 3.3 provides an extremely efficient means of constructing the transition relation —4-
and, therefore, the finite abstraction T,s/~. Prototype code implementing the algorithm has been

developed and tested on systems with dimension n = 10 000 [Ackley 2008].
For completeness we provide a procedure for computing finite (bi)simulations for HDS:

Algorithm 3.4 Given a complex network X and a class of behaviors of interest:

1. Develop an HDS model Xps for £ and check that the continuous systems are (differentially
or difference) flat. If not: STOP.

2. Construct a transition system representation Typs for Zyps (according to Definition 3.8) in
such a way that the continuous state space partitions hy: X = Y 1.) are compatible
(according to Theorem 2) and 2.) allow expression of the system behaviors of interest.

3. Transform each continuous system into the appropriate form (e.g., through feedback
linearization).

4. Compute a finite state abstraction for each continuous system transition system using
Algorithm 3.2 or 3.3.

5. Compose the feedback interconnection of the finite state abstractions obtained above with

the HDS discrete system.

Observe that if the continuous systems are difference flat then the output of Algorithm 3.4 is a
finite transition system which is bisimilar to Typs, and if the continuous systems are differentially
flat then the output transition system simulates Typs. If bisimulation (approximate bisimulation) is
desired in the case of differentially flat systems then the results given in Theorem 4 (Theorems

5 or 6) can be used in Step 4 of the algorithm.

31

4. One-Dimensional Abstraction

The previous section presented a collection of techniques for transforming the large-scale,
hybrid dynamics of complex networks into much simpler, but dynamically equivalent, finite state
models. We now present an alternative approach to managing the complexity of these systems,
in which high-dimensional network dynamics are captured in a meaningful way using a single
scalar variable. The advantages of obtaining scalar representations for high dimensional
systems are, of course, well understood. For instance, one-dimensional systems are amenable
to simple topological arguments, frequently yielding elegant solutions to otherwise very difficult
problems. Additionally, by considering sets of parameter values and initial conditions, often
entire families of complex networks can be analyzed using a single one-dimensional
abstraction; this strategy provides an effective means of handling the parametric uncertainty
present in many complex network models.

We begin our discussion of one-dimensional abstractions for high-dimensional networks by
introducing the basic abstraction concept and reviewing some technical background which will
be useful in our development. We then present abstraction results for both nondeterministic and

stochastic systems, and provide efficient computational methods for realizing the abstractions.

4.1 Preliminaries

The basic concept of one-dimensional abstraction for high-dimensional complex networks is
illustrated in Figure 9. Consider a complex network with dynamics that evolve on a continuous
state space, depicted in light blue in Figure 9, according to the vector field (arrows) shown in the
figure. Assume it is of interest to decide whether states in the green region can evolve to the red
region. Such reachability questions are usually approached by computing the reach set
associated with the green region and determining if it intersects the red region, and this analysis
is quite difficult for generic complex networks. Suppose, however, that it is possible to find an
“altitude” function A(x) which has a level curve, say the A(x) = 0 surface, that separates the
green and red regions and on which the system vector field points in the direction of the partition
containing the green region (see Figure 9). In this case we can conclude that the red region is
not reachable from the green region and, moreover, this conclusion is reached without
computing system trajectories. The trick, of course, is to find such a function A(x) or prove that
no such function exists. Recent work in semidefinite programming and semialgebraic geometry
[Parrilo 2000] provides a computationally tractable framework within which to search for such

functions, and we will leverage this work in our proposed abstraction methodology.

32

Figure 9: Cartoon of one-dimensional abstraction. The light blue region is the
system state space, with green and red regions corresponding to sets of initial
and “undesirable” states and the arrows indicating dynamical system flow. The
cartoon illustrates that abstraction can enable reachability questions to be
efficiently decided. The black curve is a level curve of a scalar altitude function
which divides the state space into two portions, and because the flow points
from the right portion to the left it can be concluded that the red set is not
reachable from the green set without computing system trajectories.

Consider the problem of assessing the reachability of complex processes in the presence of
uncertainty regarding the process parameters. Particularly desirable are methods that can be
implemented both in stochastic settings, where probabilistic characterizations of the uncertainty
are available, and nonstochastic situations, for instance where bounds on the uncertainty are
known; we refer to the latter situation as nondeterministic, because the uncertainties are
permitted to vary arbitrarily within their bounds. Additionally, the practical utility of any analytic
approach is greatly enhanced if it is possible for reachability assessments to be carried out for
sets of initial conditions and system parameter values. The following two subsections present a
collection of abstraction-based methods for reachability assessment which possess these

characteristics.

4.2 Nondeterministic systems
As indicated in Section 2, complex networks are naturally modeled as HDS, and indeed the
focus of this section is abstraction-based reachability analysis of HDS. Before developing this

methodology in detail, however, we introduce the basic concepts and approach by providing two

33

simple but very useful results for continuous dynamical systems. Consider, then, a set of

differential equations
dx/dt = f(x, d),

where x € X and d € D are the system state and “disturbance” input, respectively, and X < R",
D < RP are assumed bounded. Let X, = X, X, = X denote the sets of initial and “undesirable”
states, respectively. Suppose we wish to show that no system trajectory starting from X, can
evolve to the set X, for any admissible disturbance. We adopt an analysis methodology which is
analogous to the one underlying Lyapunov function-based stability analysis [Sontag 1998]: we
seek a scalar function A(x) of the system state which permits this reachability question to be
resolved without computing system trajectories.

More specifically, we have

Proposition 4.1 [Prajna et al. 2007]: Suppose there exists a differentiable function A: X > R
such that

o A(X)<0 VX e Xo;
o A(X)>0VxeX;
o (0A/ox) f(x,d)<0Vx e X, vd € D.

Then X, is not reachable from X, for any disturbance input.

Proof: The proof is straightforward and given in [Prajna et al. 2007]. |

Remark 4.1: Observe that in establishing that X, cannot be reached from Xy, no computation of

system trajectories is required.

Remark 4.2: The set of altitude functions which satisfy the conditions given in Proposition 4.1 is
convex: if A¢(x) and Ay(x) satisfy the conditions then Vv B € [0, 1], A(X) = B Ai(x) + (1 — B) Az(x)
also satisfies the conditions. This convexity will be exploited to develop efficient computational

methods for finding altitude functions.

Although our primary focus is showing that undesirable sets X, cannot be reached by a
system of interest, it is also possible to use the altitude function approach to demonstrate that a

given system is guaranteed to reach a “desirable” set X:
Proposition 4.2: Suppose there exists a differentiable function A: X — R such that

e A(x) <0 Vx e Xo,
o AX)>0Vxe X\ X

34

o (0A/OxX) f(x,d) < 0 ¥x e cl(X\ X4), Vd € D,

where X, o X is a global “environment” set. Then the system must reach X, from Xg in finite time
vd € D.

Proof: Any system trajectory starting from x e X, must exit cl(X \ X;) in finite time, because A(x)
is bounded below, and this exit cannot involve exiting X, because A(x) is nonnegative outside X.

Thus the system must enter X; in finite time. |

We now turn to one-dimensional abstractions for (nondeterministic) HDS. Consider the HDS

given in Definition 2.1, repeated here for convenience:

q+ = h(q.k),
ZHpset dx/dt = f4(x,d),
k = p(x),

where the input is denoted by d rather than u to emphasize its role as a disturbance (rather than
a control signal which can be specified by the designer).

For hybrid systems we seek a family of scalar abstractions {Aq(X)}qcq, One for each discrete
state g, so that the collection is a function of the HDS state (q, x). The conditions to be satisfied
by this collection of altitude functions to ensure that the undesirable set X, is not reachable from

Xp are given in
Theorem 7: Suppose there exists a family of differentiable functions {Aq(X)}qcq such that

o AyX) <0 VxeXo, VqeQ;

o Ayx) >0 VxeX,, VqeQ;

o (0Ay/0x) fy(x,d) < 0 ¥xelnv(q), VdeD, vqeQ;

o Ag(x)<0V(x, q,q)such that g’ = h(q,k(x));

where Inv(q) is the set of continuous states at which q is a feasible discrete state for the HDS.
Then no trajectory of Xypset Which starts in X, can reach X,.

Proof: Let (q, x) be an admissible trajectory of Zipsct and consider the evolution of Aqy(x(t))
along this trajectory. Aq(x) is nonpositive initially, it is nonincreasing along any continuous flow,

and it cannot increase during a discrete transition. Thus Aqy(X(t)) is nonpositive Vt , and since

A4(x) > 0 on X, we can conclude that X, cannot be reached from X. []

Remark 4.3: Results analogous to that given in Proposition 4.2 also can be derived for HDS
[Colbaugh and Glass 2007].

35

4.3 Stochastic systems

While characterizing the uncertainty associated with complex networks in terms of bounds
on the possible values of parameters and disturbances is useful and natural, in many cases a
probabilistic characterization of this uncertainty is available. In such situations, application of the
results presented above may lead to very conservative assessments. Indeed, if a probabilistic
description of system uncertainty is available then it may be more useful and appropriate to
seek a probabilistic assessment of system reachability. For example, in many applications it
would be valuable to prove that the probability of a system trajectory reaching an undesirable
set is lower than some acceptable “safety” threshold. We now develop such a capability.

We begin our treatment with a study of continuous state stochastic processes. Consider the
set of stochastic differential equations which comprise the continuous system portion of the S-

HDS given in Definition 2.3, repeated here for convenience of reference:
pI dx = f(x, p) dt + G(x, p) dw,

where p € P ¢ RP is the system parameter vector and all other terms are as in Definition 2.3.
Denote by X = R", X, = X, and X, c X the sets of feasible, initial, and undesirable states,
respectively, and assume that X and P are bounded.

We are interested in a probabilistic version of the reachability problem:

Definition 4.1: Given system X, and the sets X, X, Xy, the stochastic safety problem involves
computing an upper bound y € [0,1] on the probability that any trajectory of X will reach X,;

thus y satisfies
P{x(t) € X, for some t} <y,

for all xo € Xo, where x is the “stopped” process associated with xo and X (roughly, x(t) is the
trajectory of 5. which starts at xo and is stopped if it encounters the boundary of X [Kushner
1967]).

We adopt an analysis methodology which is analogous to the one underlying Lyapunov
function-based stability analysis [Sontag 1998]: we seek a scalar function of the system state
that permits the probability upper bound y to be deduced without computing system trajectories.

In order to derive such results we require a few additional concepts.
Definition 4.2: The infinitesimal generator B for the process x(t) is given by

BA(xo) = limeo (E[A(X(1)) [X(0) = Xo] — A(x0)) / t,

36

where A(x) is any differentiable scalar function [Kushner 1967].

The infinitesimal generator B is the stochastic analog of the Lie derivative and characterizes the

evolution of the expectation of A(x(t)):

E[AX(t2)) | X(t)] = Ax(t)) + EL BAX() dt | x(t:)].
Definition 4.3: The process A(x(t)) associated with a twice continuously differentiable function
A(x) and stopped process x(t) is a supermartingale if E[A(x(t2)) | x(t1)] < A(x(t1)) V t2 > t4.

The following property of supermartingales is proved in [Kushner 1967] and will be

instrumental in our development:
Lemma 4.1: If A(x(t)) is a nonnegative supermartingale then for any x, and A > 0
P{ sup A(x(t)) = 2 | x(0) = X0 } < A(Xo) / 1.

We are now in a position to state our first result for the stochastic safety problem:
Theorem 8: y is an upper bound on the probability of trajectories of X, reaching X, from Xq
while remaining in X if there exists A(x) such that
o A(X) <y VxeXy;

o A(X)>1VxeX;

o A(x) >0 VxeX;

o (OAOX) f+ (1/2) tr [GT (8°AloX?) G] < 0 VxeX, VpeP.

Proof: Because (0A/0x) f + (1/2) tr [G" (6°A/6x?) G] is the infinitesimal generator for I, the third
and fourth conditions of the theorem imply that A(x(t)) is a nonnegative supermartingale Vp € P.

Thus from Lemma 4.1 we can conclude that P{x(t)e X, for some t} < P{ sup A(x(t)) > 1 | x(0)=x, }

< A(xg) <y VxeXq, VpeP. |

Remark 4.4: Theorem 8 extends the analysis given in [Prajna et al. 2007] to allow probability

upper bounds to be established in the presence of parametric uncertainty.

Results analogous to Theorem 8 can be derived for stochastic hybrid systems. Let 2s ipsg
denote a general S-HDS with bounded state space Q x X and infinitesimal generator BA(q, x).

We have:

Theorem 9: y is an upper bound on the probability of trajectories of Zs.1psg reaching X, from X,

while remaining in Q x X if there exists a family of differentiable functions {Aq(x)}qcq such that

37

o Ayx) <y VxeXo, VqeQ;
o A(X)>1VxeX, VqeQ;
o Ay(x) =0 VxeX, VqeQ;
e BAy(x) <0 VxeX, VqeQ, VpeP.

Proof: The proof is exactly analogous to the proof of Theorem 8. |

The following corollary specializes Theorem 9 to the S-HDS specified in Definition 2.3 and
Example 2.2 is very useful for analyzing social processes modeled as stochastic hybrid

systems. More precisely, consider the S-HDS

{Q, P(x)},
2s-HDS dx = fy(x)dt + G4(x)dw,
k = p(x),

where the transition probabilities are defined in terms of transition rates A4y (x), with Aqq(x) > 0 if

g #q and Xq Aqq(x) = 0 Vq (see Example 2.2). We have

Corollary 4.1: y is an upper bound on the probability that trajectories of the S-HDS specified in
Definition 2.3 will reach X, from X, while remaining in Q x X if there exists a family {Aq(X)}qeq Of

differentiable functions such that

o Ay(X) <y VxeXo VqeQ;

o Ayx)=0 VxeX, VqeQ;

)<
o Ayx)=1VxeX,, VqeQ;
)2
o (OAJOX) Ty + (1/2) tr [Gy' (PPAJOX%) Gg] + Zgeq Agq By < 0 VxeX, VqeQ, VpeP.

Proof: The proof follows from that of Theorem 9 once it is noted that the infinitesimal generator
for the above S-HDS is given by (0Ay/0x) f, + (1/2) tr [G," (6°Ay/6x?) Gg] + Zqeq Mg By [Bujorianu
and Lygeros 2004]. H

Rather than present examples of one-dimensional abstraction for nondeterministic and/or
stochastic systems in this section, we refer the reader to Section 6 for a detailed discussion of

abstraction-based analysis of several real world case studies.

4.4 Computation
The preceding theoretical results on one-dimensional abstraction are of significant practical
interest only if it is possible to efficiently compute altitude functions A(x). Toward that end,

observe that the results presented in Propositions 4.1 and 4.2, Theorems 7-9, and Corollary 4.1

38

specify convex conditions which must be satisfied by the associated altitude functions; thus the
search for altitude functions can be formulated as a convex programming problem [Parrilo
2000]. Moreover, if the system of interest admits a polynomial description (i.e., the system
vector fields are polynomials and system sets are semialgebraic) and if we restrict our search to
polynomial altitude functions then the search can be very efficiently carried out using sum of
squares (SOS) optimization [SOSTOOLS 2007].

SOS optimization is a convex relaxation framework based on SOS decomposition of the
relevant polynomials and semidefinite programming. SOS relaxation involves replacing the
(non-)negative and (non-)positive conditions to be satisfied by the altitude functions with SOS
conditions. As a simple example of the basic idea, consider the following relaxation of the

conditions given in Proposition 4.1:

A(x) < 0 VxeXo - =A(X) = Lo'(X) go(x) is SOS
A(x) > 0 VxeX, - A(x) = € = A,"(X) gu(x) is SOS
(0A/dx) f(x,d) < 0 ¥xeX, YdeD - =(6A/6X) f = Ax"(X) gx(X) = Ap'(d) gp(d) is SOS

where ¢ is a small positive constant, the entries of the vector functions L. are SOS, and g. >0
(entry-wise) when xeX. (or deD). More complex conditions on A can be relaxed analogously.
The relaxed SOS conditions are obviously sufficient and typically are not overly conservative.
The existence of polynomial functions A(x) satisfying SOS conditions can be verified —
efficiently and constructively — by solving an SOS program, that is, a convex optimization

problem of the form

mincj Zj WiCj

subject to ai(x) + 2 aj(x) ¢jis SOS fori=1, 2, ..., p,

where the ¢; are scalar decision variables and the w;, aj(x), and aj(x) are given. These facts lead

to the following algorithm for computing A:
Algorithm 4.1 (sketch):

1. Parameterize A as A(x) = £ ¢k ak(x), where the a, are monomials up to a desired degree
bound and the ¢, are unknown coefficients.

2. Relax all criteria in the relevant theorem to SOS conditions.
Formulate the search for A as an SOS program, map the SOS program to an semidefinite
program and solve using a standard algorithm, and return A or the information that no such

A exists.

39

Computing families of altitude functions, {Aq(X)}4<q, is identical. Software for solving SOS
programs is available as a third-party Matlab toolbox [SOSTOOLS 2007], and example SOS
programs are given in the discussion of the one-dimensional abstraction case studies (see
Section 6). Importantly, the approach is tractable: for fixed polynomial degrees, the
computational complexity of the associated SOS program grows polynomially in the dimensions
of the continuous state and parameter spaces and the cardinality of the discrete state set.

We close this discussion of computing one-dimensional abstractions with a simple example

application.

Example 4.1: Controller synthesis for nonlinear systems

Given the close conceptual relationship between altitude functions and Lyapunov functions
and the utility of Lyapunov functions in control system synthesis [Sontag 1998], it is natural to
consider applying the computational methodology described above to the problem of designing
controllers for nonlinear systems. Interestingly, this problem is more difficult than may be
evident at first glance. To see this, note first that given a Lyapunov function V(x), the search for
a feedback control law d(x) which makes —(oV/ox)f(x, d) SOS (and therefore is guaranteed to
stabilize the system [Sontag 1998]) can be formulated as an SOS program. Similarly, given a
feedback control law u(x), the search for an SOS Lyapunov function V(x) which makes
—-(oVIox)f(x, u) SOS also can be formulated as an SOS program. Unfortunately, the set of pairs
(V(x), u(x)) is not convex, and thus the simultaneous search for V and u cannot be conducted
using SOS programming.

Fortunately, there exist controller synthesis methods which permit V(x) to be derived first,
and which then exploit this V(x) to derive the feedback law u(x); for instance, adaptive control is
provides a wide range of such methods [Narendra and Annaswamy 1988]. This suggests the
following approach to computationally tractable controller synthesis: 1.) use SOS programming
to obtain an SOS Lyapunov function V(x) which has a Lie derivative that satisfied the
appropriate SOS conditions, and 2.) derive the feedback control law u(x) using this V(x) via

(say) adaptive control techniques.

40

5. Case Study One: Vulnerability Analysis
The first case study considers the problem of identifying and characterizing vulnerabilities of
complex networks. We begin by introducing the basic problem, then propose a formal approach
to vulnerability analysis for large-scale networks, and finally apply the proposed methodology to

an important and challenging infrastructure network: the electric power grid.

5.1 Introduction

There is increasing recognition that complex, evolving networks, while impressively robust
in most circumstances, can fail catastrophically in response to focused attacks. Indeed, this
fragility appears to be a defining characteristic of these systems [Carlson and Doyle 2002], and
has been observed in a range of technological networks (e.g., power grids, Internet), biological
systems (e.g., gene networks, immune systems), and social processes (e.g., financial markets,
social movements). Moreover, the failures associated with these vulnerabilities can have great
economic and societal impact. Thus there is considerable motivation to develop a framework
within which to identify these vulnerabilities and to design strategies for exploiting and mitigating
them.

The challenges of vulnerability analysis are particularly daunting in the case of complex
networks. Most such networks are large-scale “systems of systems”, so that the analysis
methods must be extremely efficient. Additionally, as discussed earlier in the paper, these
networks perform reliably almost all of the time and almost all of their features are robust. As a
consequence, standard techniques for finding vulnerabilities (e.g., computer simulations, “red
teaming”) can be ineffective and, in any case, are not guaranteed to identify all vulnerabilities.

In this case study we propose a vulnerability analysis methodology which is 1.) scalable, to
enable analysis of networks of real world size and complexity; 2.) rigorous, so that for instance
the vulnerability identification process is guaranteed to find all vulnerabilities of a given class; 3.)
robust, for implementation in the presence of uncertainty regarding the networks and their
environments; and 4.) comprehensive, in that a broad range of vulnerability questions can be
addressed. Given a complex network and a class of failures, we are interested in four main

vulnerability analysis tasks:

* Assessment: Can the system be made to experience such failure?
- Exploitation: What strategies can be used to cause such failure?
» Mitigation: How can the adverse consequences of attacks be minimized?

 Warning: What are useful precursors of impending failure?

41

In this section, we focus on the vulnerability assessment and exploitation tasks. It will be
shown that the proposed approach to vulnerability exploitation can be employed, in slightly
modified form, for designing mitigation strategies. The early warning task is the subject of the
second case study, and a detailed discussion of this problem is presented there (see Section 6).

The proposed approach to vulnerability analysis for complex networks leverages existence
of finite bisimulations for these networks. The basic idea is straightforward: given an HDS model
for a network of interest and a class of failures of concern: 1.) construct a finite (bi)simulation for
the HDS network model, 2.) conduct the vulnerability analysis on the system abstraction (e.g.,
using the powerful analysis methods available for finite state systems), and 3.) map the analysis
results back to the original system model. Observe that the proposed approach possesses the
desired characteristics. First, the analytic process is scalable because it applies sophisticated,
efficient computer science analysis tools to finite state models. Second, the analysis is rigorous.
Consider the situation in which the network model and its abstraction are bisimilar. The
developments in Section 3 show that HDS vulnerabilities and failure/recovery dynamics are
expressible as LTL formulas and that bisimulation preserves LTL, which implies the original
system and its abstraction have identical vulnerabilities. Because formal computer science
analysis tools (e.g., model checking) can be structured to identify all vulnerabilities of the finite
state abstraction, the proposed approach is guaranteed to find all vulnerabilities of the original
network as well. A similar, though slightly weaker, argument can be made if the abstraction
simulates, rather than bisimulates, the original network. The vulnerability analysis is also robust,
as aggressive abstraction provides a powerful means of managing system uncertainty (e.g.,
because abstraction “projects out” much of the uncertainty [Colbaugh et al. 2007]). Finally, as
we will show, abstraction-based vulnerability analysis is comprehensive in that it naturally
accommodates assessment, exploitation, mitigation, and early warning within a common

framework.

5.2 Vulnerability analysis methodology

We now present the proposed approach to vulnerability analysis, with an emphasis on the
assessment and exploitation tasks. It is supposed that the complex network of interest can be
modeled as an HDS, X, ps, and that the network’s desired or “normal”’ behavior can be
characterized with an LTL formula ¢; the discussion in Sections 2 and 3 indicates that these
assumptions are reasonable. We begin with the vulnerability assessment problem. Consider the

following:

42

Definition 5.1: Given an HDS X,;ps and an LTL encoding ¢ of the desired network behavior,
the vulnerability assessment problem involves determining whether Zps can be made to violate

Q.

The proposed approach to vulnerability assessment uses bounded model checking (BMC),
a very powerful procedure for checking whether a given finite state transition system satisfies a
particular LTL specification over a finite, user-specified time horizon [Clarke et al. 1999]. Briefly,
BMC checks whether a given labeled finite transition system T = (S, L, —, Y, h) satisfies an LTL

specification ¢ on a time interval [0, k], denoted T |=« ¢, in two steps:

1. Translate T |= ¢ to a proposition [T, ¢]x which is satisfied by (and only by) transition system
trajectories that violate the specification ¢; such a reformulation of T |= ¢ is always possible.

For instance, T |=x ¢ = [16(s) (where [] means "always’) can be translated to
[T, ol = (init(so)) A (Ad“ trans(s;, I, Sie1)) A (Vo —0(s1)),
where the propositions init(sy) and trans(s;, |;, si+1) are true if so is an admissible initial state
and (s;, li, Si+1) € —.
2. Check if [T, o]k is satisfiable using a SAT solver [Clarke et al. 1999]:

o if [T, ¢] is satisfiable then T can violate ¢ and the “witness” generated by the SAT solver
is an example violation;

o if[T, g is not satisfiable then T satisfies ¢ on all trajectories of length k or smaller.

It is stressed that modern SAT solvers are extremely powerful, so that the BMC approach to
model checking is implementable with problems of real world scale.
We are now in a position to state our vulnerability assessment algorithm. Let Ty ps denote

the transition system associated with Z,ps (as in Definition 3.8), and consider the vulnerability
assessment problem given in Definition 5.1. We have:

Algorithm 5.1: Vulnerability assessment using bisimulation abstraction
1. Construct a finite bisimilar abstraction T for Typs (using, e.g., the results in Section 3).
2. Check satisfiability of [T, ¢]x using BMC:

o if[T, ¢ is not satisfiable then T is not vulnerable and thus Zps is not vulnerable (on time
horizon k);

o if[T, ¢] is satisfiable then T, and therefore Zps, is vulnerable, and the SAT solver

witness is a vulnerability.

43

It is sometimes more convenient to construct a finite transition system T which simulates
(rather than bisimulates) Typs (i.e., ensures Typs £ T). In such cases the following vulnerability

assessment algorithm is useful:

Algorithm 5.2: Vulnerability assessment using simulation abstraction
1. Construct a finite abstraction T which simulates Typs (using, e.g., the results in Section 3).
2. Check satisfiability of [T, ¢]x using BMC:
o if [T, ¢] is not satisfiable then T is not vulnerable and thus X ps is not vulnerable (on time
horizon k);
o if [T, o)k is satisfiable then T is vulnerable and the witness generated by the SAT solver

can be checked against Typs to determine vulnerability of Zyps.

Note that checking whether Typs can experience a particular failure trajectory is much easier
than discovering a reasonable candidate failure trajectory.
Consider next the vulnerability exploitation problem. We suppose an LTL formula ¢ that

encodes a failure of interest is available, for example from analysis using Algorithm 5.1 or 5.2.

Definition 5.2: Given an HDS Xps and an LTL encoding ¢ of a failure behavior of interest, the
vulnerability exploitation problem involves synthesizing an admissible input trajectory for Zyps

which ensures ¢ is satisfied.

The proposed approach to vulnerability exploitation uses supervisory control for finite state
systems (SCFS), a mature body of theory and practice that includes a collection of algorithms
for designing supervisors which ensure a given finite state transition system satisfies a particular
LTL specification (see, e.g., [Ramadge and Wonham 1987] and also [Ackley 2008] for a review
of recent advances). Note that modern SCFS algorithms are very efficient, so that this approach
to controller design is implementable with finite state systems of real world scale.

We are now in a position to state our vulnerability exploitation algorithm. Let Tps denote
the transition system associated with Xps, as before, and consider the vulnerability exploitation
problem given in Definition 5.2. Assume X ps is vulnerable to failure behavior o, for instance as

verified via Algorithm 5.1 or 5.2. We have:

Algorithm 5.3: Vulnerability exploitation using (bi)simulation abstraction
1. Construct a finite abstraction T which simulates or bisimulates Typs (using, e.g., the results
in Section 3).

2. Synthesize a vulnerability exploitation supervisor T, for T via SCFS:

44

o design a finite supervisor T.* which ensures (T, || T) |= ®¢ (where ¢ means “eventually’
and || is the parallel product operator), plus any other required behavior;
o T.=T. || Tisthen a finite supervisor which ensures (T || Tups) |= .
3. Refine T, to a (hybrid system) vulnerability exploitation strategy which can be implemented
with Zyps (this is a well studied problem in control engineering and its solution is summarized
in, for instance, [Ackley 2008]).

Observe that Algorithm 5.3 produces a vulnerability exploitation supervisor which is guaranteed
to cause Xyps to experience failure ¢ provided T simulates Typs; thus T need not be a
bisimulation.

Finally, we briefly consider the vulnerability mitigation problem. Both the problem definition
and the solution algorithm are analogous to those for vulnerability exploitation and are stated

here for completeness.

Definition 5.3: Given an HDS Z,ps and an LTL encoding ¢ of a failure behavior of interest, the
vulnerability mitigation problem involves synthesizing an admissible input trajectory for Zips

which prevents and/or recovers from ¢.

Algorithm 5.4: Vulnerability mitigation using (bi)simulation abstraction

1. Construct a finite abstraction T which simulates or bisimulates Typs (using, e.g., the results
in Section 3).

2. Synthesize a vulnerability mitigation supervisor T, for T via SCFS:

o design a finite supervisor T that ensures (T, || T) |= (¢goal) A (L—e), thereby providing
failure prevention, or (T || T) |= (¢goal) A ((H—¢) v (LI(—=¢ U (¢ AOrecover)))), which
enables recovery if failure is unavoidable;

o T.=T. || Tis then a finite supervisor which ensures (T || Tups) exhibits the above
behavior.

3. Refine T, to a (hybrid system) vulnerability mitigation strategy which can be implemented

with 2ZHDS-

5.3 Power grid example

We now apply the proposed approach to vulnerability analysis to an example problem taken
from advanced technology: the electric power grid. The focus of the analysis is vulnerability
assessment, although a few brief remarks are made regarding exploitation of the identified
vulnerabilities. Electric power grids play an essential role in virtually all aspects of modern life.

Additionally, power grids are complex, evolving networks that possess the RYF property. For

45

instance, it has been established that the distribution for power grid outage size is well-
approximated by a power law [Carlson and Doyle 2002], which in this class of networks
suggests RYF behavior. Figure 10 shows that, while the average number of outages on the
North American grid is decreasing (over the period for which data is available), the average size
of large outages is increasing; this is a classic signature of “myopic” evolution leading to RYF
behavior (see Section 2). Therefore vulnerability analysis for these large-scale technological
networks is simultaneously crucially important and extremely challenging. In this example, we
summarize some results obtained when applying the vulnerability analysis process described
earlier in this section to an HDS model of a real (national scale) electric power system. An

alternative view of grid vulnerability analysis is given in [Stamp et al. 2008].

total outages/year large outages/year

Figure 10: Electric power grids as RYF/DILO systems. The plot at left shows
the evolution of number of outages per year (red) during 1984-1999; it is
seen that the average number of outages/year for the first eight years is
larger than for the second eight years of this period (blue). The right plot
depicts average size of large outages during 1984-2003 and indicates that
large outages observed during the second ten years of this period are bigger
than those that occurred during the first ten years. Both plots are assembled
from NERC data.

As indicated in Example 2.1, electric power grids are naturally represented as HDS, with
the continuous system modeling the generator and load dynamics as well as the power flow
constraints and the discrete system capturing protection logic switching (e.g., line tripping, load
shedding) and other “supervisory control” behavior (e.g., scheduling phenomena). In fact, we

can make

Definition 5.4: The (fairly general) HDS power grid model 2cp takes the form

46

g+ =h(q, k, v),

Zep dx/dt = fy(x, y, u),
0 = gq(xi y)’
k=p(x,y),

where qeQ and xeR" are the discrete system states (e.g., specifying which lines are in service
and loads are met) and continuous system states (e.g., angles and frequencies for generators),
respectively, veV and ue R™ are exogenous inputs (e.g., from the SCADA system), yeR? is the
vector of “algebraic variables” (e.g., bus voltages and angles), h defines the discrete dynamics,
the {f,} and {gq} are families of vector fields characterizing the continuous system dynamics and
power flow constraints, respectively, and p is a partition of the spaces of continuous state and

algebraic variables that defines the switching thresholds (e.g., for load shedding).

Example 2.1 provides a simple, concrete instantiation of this model. Additional information on
power grid modeling can be found in [llic and Zaborszky 2000].

Power grid models possess considerable structure. For example, it has been shown that
the continuous system portion of the model in Definition 5.4 is feedback linearizable [llic and
Zaborszky 2000], which implies that the continuous system is differentially flat and consequently
that Zgp admits a finite abstraction (see Section 3). It also follows from Section 3 that grid
vulnerabilities are expressible as LTL formulas composed of atomic propositions which depend
only on g and k. Therefore the abstraction-based vulnerability analysis methodology developed
earlier in this case study is directly applicable to power grids.

To illustrate this, we conduct a vulnerability assessment for the 20bus grid shown in Figure
11. This grid provides an extremely simple representation of an actual national-scale electric
power system for which (proprietary) data was obtained. The grid model, denoted 2gp, is an
HDS of the form described in Definition 5.4 [Wedeward 2006]; a Matlab encoding of the model
is presented in Appendix B. Because the model Zgp corresponds to a real world grid, the
behaviors of model and grid can be compared. For example, the real grid experienced a large
cascading voltage collapse for which data was collected. We simulated this cascading outage
(see Figure 11) and found close agreement between the behavior of the actual grid and the
model Xgp. Observe that this result is encouraging given the simplicity of the model and the well-
known difficulties associated with reproducing such cascading dynamics with computer models.

We conducted a vulnerability assessment for the power grid Xgp shown in Figure 11 using

Algorithm 5.2. It was assumed that the grid’s attacker wishes to drive the voltage at bus 11 to

47

unacceptably low levels, so that the loads at this bus would not be served, and that the
attacker has only limited grid access. For instance, we considered a scenario in which the
attacker can gain assess to the generator at bus 2 via cyber means (see [Stamp et al. 2008] for
a discussion of cyber attacks to power systems). Note that this sort of vulnerability is interesting

because the access point — the generator at bus 2 — is geographically remote from the target of
the attack — the loads at bus 11.

Magnitisde of Bus Voltages.
1o T . Magnitisde of Bus Voltages
12 T T 1
| P R R T A __-:-_-_-ic.‘;{.:_—_-_-:.; e 0
- 5
L
data 1 :‘;‘C\\
net data 2 G 1
— dota 3 \\
dadn 4 kN
- data 5 4
6 1 i 3
= = data i g ~ - dota 8 E
= data 9 i = dota 9 !
i data 10 : | — ~ datn 10 H
data 11 o4k data 11 H
- - gala 12 duta 12 i
data 13 data 13 '
== k14 = = data 14]
[data 15 p2f [dotats 4
data 16 data 16
oata 17 H data 17
data 18 i data 18
ok data 19 !] dota 19
data 20 0 data 20
0.2 1 . L ! ! : 03 L L L L | " " i
0 5 10 15 E 7% a0 a6 0 1 7 a 4 3 [T B [
time (sec) tim {sac)

Figure 11: 20bus electric power grid used in the vulnerability analysis case study.
The diagram at top is a one-line representation of the grid. The plot at bottom left
shows voltage time series for all 20 buses during the simulation of a cascading
voltage collapse observed with the actual grid. The plot at bottom right depicts
voltage time series which result from a vulnerability exploitation synthesized using
Algorithm 5.3.

48

The first step in the vulnerability assessment procedure specified in Algorithm 5.2 involves
constructing a finite state simulating abstraction T for 2gp. This abstraction was computed using
Algorithm 3.2, and a Matlab program for generating the abstraction is given in Appendix B. The
second step in Algorithm 5.2 is to apply BMC to T to determine if it is possible to realize the
attack objective, i.e., low voltage at bus 11, through admissible manipulation of the generator at
bus 2. We employed NuSMV, an open source software tool for formal verification of finite state
systems, for this analysis [NuSMV 2007]. The vulnerability assessment demonstrates that it is
possible for the attacker to realize the given objective via the assumed grid access. Specific
details regarding this vulnerability are considered sensitive and hence are not given in this
document. Such information can be requested from the authors.

Finally, we remark that these vulnerability assessment results can serve as a starting point
for synthesizing a vulnerability exploitation strategy using the analytic procedure given in
Algorithm 5.3. Briefly, one such exploitation was designed and tested through simulation of Zgp.
Sample simulation results are shown in Figure 11 and demonstrate that the attacker’s goals can
indeed be realized, in this case by initiating a cascading voltage collapse which takes down

most of the power grid.

49

6. Case Study Two: Predictive Analysis
The second case study involves predictive analysis for complex networks, and in particular
for social processes which have proven to be both practically important and challenging to
predict. We begin by formulating the predictive analysis problem in mathematically precise
terms and then consider predictive analysis for two classes of social processes: online markets

and social movements.

6.1 Problem formulation

We formulate prediction problems as questions about the expected dynamics of a system
of interest, with the system dynamics specified within an LTL framework. Recall that in LTL,
propositional formulas are obtained by combining “atomic” propositions using a grammar of
Boolean and temporal operators (see Section 3.1). Defining atomic propositions to correspond
to problem-relevant subsets of the system’s state space enables expressive characterization of
the dynamics. As a consequence, predictions about the evolution of the system can be naturally
posed in terms of (the satisfaction of) LTL formulas. As an illustrative example, consider the
problem of predicting ultimate market share in a cultural market (e.g., music or films) in which
“buzz” about a product propagates through various social networks. If, in a market containing
two products with indistinguishable “intrinsic appeal”, it is possible for one of the products to
achieve a dominant market share, we might view the market to be unpredictable. Conversely, a
predictable market would be one in which market shares of indistinguishable products evolve
similarly and market shares of superior products are typically larger than those of inferior ones.
Prediction, of course, then involves estimating the ultimate market share of a product of interest,
perhaps based on measures of appeal. It is easy to see that these intuitive ideas can be
naturally and quantitatively expressed using LTL. For instance, market share dominance by
product A is associated with a region of market share state space, and the condition that A
eventually achieves such dominance and simultaneously possesses an appeal that is
indistinguishable from product B is easily written as an LTL formula.

Perhaps the simplest way to formulate prediction questions within an LTL framework is in
terms of reachability. In this setting, the behavior about which predictions are to be made is
used to define the system state space subsets of interest (SSI). Available measurables allow
identification of indistinguishable starting sets (ISS), that is, those sets of initial conditions and
system parameters which cannot be resolved with the available data. Predictability assessment
then involves determining which SSI can be reached from ISS. If the system’s reachability

properties are incompatible with the prediction goals — if, for instance, “hit” and “flop” are both

50

reachable from a single ISS — then the given prediction question should be refined in some
way. Possible refinements include relaxing the level of detail to be predicted (by redefining the
SSI) or using additional measurables to resolve the ISS. If and when a predictable situation is
obtained, the problem of forming robust, useful predictions can be addressed. This problem is
also naturally studied within the reachability framework, as it involves determining the most
likely evolution of the system and quantifying the uncertainty associated with this estimate.

The preceding discussion motivates the need to develop a rigorous, tractable methodology

for assessing reachability of complex processes in the presence of uncertainty regarding the
process parameters. Particularly desirable are methods that can be applied in both stochastic
and nonstochastic settings and for sets of initial conditions and system parameter values. An
approach to reachability assessment which possesses these characteristics is developed in

Section 4 of this paper, and it is this framework that we employ in the following case study.

6.2 Social processes

The proposed approach to predictive analysis is now applied to a broad and important class
of social phenomena. We begin with a brief, qualitative description of the type of social process
of interest, then introduce a novel framework within which to model and analyze these systems,
and finally consider two real world case studies which illustrate the considerable potential of the
proposed analytic methodology.

In many social situations, individuals are influenced by observations of (or expectations
about) the behavior of others, for instance seeking to obtain the benefits of coordinated actions,
infer otherwise inaccessible information, or manage complexity in decision-making. Processes
in which observing a certain behavior increases an agent’s probability of adopting that behavior
are often referred to as positive externality processes (PEP), and we use that term here. PEP
have been widely studied in the social and behavioral sciences (e.g., economics, finance,
sociology, social psychology) and, more recently, by the computer science and informatics
communities. As an example of work in the latter domain, Figure 12 shows measurements of
online purchasing and social networking behavior, each of which clearly exhibits the “micro”, or
individual-level, response associated with PEP. One hallmark of PEP is their unpredictability:
phenomena from fads and fashions to financial market bubbles and crashes appear resistant to
predictive analysis (although there is no shortage of ex post explanations for their occurrence!).
These considerations are important for national security applications as well. For example, there
is increasing recognition that collective dynamics are central to social movements, including

revolution, political and religious radicalization, and cultural/ethnic conflict.

51

Probability of joining a community when k friands are already mambers

0025

=
L]
=

0015 |

(=]
(=]
o

probability

o
=
=

Probability of Buying

0.01: 0.005 -

5 10 15 20 25 o L
Incoming Recommendations o § 15 2 B 30 3 4 45 80

Figure 12: Positive externality processes. The plot at left demonstrates that
the probability of purchasing a DVD increases as the number of purchasing
recommendations increases [Leskovec et al. 2006] and the plot at right
shows that the probability of joining a LiveJournal community increases as
the number of friends belonging to the community increases [Kleinberg
2007].

A key step in understanding PEP dynamics, and the impact of these dynamics on predictive
analysis, is the formulation of appropriate social dynamics models. Social system modeling
typically proceeds along one of two lines: 1.) high level modeling which captures the behavior of
aggregates of individuals, for instance using ordinary differential equations or statistical
regressions to characterize the fractions of individuals exhibiting certain behaviors over time
(see, e.g., [Hedstrom et al. 2000] and the references therein), and 2.) detailed modeling of the
behavior of individuals and the ways individuals interact, often using agent-based methods [e.g.,
Epstein 2006]. Interestingly, there is often little justification for, or evaluation of, the choices
made regarding the system features which are included and omitted. As shown in the preceding
sections of this paper, however, complex systems often evolve so that some system features
require only simple, abstract models while others demand highly accurate representations, and
it is often challenging to allocate modeling detail appropriately. For example, recent work has
clearly demonstrated the importance of capturing social network effects when modeling social
processes [Newman 2003]. Unfortunately, detailed information concerning the relevant social
networks is not typically available. Additionally, even when these data can be estimated, it is
often the case that naive approaches to network modeling lead to unnecessarily complicated
models and subsequent analytic difficulties.

These facts motivate the development of a class of multi-scale models for social processes

which respect the function and evolution of the underlying systems. The proposed multi-scale

52

representation reflects the essential structures present in positive externality social systems

through the use of three modeling scales:

e a micro-scale, for modeling the behavior of individuals;

e a meso-scale, which represents the collective dynamics within social contexts via “fully
mixed” models for the interaction dynamics (see, e.g., [Hedstrom et al. 2000], [Watts et al.
2002] for social network-oriented introductions to the concept of social contexts);

e a macro-scale, which characterizes the interaction between the social contexts.

A schematic of the basic framework is given in Figure 13.

context i in puts

cqntﬁ_xt stochastic
E‘”‘m b process
i ; .
& Q continuous
NS state

context j

discrete
state

continuous
® voen system

@ vt

inputs

Figure 13: Multi-scale model for social processes. The cartoon at left illustrates
the basic model structure, in which individuals (blue and red nodes) interact
within social contexts (ellipses encircling nodes) via fully mixed dynamics and
between contexts according to the network topology characterizing context
interdependencies. The block diagram at right depicts an S-HDS encoding of
the model, in which the S-HDS continuous system captures intra-context
dynamics and the discrete system models the inter-context behaviors.

This multi-scale approach alleviates the need for detailed social network data, because
interactions within social contexts are modeled as fully mixed. Moreover, by distinguishing
between the way individuals interact within and across social contexts, we simultaneously
capture the important social network structure and obtain analytically tractable mathematical
formulations. Note that the characterization of intra-context and inter-context dynamics implicit
in the proposed multi-scale framework is based on established social science understanding
(e.g., [Hedstrom et al. 2000], [Watts, et al. 2002]).

We develop and analyze multi-scale social dynamics models using the S-HDS formalism
described in Section 2 [Colbaugh and Glass 2007]. Briefly, these S-HDS are feedback

interconnections of continuous dynamics, such as the dynamics of individuals exchanging ideas

53

within a social context, and discrete dynamics, capturing for instance the switching behavior
encountered when an individual from one context moves to another and introduces an idea
which is novel in the latter context (see Figure 13). An advantage of representing multi-scale
social dynamics using an S-HDS framework is that the resulting models are amenable to one-
dimensional abstraction-based analysis. In fact, we show in the following two case studies that
one-dimensional abstraction enables the development of a mathematically rigorous,

computationally tractable methodology for predictive analysis of PEP.

Online markets

Consider an online market in which individuals visit a web site, browse an assortment of
available items, and choose one or more items to download. A surprising and interesting
characteristic of these markets — and many other markets as well — is that they are often both
unequal and unpredictable: a few items capture a large share of the market, but which items
achieve popularity appears to be hard to anticipate. For instance, the study reported in [Salganik
et al. 2006] created an artificial music market and demonstrated this phenomenon
experimentally. Moreover, this work showed that increasing the opportunity for social influence
increased both the inequality of the ultimate market shares and the unpredictability of which
songs attain market dominance. Our study of CNET, the online software library, yielded similar
results: 1.) daily download market share of a software item is positively correlated with
cumulative item downloads (the market exhibits positive externalities) and not correlated with
measures of item quality (e.g., expert reviews, user reviews, technical data), and 2.) the
average quality of the most popular software is indistinguishable from the average quality of all
software available on the site [Colbaugh and Glass 2007]. The positive externalities present in
these markets makes predictive analysis using standard methods a challenging undertaking.

We now apply the predictive analysis framework summarized above to the problem of fore-
casting ultimate market share in online markets. Consider a market visited by a sequence of
consumers, with each visitor choosing between two items {A, B}; generalizing this simple binary
choice setting to any finite number of choices is straightforward. We model this situation by

supposing that each agent i chooses item A with probability
Zonline P.(A) =B+ (1_[3) f

where fe[0,1] is item A’s current market share, (1-) quantifies the intensity of social influence
(with B<[0,1]), and = is the probability of an agent choosing A in the “no social influence” case

(i.e., when B=1); agent i chooses item B with probability 1 — P;(A). In this model, & can be

54

interpreted as a measure of the “appeal” of item A (relative to B), f is the social signal, and

quantifies the relative importance of appeal and social influence in the decision-making process.

The model Zonine is extremely simple, perhaps the simplest possible representation which
captures the effects of both social influence and appeal in an online market. Nevertheless, this
model is able to reproduce all of the key behavior observed in the music market study described
in [Salganik et al. 2006], in our investigation of CNET market dynamics, and in other online
markets (e.g., for books and DVDs) [Colbaugh and Glass 2007]. In particular, as B decreases
(social influence increases) both the inequality and unpredictability of market shares increase.
Thus, despite its simplicity, Zonine pProvides a useful starting point for studying predictability and
prediction of online markets. In particular, Z,,ine can be written in the form of the continuous
system portion of the S-HDS model given in Definition 2.3, so that Theorem 8 is directly
applicable; see Appendix C for the precise form of the resulting model.

As a simple illustration of the sorts of predictive analysis questions which can be addressed
using the proposed framework, consider the problem of identifying measurables which can be
used to predict ultimate market share. The standard approach is to assume that item appeal is
such a measurable, estimate appeal in some way, and use this estimate to predict ultimate
market share. To examine the utility of this approach, we assess the predictability of market
share for identical items (r=1/2) with identical initial market share (f(0)=1/2). If it is reasonably
likely that the market will evolve so one or the other item dominates (f becomes large or small),
then the market dynamics is not (very) dependant on item appeal and therefore is unpredictable
using standard methods. In this case we should seek a different prediction method, one based
on other measurables. Alternatively, if market dominance by either item is unlikely then the
market dynamics depends on item appeal in a more predictable way and standard methods
may lead to useful prediction.

Predictability assessment can be conducted using Theorem 8 by setting X, to correspond
to large/small f and computing an upper bound on the probability of reaching X, (see Figure 14).
More specifically, we compute an upper bound on the probability that Zqnjine With 7=1/2 will
evolve from X,' to X, in Figure 14, as this corresponds to the probability that indistinguishable
items with equal initial market shares will evolve so that one item dominates. We consider two
situations: the low social influence (Sl) case, obtained by setting B large in Znine, and the high Sl
case, corresponding to small B. Theorem 8 is applied to Z.nine for sets of initial conditions and
model parameter values using SOSTOOLS (see Appendix C for the Matlab program used in

this analysis). In the high Sl case, the analysis generates fairly high probability bounds for a

55

broad range of noise models, with ye[0.5, 0.7] being typical, and also shows that large f (A
dominance) and small f (B dominance) are equally likely. This result is consistent with empirical
findings (e.g., [Salganik et al. 2006]) and suggests that standard approaches to market share
predictions are not likely to produce accurate forecasts. When Sl is low, however, very small
upper bounds are found for the probability of reaching X, (on the order y~107); this result also
matches empirical findings and indicates that in this case product appeal matters and that
predicting market share based on appeal can be sensible.

X,
N

X!

~
7

X1

Figure 14: Predictability analysis setup for online market example. Note
that in this diagram the x4, X, coordinates correspond to f (market share
for item A) and 1/(t+1), respectively.

An advantage of the proposed predictive analysis framework is the convenience with which
alternative measurables can be examined. For example, it might be supposed that very early
market share time series data would be useful for prediction in the high Sl case. The intuition
behind this idea is that the “herding” behavior that can arise from SlI, and which makes market
prediction hard using standard methods, may lead to a lock-in effect, in which very early market
share leaders become difficult to displace. To test this hypothesis, we assess the predictability
of market share for identical items which have identical early market share time series. Thus we
compute an upper bound on the probability that Znine With ©=1/2 will evolve from X, to X, in
Figure 14. We again apply Theorem 8 to Znine for sets of initial conditions and model parameter
values using SOSTOOLS (see Appendix C for the Matlab program used in this analysis). In this

case, the analysis generates very small upper bounds (y~107 is typical). Thus items with similar

56

early market share time series are very unlikely to evolve so that one dominates. This analysis
suggests that using early time series data to refine the ISS leads to a more tractable prediction
problem, in which indistinguishable market configurations evolve to indistinguishable outcomes
even in the presence of high SI.

We mention in closing that we have developed an algorithm for predicting online market
share which leverages these insights regarding the role of Sl in market evolution and the
importance of early market dynamics in high Sl situations. The algorithm first estimates the
intensity of Sl in the market using a combination of adaptive methods [Narendra and
Annaswamy 1988] and HDS theory [Colbaugh and Glass 2007]. This estimate then forms the
basis for choosing either an appeal-based or herding-based prediction strategy to predict
ultimate market share. Application of this approach to online markets as well as other markets
(e.g., movie box office revenue) yields predictions of quite respectable accuracy [Colbaugh and
Glass 2007].

Social movements

Social movements are large, informal groupings of individuals and/or organizations focused
on a particular political, social, economic, or religious issue. Example issues include racial and
gender equality, temperance, labor rights, political ideology, economic philosophy, religious
fundamentalism, and environmental concerns. Consider the problem of distinguishing
successful social movements, that is, movements which attract significant following, from
unsuccessful ones early in their lifecycle. Here we apply our proposed approach to predictive
analysis for social processes to this analysis task. As shown above, a crucial step in the
approach is assessment of the predictability of the process of interest. Among other things,
predictability assessment enables identification of those measurables which are most useful for
prediction. We expect this function to be important here, as there are myriad measurables
associated with radicalization which may have predictive power, and identifying which (if any)
actually do is both challenging and critical for successful warning analysis.

The study consists of three parts: 1.) a theoretical investigation of social movement warning
analysis using models taken from the social movement theory (SMT) literature, 2.) an empirical
study of social movement warning analysis involving a “data-rich” social movement (i.e., the
emergence and diffusion through Sweden of their Social Democratic Party), and 3.) a combined
empirical/theoretical investigation of Islamic mobilization warning analysis involving both
successful and unsuccessful mobilization events and using online social activity as the main
data source. We begin with an investigation of general social movements. This broader setting

is reasonably well-characterized both theoretically and empirically and therefore provides the

57

opportunity to identify candidate early indicators in a principled way; candidate indicators (if
any) can then be tested for relevance to particular applications, such as Islamic mobilization and
radicalization. Consider the problem of identifying measurables which permit successful social
movements to be distinguished from unsuccessful ones early in their lifecycle. This problem is
naturally formulated within the proposed predictability assessment framework. Movement
success is quantified by defining a subset X, of the social system state space that corresponds
to a level of movement membership consistent with movement goals, and we seek measurables
which allow (early) identification of those movements that are likely to evolve to X,.

In the theoretical study of social movements, we first collect a family of models from the
SMT literature and formulate these within our multi-scale framework. This approach yields
models that appropriately represent social network effects while remaining broadly consistent
with current SMT thinking. More specifically, we derive an S-HDS representation for social
movements which is of the form given in Definition 2.3 , and find that this formulation enables
simultaneous analysis of an entire collection of relevant SMT models. This result is achieved by
employing the model abstraction methodology presented in [Colbaugh and Glass 2007] to
derive a “base model” whose parameterization enables any model in the family of interest to be
recovered through suitable specification of parameter values. We then work with the complete
family of models all at once by conducting the analysis for the entire set of feasible parameter
values.

The continuous system portion of the S-HDS model is a collection of stochastic differential
equations (SDE), each of which captures a particular instantiation of the intra-context social
dynamics. This collection is indexed by a discrete “mode” q € Q that specifies which (vector)
SDE is currently active. The mode g concisely quantifies the history of inter-context interactions,
and specification of the appropriate active SDE is based on this history. Thus, for example, a
particular sequence of inter-context communications concerning new information leads to a
certain distribution of informed individuals across social contexts, and this distribution in turn
impacts the subsequent intra-context dynamics. Mode q evolves according to a Markov chain
with state set Q and continuous state dependent transition probabilities; this is the discrete
system component of the S-HDS (see Definition 2.3 and Example 2.2).

Predictability assessment is performed for the collection of S-HDS social movement models
using the result given in Corollary 4.1. That is, we compute provably-correct upper bounds for
the probability that any model in the collection will reach X, from X,. Because this computation
does not require forward simulation and can be conducted for sets of initial states and

parameter values, we can efficiently explore the way various measurables affect these

58

probability bounds. Those measurables for which the probability of reaching X, exhibits
sensitive dependence are designated to be potentially useful indicators of movement success.

Briefly, this study produced two main results. First, the degree to which movement-related
activity shows early diffusion across multiple social contexts is a powerful distinguisher of
successful and unsuccessful social movements. Indeed, this measurable has considerably more
predictive power than the volume of such activity and also more power than various system
intrinsics. Second, significant social movements can occur only if both 1.) the intra-context
“infectivity” of the movement exceeds a certain threshold and 2.) the inter-context interactions
associated with the movement occur with a frequency that is larger than another threshold. Note
that this is reminiscent of, and significantly extends, well-known results for epidemic thresholds
in disease propagation models. Appendices D and E of this paper present sample Matlab
programs which implement predictability analysis for S-HDS social system models for epidemics
(Appendix D) and social movements (Appendix E).

The empirical investigation of early warning analysis for social movements focuses on the
emergence and growth of the Swedish Social Democratic Party (SDP). The case of the SDP is
particularly relevant for our purposes, as the early activities of political “agitators” associated
with the SDP led to the establishment of a well-defined, and well-documented, network linking
previously disparate geographically- and demographically-based social contexts in Sweden
[Hedstrom et al. 2000]. We explore the role played by this inter-context network by analyzing
archived data and published accounts describing the dynamics of the SDP. Our investigation
uses standard time series analysis techniques similar to those employed in [Hedstrom et al.
2000] and reveals that an important predictor of SDP spatio-temporal dynamics is early diffusion
of SDP-related activity across social contexts. In fact, this measurable has more predictive
power than demographic and political features of the population.

We now briefly summarize a few details of the study. The visualization at the top of Figure
15 depicts the temporal evolution of the concentration of SDP members in approximately 360
Swedish jurisdictional districts over the period 1885-1947. In this rendering of the data, the
horizontal coordinate axis is district index, the vertical coordinate is time, and the colors indicate
variation from minimum member concentration (dark blue) to maximum concentration (red).
Examination of the figure reveals the expected “contagion” effect in membership evolution, in
which districts that are close geographically experience similar membership trajectories
(geographically proximate districts have index values which are close). This visualization also
shows that in the early years of the party, some geographically disparate districts initiated local

party chapters almost simultaneously and then experienced similar growth patterns.

59

1920 i

1810

1900

1890

Figure 15: Sample results for the Swedish SDP case study. The figure at top is a
visualization of the temporal evolution of the concentration of SDP members in
approximately 360 Swedish jurisdictional districts over the period 1885-1945. The
bottom figures show time series cross correlations for membership concentration
(left) and party office founding events (right), both across districts.

The cross correlation results shown at the bottom of Figure 15 confirm this observation. The
time series of district membership concentration (left) and party office founding events in
districts (right) show both local geographic correlations, corresponding to contagion effects, and
also non-local effects. Further analysis (not shown) indicates that these correlations are
significantly larger than those observed in data with randomized district indices. More
interestingly, we find that the non-local correlations can be explained by the inter-context
network established by early party activists: those districts which exhibit similar early party
initiation and growth are also those with direct (activist-induced) inter-context links. Thus inter-

context dynamics played an important role in the emergence and growth of the SDP.

60

The theoretical and empirical results summarized above suggest social network dynamics
are critical to social movement success. Moreover, the results show that the features of these
dynamics which may be useful early indicators of movement success are practically measurable
in many applications. For instance, diffusion across social contexts often can be inferred from
analysis of public opinion and demographic data, as this measure requires only incomplete
information regarding the relevant social networks. Alternatively, we show below that online (i.e.,
Web-based) social activity can sometimes serve as a proxy for these social dynamics.

We now investigate whether diffusion across social contexts is a useful early indicator for
successful Islamic mobilization and protest events. The study focuses on Muslim reaction to six
recent incidents, each of which appeared at their outset to have the potential to trigger

significant protest activities:

e publication of photographs and accounts of prisoner abuse at Abu Ghraib in Spring 2004;

e publication of cartoons depicting the prophet Mohammad in the Danish newspaper Jyllands-
Posten in September 2005;

o distribution of the DVD I was blind but now I can see in Egypt in October 2005;

¢ the lecture given by Pope Benedict XVI in September 2006 in which he quoted controversial
material concerning Islam;

e Salman Rushdie being knighted in June 2007;

e republication of the “Danish cartoons” in various newspapers in February 2008.

Recall that the first Danish cartoons event ultimately led to substantial Muslim mobilization,
including massive protests and considerable violence, and that the Egypt DVD event also
resulted in significant Muslim mobilization and violence. In contrast, Muslim outrage triggered by
Abu Ghraib, the pope lecture, the Rushdie knighting, and the second Danish cartoons event all
subsided quickly with essentially no violence. Therefore, taken together, these six events
provide a useful setting for testing whether the extent of early diffusion across social contexts
can be used to distinguish nascent Islamic mobilization events which become large and self-
sustaining (and potentially violent) from those that quickly dissipate.

A central element in the proposed approach to early warning analysis is the measurement,
and appropriate processing, of social dynamics associated with the process of interest. Indeed,
the preceding results suggest that in many cases reliable warning analysis requires such data.
In the present case study we use online social activity as a proxy for “real world” diffusion of
mobilization-relevant information. More specifically, we use blog-based communications and

discussions as our primary data set. The “blogosphere” is modeled as a graph composed of two

61

types of vertices, the blogs themselves and the concepts which appear in them. Two blogs are
linked if a post in one hyperlinks to a post in the other, and a blog is linked to a concept if the
blog contains (a significant occurrence of) that concept. See Figure 16 for a schematic
representation of this sort of blog graph. Among other things, this blog graph model enables the
identification of blog communities — that is, sets of blogs with intra-group edge densities that are
significantly higher than expected [Newman 2003]. In what follows, these blog communities

serve as one proxy for social contexts (see Figure 16).

hyperlinked blogs

concepts

Figure 16: Blog graph model. Schematic on left depicts the basic graph structure,
in which blogs (red vertices) can be connected to each other via hyperlinks (solid
edges) and also connected to concepts (blue vertices) they contain. Blog graph
on right corresponds to political blogs; note that in this graph liberal (blue) and
conservative (red) blogs form two distinct communities [Adamic and Glance 2005].

We propose the following procedure for warning analysis using blog data: given a potential

“triggering” event of interest

1. Use key words and concepts associated with the triggering event to collect relevant blog
posts and build the associated blog graph.

2. ldentify the blog social contexts (e.g., graph community-based, language-based).
Construct the post volume time series for each social context. Compute the post/context
entropy (PCE) time series associated with the post volume time series.

4. Construct a synthetic ensemble of PCE time series from (actual) post volume dynamics
using a general S-HDS social diffusion model.

5. Perform motif detection: compare the actual PCE time series to the synthetic ensemble
series to determine if the early diffusion of activity across contexts is “excessive”. Flag

events with excessive early diffusion for further (e.g., manual) analysis.

62

We now provide additional details concerning this procedure and its implementation. Step

1 is by now a standard operation in web mining applications, and various “off the shelf” tools
exist which can perform this task. For instance, in this study we employ Google Blogs together
with tools developed by the Artificial Intelligence Laboratory at the University of Arizona [Al Lab
2007]. In Step 2 we use two definitions for blog social context: graph community-based, in which
the contexts are graph communities found through standard community extraction applied to the
blog graph, and language-based, in which contexts are defined based on the language of the
posts (Google Blogs archives blog posts in 43 languages).

In Step 3, post volume for a given context i and sampling interval t is obtained by counting
the number of (relevant) posts made in the blogs comprising context i during interval t, and the
post volume time series are simply the concatenation of these counts. PCE for a given sampling

interval t is defined as follows:
PCE(t) = -Zi fi(t) log(fi(t)),

where fi(t) is the fraction of total relevant posts during interval t which occur in context i; the
associated time series is again simply the sequence of these values.

Given the post volume time series obtained in Step 3, Step 4 involves the construction of an
ensemble of PCE time series which would be expected under “normal circumstances”, that is, if
Muslim reaction to the triggering event diffused from a small “seed set” of initiators according to
SMT social dynamics. For this study, we use the multi-scale S-HDS modeling framework to
generate the PCE time series ensembles. Finally, motif detection in Step 5 is carried out by
searching for periods, if any, during which the actual PCE time series is excessive relative to the
synthetic PCE ensemble (e.g., exceeds the mean of the ensemble by two standard deviations).

We now apply the proposed approach to early warning analysis to the Islamic mobilization
case study. If early diffusion of discussions across blog communities is an indicator that the
associated Islamic mobilization event will be large, we would expect to observe such diffusion
with the mobilization associated with the first Danish cartoons and Egypt DVD events and not
with the other four events. Additionally, we would expect this early diffusion to be “excessive”,
relative to the synthetic ensemble, for the first two events and not for the latter four. As can be
seen in Figure 17, this is what we find. In the case of the first Danish cartoons event, the
entropy of diffusion of relevant discussions across blog communities (blue curve) experiences a
dramatic increase a few weeks before the corresponding increase in the volume of blog
discussions (red curve); this latter increase, in turn, occurs before any violence (see Figure 17).

In contrast, in the case of the pope event, the entropy of diffusion of discussions across blog

63

communities is small relative to the cartoons event, and any increase in this measure lags
discussion volume. Similar curves are obtained for the other four events. More importantly, the
proposed motif detection process also yields the expected result: motifs are found only for the
Danish cartoons and Egypt DVD events, and these motifs precede significant blog volume and
real world violence. Note that qualitatively similar results are obtained for both the graph
community-based and language-based definitions of social context. This case study suggests
that early diffusion of mobilization-related activity (here blog discussions) across disparate social

contexts (blog communities) may be a useful early indicator of successful mobilization events.

e

Time series motif analysis

Event Motif

Danish cartoons 1: 1/1—1/26/2006.
Egypt DVD release: 10/2-10/9/2005.

Abu Ghraib story: none.
Pope lecture: none.
Rushdie knighting: none.
Danish cartoons 2: none

Figure 17: Sample results for Islamic mobilization case study. The time series plots
at the top correspond to the first Danish cartoons event (left) and the pope event
(right). In each plot, the red curve is blog volume and the blue curve is blog entropy;
the Danish cartoon plot also shows two measures of violence. Note that while the
data are scaled to allow multiple data sets to be graphed on each plot, the scale for
entropy is consistent across plots to enable cross-event comparison. The table at
the bottom summarizes the results of the motif analysis study. Note that only the
first Danish cartoons event and Egypt DVD event exhibit time series motifs.

64

7. Concluding Remarks

This paper presents a new framework for analyzing complex networks based on aggressive

abstraction, that is, a dramatically simplifying and property preserving abstraction of the network

of interest. In the proposed analytic procedure, the given network is first abstracted to a much

simpler (but equivalent) representation, the required analysis is performed using the abstraction,

and analytic conclusions are then mapped back to the original network and interpreted there.

The paper makes three main contributions:

1.

We identify broad and important classes of complex networks which are amenable to
aggressive abstraction. These networks are typically the result of an evolving process which
favors systems that are robust to (familiar) environmental perturbations and internal flaws.
We also provide efficient computational algorithms for testing whether a given network can

be abstracted using any of our methods.

We introduce and develop two forms of aggressive abstraction: i.) finite state abstraction, in
which dynamical networks with uncountable state spaces are modeled using finite state
dynamical systems, and ii.) one-dimensional abstraction, whereby high dimensional network
dynamics are meaningfully captured using scalar functions. In each case, the property
preserving nature of the abstraction process is rigorously established, efficient algorithms for
computing the abstraction are presented, and the main concepts are illustrated through

simple examples.

We demonstrate the considerable potential of the proposed approach to complex networks
analysis through real world case studies. In our first case study, we develop a powerful new
approach for vulnerability analysis of large, complex networks by leveraging the scalability
and property preserving character of the finite state abstraction process; the efficacy of this
vulnerability assessment framework is illustrated through analysis of fairly large-scale
electric power grids. The second case study focuses on predictive analysis for complex
network dynamics, with a focus on social processes on networks. This study develops a
formal approach to predictability and prediction analysis that is enabled by one-dimensional
abstraction techniques, and the utility of the methodology is illustrated through analysis of

social processes for which standard approaches to prediction have been ineffective.

Future work will involve extending the theoretical and computational foundations as well as

applying the proposed analytic approach in a broader range of domains. Theoretical extensions

of interest include developing methods for finite state abstraction of stochastic systems and for

65

graph topology-based abstraction of complex networks; as an example of the latter, we expect
to study the problem of “coarse-graining” network topologies by representing certain subgraphs
of the original network with vertices in the abstraction. Work on computational methods will
include exploring the utility of massively multi-threaded computer architectures for abstraction

procedures. Among the application areas anticipated to be of interest are:

¢ vulnerability analysis of the large-scale, socio-technical “systems of systems” associated
with national infrastructures, for instance for problems in the critical infrastructure protection

and information operation domains;

¢ analysis of those biological networks (e.g., gene regulation, metabolic) which are central to
human disease;

e predictive analysis for social processes of relevance to national security (e.g., terrorism,

proliferation) and other (e.g., financial and other markets) domains.

66

8. References

[Ackley 2008] Ackley, D., Finite State Abstraction for Continuous Control Systems: Analysis and
Synthesis, MS Thesis, Department of Computer Science, New Mexico Institute of Mining and
Technology, 2008.

[Adamic and Glance 2005] Adamic, L. and N. Glance, “The political blogosphere and the 2004
U.S. election: Divided they blog”, Proc. Link-KDD-2005, Chicago, IL, August 2005.

[Al Lab 2007] http://ai.bpa.arizona.edu/start.html, 2007.

[Alur et al. 2000] Alur, R., T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstractions of
hybrid systems”, Proc. IEEE, Vol. 88, pp. 971-984, 2000.

[Aranda-Bricaire et al. 1995] Aranda-Bricaire, E., C. Moog, and J. Pomet, “A linear algebraic
framework for dynamic feedback linearization”, IEEE Trans. Automatic Control, Vol. 40, 1995,
pp. 127-132.

[Barabasi and Oltvai 2004] Barabasi, A. and Z. Oltvai, “Network biology”, Nature Reviews
Genetics, Vol. 5, pp. 101-113, 2004.

[Bemporad et al. 2007] Bemporad, A., A. Bicchi, and G. Buttazzo, eds., Proc. 10" International
Conference on Hybrid Systems: Computation and Control, Pisa, Italy, April 2007.

[Bujorianu and Lygeros 2004] Bujorianu, M. and J. Lygeros, “General stochastic hybrid systems:
Modeling and optimal control”, Proc. 43" IEEE Conference on Decision and Control, Bahamas,
December 2004.

[Carlson and Doyle 2002] Carlson, J. and J. Doyle, “Complexity and robustness”, Proc. National
Academy of Sciences USA, Vol. 99, pp. 2538-2545, 2002.

[Clarke et al. 1999] Clarke, E., O. Grumberg, and D. Peled, Model Checking, MIT Press, MA,
1999.

[Colbaugh and Glass 2003] Colbaugh, R. and K. Glass, "Information Extraction in Complex
Systems", Proc. NAA Conference on Computational Social and Organizational Science,
Pittsburgh, PA, June 2003 (invited plenary talk).

[Colbaugh and Glass 2007] Colbaugh, R. and K. Glass, “Predictability and prediction of social
processes”, Proc. 4" Lake Arrowhead Conference on Human Complex Systems, Lake
Arrowhead, CA, April 2007 (invited talk).

[Colbaugh et al. 2007] Colbaugh, R., K. Glass, and G. Willard, “Scalable method for vulnerability
analysis of complex networks”, Patent application submitted by the National Security Agency,
May 2007.

[Colizza et al. 2006] Colizza, V., A. Barrat, M. Barthelemy, and A. Vespignani, “The modeling of
global epidemics: Stochastic dynamics and predictability”, Bull. Mathematical Biology, Vol. 68,
pp. 1893-1921, 2006.

[Epstein 2006] Epstein, J., Generative Social Science: Studies in Agent-Based Computational
Modeling, Princeton University Press, NJ, 2006.

[Gardiner and Colbaugh 2006] Gardiner, J. and R. Colbaugh, “Development of a scalable
bisimulation algorithm”, Technical Report, New Mexico Institute of Mining and Technology,
January 2006.

[Girard and Pappas 2007] Girard, A. and G. Pappas, “Approximation metrics for discrete and
continuous systems”, IEEE Trans. Automatic Control, Vol. 52, 2007, pp. 782-798.

67

[Glass et al. 2007] Glass, K., R. Colbaugh, and G. Willard, “The complex, evolving Internet:
Implications for security”, Proc. MORS Workshop on Information Assurance, Johns Hopkins
University, March 2007 (invited plenary talk).

[Goncalves and Yi 2004] Goncalves, J. and T. Yi, “Drosophila circadian rhythms: Stability,
robustness analysis, and model reduction”, Symp. Mathematical Theory of Networks and
Systems, Leuven, Belgium, July 2004.

[Gorban et al. 2006] Gorban, A., N. Kazantzis, |. Kevrekidis, H. Ottinger, and C.
Theodoropoulos, Eds., Model Reduction and Coarse-Graining Approaches for Multi-Scale
Phenomena, Springer-Verlag, Berlin, 2006.

[Habets and van Schuppen 2004] Habets, L. and J. van Schuppen, “A control problem for affine
dynamical systems on a full-dimensional polytope”, Automatica, Vol. 40, 2004, pp. 21-35.

[Hedstrom et al. 2000] Hedstrom, P., R. Sandell, and C. Stern, “Mesolevel networks and the
diffusion of social movements: The case of the Swedish Social Democratic Party”, American
Journal of Sociology, Vol. 106, 2000, pp. 145-172.

[llic and Zaborszky 2000] llic, M. and J. Zaborszky, Dynamics and Control of Large Electric
Power Systems, Wiley, NY, 2000.

[Kleinberg 2007] Kleinberg, J., “Cascading behavior in networks: Algorithmic and economic
issues”, Algorithmic Game Theory (Nisan et al., eds.), Cambridge University Press, 2007.

[Kushner 1967] Kushner, H., Stochastic Stability and Control. Academic Press, NY, 1967.

Laviolette et al. 2008] Laviolette, R., K. Glass, and R. Colbaugh, “Deep information from limited
observations of RYF systems: The forest fire model”, Presentation at 28" Annual CNLS/LANL
Conference, Santa Fe, NM, May 2008.

[Leskovec et al. 2006] Leskovec, J., L. Adamic, and B. Huberman, “The dynamics of viral
marketing”, Proc. 7" ACM Conference on Electronic Commerce, Ann Arbor, MI, June 2006.

[Martin et al. 2003] Martin, P., R. Murray, and P. Rouchon, “Flat systems, equivalence, and
trajectory generation”, CDS Technical Report 2003-008, California Institute of Technology,
2003.

[Milner 1989] Milner, R., Communication and Concurrency, Prentice-Hall, NJ, 1989.

[Narendra and Annaswamy 1988] Narendra, K. and A. Annaswamy, Stable Adaptive Systems,
Prentice Hall, NJ, 1988.

[Newman 2003] Newman, M., “The structure and function of complex networks”, SIAM Review,
Vol. 45, pp. 167-256, 2003.

[NuSMV 2007] http://nusmv.irst.itc.it, 2007.

[Parrilo 2000] Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization, PhD dissertation, California Institute of Technology,
2000.

[Prajna et al. 2007] Prajna, S., A. Jadbabaie, and G. Pappas, “A framework for worst case and
stochastic safety verification using barrier certificates”, IEEE Trans. Automatic Control, Vol. 52,
2007, pp. 1415-1428.

[Ramadge and Wonham 1987] Ramadge, P. and W. Wonham, “Supervisory control of a class of
discrete event systems”, SIAM J. Control and Optimization, Vol. 25, pp. 206—230, 1987.

68

[Salganik et al. 2006] Salganik, M., P. Dodds, and D. Watts, “Experimental study of inequality
and unpredictability in an artificial cultural market”, Science, Vol. 311, pp. 854-856, 2006.

[Sontag 1998] Sontag, E., Mathematical Control Theory, Second Edition, Springer, NY, 1998.
[SOSTOOLS 2007] http://www.cds.caltech.edu/sostools/, 2007.

[Stamp et al. 2009] Stamp, J., R. Colbaugh, R. Laviolette, A. Mcintyre, and B. Richardson,
“Impacts analysis for cyber attack on electric power systems”, SAND Report, Sandia National
Laboratories, September 2008.

[Tabuada and Pappas 2006] Tabuada, P. and G. Pappas, "Linear time logic control of discrete-
time linear systems”, IEEE Trans. Automatic Control, Vol. 51, pp. 1862-1877, 2006.

[Watts et al. 2002] Watts, D., P. Dodds, and M. Newman, “Identity and search in social
networks”, Science, Vol. 296, pp. 1302-1305, 2002.

[Wedeward 2006] Wedeward, K. Personal communication, Summer 2006.

69

Appendix A: Matlab program for fast finite (bi-)simulation of linear control systems
% Reformulated bisimulation algorithm -- prototype implementation

% Judy Gardiner and Rich Colbaugh
% 11/1/05

function dummy = bisim()

% Define continuous state space system
% xdot = A*X + B

n=2 % dimension of state space - max of 64 in this prototype
m=1 % number of inputs

A=1]J01; -1 0] % system matrix (nxn)

B = [0; 1] % input matrix (nxm)

% Define lattice for finite state transition system

% A state is a box in the lattice defined as an n-vector.

% q = [g(); q(2)2; ... g(n)], with each q(i) ranging from 1 to d(i)
% The lattice is uniform in each dimension. Vertices defined as:

% x(i) = alpha(i)*q(i) + beta(i) for q(i) ranging from 1 to d(i)+1

dimLattice = [4; 4] % dimensions of lattice, i.e., no. of boxes (states?)
% in lattice for each of n dimensions

alpha = [1; 1] % scale factor for each of n dimensions

beta = [-3; -3] % offset for each of n dimensions

numStates = prod(dimLattice) % size of the discrete state set

ProjB = any(B,2) % logical projection of B onto each axis (nx1l)
APos = zeros(n)
ANeg = zeros(n);
APos(A>0 & ~eye(n))
0 elsewhere
ANeg(A<O & ~eye(n)) = A(A<O & ~eye(n)) % Negative nondiagonal elements of A,
0 elsewhere

ProjAPos = sum(APos,?2) % Vector; sum of positive nondiagonal elements of A
in each row

ProjANeg = sum(ANeg,?2) % Vector; sum of negative nondiagonal elements of A
in each row

clear APos ANeg % release space

A(A>0 & ~eye(n)) % Positive nondiagonal elements of A,

70

%
%

%
0
%
%

X

X

0

%

X

0

%

T
T

%
%

%
%
%
%
%
%

%
T

e

Outputs are two logical arrays defining the possible transitions between
adjacent states. Left is defined to be lower index, right is higher.

TransRight(n, di1, d2, ... dn) left-to-right arrows
TransLeft(n, d1, d2, ... dn) right-to-left arrows
TransRight(i, k1, k2, ... kn) is true if there is a transition into
state q = [k1l; k2; ... kn] from the left along dimension i
TransLeft(i, k1, k2, ... kn) is true if there iIs a transition out of
state q = [k1l; k2; ... kn] to the left along dimension i

ransRight = logical (zeros(n,numStates));
ransLeft = logical (zeros(n,numStates));

For each pair of adjacent states q and " in the lattice, with g>q-°,
determine q"-->gq (transition to right/up) and g-->q" (transition to
left/down) based on vertex information. (q" is q prime)

Note: Each g (except on edge of lattice) has 2n adjacent states, one
left/lower and one right/upper in each dimension.

Indices of q are the indices of its lowest numbered vertex.

loop through all states
or iState = 1l:numStates
iState
g = vind2sub(dimLattice, iState) % get coordinates for q
% Look at left (lower) adjacent state in each dimension

for k = 1:n % loop through dimensions
% q° Is the same as q except 1 less in dimension i
if qk) == % check for left/lower edge of lattice
continue
end

if ProjB(k)
TransRight(k, iState) = true;
TransLeft(k, iState) = true;

x = alpha .* q + beta % Calculate x from gq (scalar multiply)
p = A(k,:)*x % Projection of Ax onto axis i
ifp>0 |]] ptProjAPos(k) > 0
TransRight(k, iState) = true;
end
ifp<0 |] ptProjANeg(k) <O
TransLeft(k, iState) = true;
end
end
nd

71

TransRight
TransLeft

% Vector form of ind2sub. Converts a l-dimensional index into an array
% of subscripts for an n-dimensional array with dimensions given by d.

function y = vind2sub(d, ind)

n = size(d,1);
y = zeros(n,1);
i =1ind - 1; % change from l-based to O-based indexing
ifn>1
for k=1:n-1
y(k) = mod(i,d(k));
i = (-y(k) 7 dk);
end
end
y(n) = i;

y =y + ones(n,l); % go back to l-based indexing

% Vector form of sub2ind. Finds the 1-dimensional index from an array
% of subscripts for an n-dimensional array with dimensions given by d.

function ind = vsub2ind(d,s)
n = size(d,1);
ind = s(n) - 1; % change from l-based to O-based indexing
ifn>1

for k=n-1:-1:1

ind = ind*d(k) + s(k) - 1;

end
end
ind = ind + 1; % go back to l1-based indexing

% Computes the transitions into and out of a state q (defined by vertex v)
% with respect to adjacent states g°"<q in the dimensions (k) specified.
% Function bisim_init must be called first.

%

function [Transln, TransOut] = bisim_trans(v,kDim)

% Inputs:

% \% - n-vector; indices of lowest vertex of state (; shared vertex

% between g and all g° being considered

% kDim - row vector defining the dimensions of interest; transitions to
% be computed are those parallel to these axes; length of kDim is
% between 1 and n

% Outputs:

% Translin - logical row vector of same size as kDim; true if there is a
% transition into g from the lower adjacent state in the

% dimension specified by the corresponding element of kDim.

% These transitions represent arrows to the right or up.

% TransOut - similar to Transln; indicates transitions out of q into

% lower adjacent states; represents arrows to the left or

% down.

72

% Global variables -- These must have been set by bisim init
global n A ProjB ProjAPos ProjANeg
global nParts Xmin Xscale

% Initialize transitions to false
Transln = logical(zeros(size(kDim)));
TransOut = logical(zeros(size(kDim)));

% Compute X corresponding to v, the lowest vertex of q
X = Xscale .* (v-1) + Xmin; % Calculate x from q (scalar multiply)

% Determine all transitions into and out of g from adjacent states " in
% the dimensions listed in kDim, with gq"<gq. Each gq® is the same as q
% except 1 less in dimension k.

for 1 = 1:size(kDim,2) % loop through dimensions (axes)
k = kDim(i);
if v(k) == % check for left/lower edge of lattice

continue

end
p = A(k, 2)*x; % Projection of Ax onto axis k
Transin(i) = ProjB(k) | p+ProjAPos(k) > 0O;
TransOut(i) = ProjB(k) | p+ProjANeg(k) < O;

end

73

Appendix B: Matlab program for finite (bi-)simulation of HDS model for 20-bus power grid
% bisim_20bus

% Script to check a trajectory from the 20-bus continuous model against the
% finite-state-machine bisimulation model

% Note: This code is written specifically to work with Kevin®s model.

% Inputs:

% System matrices: A0, Al, A2, A3, B

% Incidence matrix for line trips: IMat

% Thresholds for line trips: dthetamax

% Output trajectory: xout, tout

% Finite-state partition size: sizeXParts (state variables),

% sizeYParts (dtheta variables),

% both are uniform along each axis and symmetric about O

% Number of partitions for each trip variable (dtheta) axis: nYParts

% Note: Trip variables are treated as system outputs and named y.

% They are dtheta values scaled by dthetamax so trip points are +/-1.

% Outputs:

% Flag indicating validity of trajectory under bisimulation (true=valid)
% Finite-state trajectory with time each state was entered

% Time and identity of all trip events

% Clear memory and close figures
clear all; close all;

% Define global variables, set in bisim_init
global AA ProjB ProjAPos ProjANeg % projections used in bisimulation

global Xscale Xoff % grid definition used in bisimulation
% Load system matrices
load ABs % A0, A1, A2, A3, BO, IMat

dthetamax = 0.01*ones(30,1); dthetamax([6,9,10,14,27]) = 0.025;

% Transform system to use theta differences instead of thetas as state

% variables. This function contains a lot of model-specific information.
% With transformed system, xdot=Ax+Bu; y=Cx; trip if any(abs(y)>1).

% Transformed state grid is orthogonal.

% Note: Outputs are transformed matrices, except T and C.

[T,AO0,A1,A2,A3,B0,C]=transabc(A0,Al1,A2,A3,B0, IMat,dthetamax);

% Load trajectory

load traj % xout, tout

npoints=size(xout,1);

y=C*xout"; % Compute output variables, aka line trip variables
X=T\xout"; % Transpose and transform state vectors

tripped=false(30,1); % which lines have tripped
% Set Finite-state grid information
[Xscale,Xoff,Yscale,Yoff,qymax] = set_fsgrid;

% Initialize variables, assuming trajectory starts at x=0

A=AO;
B=BO;

74

bisim_init(A,B);

g=zeros(57,1); % finite state

qout=q-; % list of finite states

tqgout=0; % list of times associated with finite states
teout=[]; % times of trip events

qgeout=[]; % finite state at time of trip events
ieout=[]; % index of trip events

validtraj=true;
xlast=zeros(57,1); % continuous state
for k=1l:npoints

end

gnext=Floor ((x(:,k)-Xoff)./Xscale);
% Check for valid transition under bisimulation
validtraj=check_trans(q,gnext,xlast,x(:,k));
xlast=x(:,k);
if ~validtraj
qout=[qout; gnext"]; % save invalid state for output
tgout=[tqout; tout(k)];
disp(["Invalid transition found at time " ,num2str(tout(k))]);
break
end
% Output new finite state
g=gnext;
qout=[qout; q"];
tgout=[tqout; tout(k)];
% Check for line trip
qy=Floor((y(:,k)-YoffF)./Yscale);
itrip=check_trip(qy,qgymax,tripped); % ix of newly tripped line or O
if itrip>0
tripped(itrip)=true;
% Output line trip info
teout=[teout; tout(k)];
ieout=[ieout; itrip];
geout=[geout; q"];
% Update system matrix, projections for bisimulation, fs grid
disp(["Event " ,num2str(itrip),” found at time ",num2str(tout(k))]);
switch itrip
case 8
A=A2;
case 12
A=A1;
case 30
A=A3;
otherwise
disp(["Response not found for ie = *, num2str(itrip)]);
end
bisim_init(A,B);
end

if validtraj

end

disp("Trajectory is valid under bisimulation.®)

% Bisimulation finished. Save output variables to file.
save bisimout.mat validtraj qout tgqout teout ieout geout

75

Appendix C: Matlab programs for predictability assessment of online market model

% Predictability Assessment for Online Market Model

% SOS-based predictability assessment for online market
% model: IC uncertainty quantification analysis case.

% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5
clear; echo on;
syms x1 x2;

sigma = 0.1;
thresh = 0.8;

o o
==

% Vector fields
% f1 = [-x1+0.5*x2;

% -2.0*x2];
% 2 = [0.5*x2-x1*x2;
% -X2*x2] ;
% F1 = [-x1*x2+0.5*x2;
% -2.0*x2];

% g = 10.0*sigma*x2;

fl [-x1*x2+0.5*x2;

-2.0*x2];

g = 4.0*sigma*x2;

% Degree of the barrier certificates
deg = 10;

prog = sosprogram([x1; x2]);

% Constructing Bl -- it must be >=0 on \mathcal{X}
[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,sosl] = sossosvar(prog,monomials([x1,x2],0:deg/2));
Bl = sosl+mul*(x1+1.0)*(2.0-x1)+mu2*(x2+1.0)*(2.5-x2);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
exprl = Bl-mul*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-1;
%exprl = Bl-mul*(x1l-thresh)*(2.0-x1)-mu2*(x2+1.0)*(0.1-x2)-1;
prog = sosineq(prog,exprl);

[prog,gamma] = sospolyvar(prog,1);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
expr2 = Bl+mul*(x1-0.3)*(0.6-x1)+mu2*(x2-0.9)*(1.0-x2);

76

%expr2 = Bl+mul*(x1-0.4)*(0.5-x1)+mu2*(x2-0.9)*(1.0-x2);
%expr2 = Bl+mul*(x1-0.4)*(0.5-x1)+mu2*(x2-0.0)*(0.1-x2);
%expr2 = B1+mul*(x1-0.4)*(0.5-x1)+mu2*x2*(0.02-x2);
expr2 = -expr2+gamma;

prog = sosineq(prog,expr2);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));

[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));

expr3 = -(diff(B1,x1)*f1L(1)+diffF(B1,x2)*f1(2)+0.5*g"2*diff(B1,x1,2))...
-mul*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2);

sosineq(prog, expr3);

prog

prog sossetobj(prog,gamma) ;

% Impose a lower bound on gamma, for better termination

prog = sosineq(prog,gamma-0.5);

prog = sossolve(prog);

%

% Get solution
GMA = sosgetsol(prog,gamma)

=

% Predictability Assessment for Online Market Model

=S4

% SOS-based predictability assessment for online market model:
4 parametric uncertainty quantification analysis case.

=

=S4

» Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5
clear; echo on;

syms x1 x2 v; % vl \in [0.9, 1.1], v1 \in [0.8, 1.2]
% v2 \in [3.0, 5.0], v2 \in [2.0, 6.0]

=
o

sigma = 0.1; 0.1 1.
thresh = 0.8; 0.9

XX

% Vector fields
% f1 = [-x1+0.5*x2;

% -2.0*x2];

% 2 = [0.5%x2-x1*x2;
% -X2*x2] ;

% F1 = [-x1*x2+0.5*x2;
% -2.0*x2];

% g = 10.0*sigma*x2;

Tl

[-x1*x2+0.5*x2;
-2.0*x2];

77

g = v*sigma*x2;

% Degree of the barrier certificates
deg = 10;

prog = sosprogram([x1; x2; v]);

% Constructing Bl -- it must be >=0 on \mathcal{X}
[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,sosl] = sossosvar(prog,monomials([x1,x2],0:deg/2));
Bl = sosl+mul*(x1+1.0)*(2.0-x1)+mu2*(x2+1.0)*(2.5-x2);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
exprl = Bl-mul*(x1l-thresh)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-1;
%exprl = Bl-mul*(x1-thresh)*(2.0-x1)-mu2*(x2+1.0)*(0.1-x2)-1;
prog = sosineq(prog,exprl);

[prog,gamma] = sospolyvar(prog,1);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
expr2 = Bl+mul*(x1-0.4)*(0.5-x1)+mu2*(x2-0.9)*(1.0-x2);
%expr2 = Bl+mul*(x1-0.4)*(0.5-x1)+mu2*(x2-0.0)*(0.1-x2);
%expr2 = B1+mul*(x1-0.4)*(0.5-x1)+mu2*x2*(0.02-x2);

expr2 = -expr2+gamma;

prog = sosineq(prog,expr2);

[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,v],0:deg/2-1));

expr3 = -(diff(B1l,x1)*FL(1)+difF(B1,x2)*F1(2)+0.5*g 2*difF(B1,x1,2)). .

-mul*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2)-mu3*(v-3.0)*(5.0-Vv);

%expr3 = -(difF(B1,x1)*FL(1)+difF(BL,x2)*F1(2)+0.5*g 2*diff(B1,x1,2))...

% —mul*(x1+1.0)*(2.0-x1)-mu2*(x2+1.0)*(2.5-x2);
prog = sosineq(prog,expr3);

prog = sossetobj(prog,gamma);

% Impose a lower bound on gamma, for better termination

prog sosineq(prog,gamma-0.5);

prog sossolve(prog);

%

% Get solution
GMA = sosgetsol(prog,gamma)

78

Appendix D: Matlab program for SOS analysis of S-HDS epidemic model

X

» Social Cascading SIR Via Context Switching

% Multi-scale model implemented as an S-HDS with
% rigorous stochastic SIR continuous dynamics.

% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5
clear; echo on;
syms x1 x2 x3 v; % v \in [0.9, 1.1], v \in [0.9, 1.2], v \in [0.8, 1.2]

number_contexts = 2.0; % 1.0, 2.0, 4.0
little pop = number_contexts;
big pop = 10.0; % 2.0

Imax = 5.0;

beta = (1.0/(number_contexts*number_contexts)); % 0.5 1.0
delta = 0.05;

sigma 0.02; % 0.01, 0.02, 0.0225, 0.025
lambda = v*0.001; % 0.001 0.004
thresh = 0.01*lambda; % 0.05*lambda

% Initial probability distribution for the discrete state
%p = 0.5;
p=1.0;

% Vector fields

fl = [-beta*x1*x2*x2;
beta*x1*x1*x2-delta*x2;
0.0]1;

f2 = [0.0;
0.0;
x3*(big_pop-x3)];

%Fl = [-2.0*beta*x1l-beta*x1*x2+(beta*popl-delta)*x1;
% delta*x1];

%F2 = [-2.0*beta*x1l-beta*x1*x2+(beta*pop2-delta)*x1;
% delta*x1];

%g = [sigma;
% -sigma;
% 0.01;

g = [-sigma*x2;

79

sigma*x1;
0.01;

% Degree of the barrier certificates
deg = 6; % 6 10

prog = sosprogram([x1l; x2; x3; v]);

% Constructing Bl, B2 -- they must be >=0 on \mathcal{X}

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,sosl] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2));

Bl = sosl+mul*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)...
+mu3*(x3+10.0)*(20.0-x3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,sosl] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2));
B2 = sosl+mul*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2). ..
+mu3*(x3+10.0)*(20.0-x3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

exprl = Bl-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2). ..
-mu3*(x3-Imax)*(20.0-x3)-1;

prog = sosineq(prog,exprl);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

exprl = B2-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2). ..
-mu3*(x3-Imax)*(20.0-x3)-1;

prog = sosineq(prog,exprl);

[prog,gamma] = sospolyvar(prog,1);

expr2 = subs(p*B1+(1-p)*B2,{x1,x2,x3},{(number_contexts-0.5),0.5,0.1});
expr2 = -expr2+gamma;

prog = sosineq(prog,expr2);

%[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/72-1));
%[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
%[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
%expr3 = -(diff(Bl,x1)*f1(1)+diff(B1,x2)*F1L(2)+difF(B1,x3)*f1(3)...

% +0.5*sigma™2*(diff(B1,x1,2)+diff(B1,x2,2)-
2_.0*diff(diff(B1,x1),x2)).-..

% +(lambda*x2-thresh)*B2-(lambda*x2-thresh)*B1). ..

% -mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2) . ..

80

% -mu3*(x3+10.0)*(20.0-x3);
%prog = sosineq(prog,expr3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mud4] = sossosvar(prog,monomials([x1,x2,x3,v],0:deg/2-1));

expr3 = -(diff(B1,x1)*FL(1)+difF(B1,x2)*F1(2)+difF(B1,x3)*F1(3)...

+0.5*sigmar2*(diFF(BL,x1,2)+diFF(B1,x2,2)+2.0*difF(diFF(B1,x1),x2)). - .

+(lambda*x2*x2-thresh)*B2-(lambda*x2*x2-thresh)*B1) ...
-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2) . - .
-mu3*(x3+10.0)*(20.0-x3)-mud*(v-0.9)*(1.2-Vv);

prog = sosineq(prog,expr3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
expr3 = -(diff(B2,x1)*f2(1)+diff(B2,x2)*F2(2)+diff(B2,x3)*f2(3))...

+0.5*sigmar2* (diFF(B2,x1,2)+di FF(B2,x2,2)+2.0*diFF(diFF(B2,x1),x2)). - .

-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2) . ..
-mu3*(x3+10.0)*(20.0-x3);
sosineq(prog,expr3);

prog

prog = sossetobj(prog,gamma);

% Impose a lower bound on gamma, for better termination
prog = sosineq(prog,gamma-0.1);

%prog = sosineq(prog,gamma-0.2);

%prog = sosineq(prog,gamma-0.346);
%prog = sosineq(prog,gamma-0.145);
%prog = sosineq(prog,gamma-0.069);

prog = sossolve(prog);

%
% Get solution
GMA = sosgetsol(prog,gamma)

81

Appendix E: Matlab program for SOS analysis of S-HDS social movement model

% Social Movement Cascades Via Context Switching

% Multi-scale model implemented as an S-HDS
% with Hedstrom continuous dynamics.

% Uses SOSTOOLS version 2.01 and SeDuMi 1.05R5

clear; echo on;
syms x1 x2 X3;

number_contexts = 4.0; % 1.0, 2.0, 4.0
little_pop = number_contexts;
big_pop = 10.0; % 2.0

Imax = 5.0;

beta = (1.0/number_contexts); % 0.5 1.0

deltal = 0.1; % 0.1 0.025 0.55 empirical evidence suggests deltal=10*delta2
delta2 (0.01/number_contexts); % 0.002 0.005 0.01

lambda = 0.001; % 0.001 0.004

thresh = 0.05*1ambda;

% Initial probability distribution for the discrete state
%p = 0.5;
p=1.0;

% Vector fields

Tl = [-beta*x1*x2;
beta*x1*x2-deltal*x2-delta2*x2*(little_pop-x1-x2);
0.0]1;

f2 = [0.0;
0.0;
x3*(big_pop-x3)];

%Fl = [-2.0*beta*x1l-beta*x1*x2+(beta*popl-delta)*x1;
% delta*x1];

%F2 = [-2.0*beta*x1-beta*x1*x2+(beta*pop2-delta)*x1;
% delta*x1];

g = 0.0;

82

% Degree of the barrier certificates
deg = 6; % 6 10

prog = sosprogram([x1; x2; x3]);

% Constructing Bl, B2, B3 -- they must be >=0 on \mathcal{X}

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] sossosvar (prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] sossosvar (prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,sosl] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2));

Bl = sosl1+mul*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2)...
+mu3*(x3+10.0)*(20.0-x3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,sosl] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2));
B2 = sosl+mul*(x1+10.0)*(10.0-x1)+mu2*(x2+10.0)*(10.0-x2). ..
+mu3*(x3+10.0)*(20.0-x3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

exprl = Bl-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2). ..
-mu3*(x3-Imax)*(20.0-x3)-1;

prog = sosineq(prog,exprl);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

exprl = B2-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2). ..
-mu3*(x3-Imax)*(20.0-x3)-1;

prog = sosineq(prog,exprl);

[prog,gamma] = sospolyvar(prog,1);

expr2 = subs(p*B1+(1-p)*B2,{x1,x2,x3},{(number_contexts-0.5),0.5,0.1});
expr2 = -expr2+gamma;

prog = sosineq(prog,expr2);

%[prog,mul] = sossosvar(prog,monomials([x1,x2],0:deg/2-1));
%[prog,mu2] sossosvar (prog,monomials([x1,x2],0:deg/2-1));

%expr3 = —(difF(BL,x1)*FL(1)+diFF(BL,x2)*FL(2) + 0.5*g 2*diff(B1,x2,2)...

% + 0.5*B2-0.5*B1)-mul*(4"2-x1"2)-mu2*(4-x2)*(x2+1.5);
%prog = sosineq(prog,expr3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
expr3 = -(diff(B1,x1)*F1L(1)+diFF(BL,x2)*f1(2)+diff(B1,x3)*FL(3)...
+(lambda*x2-thresh)*B2. ..
-(lambda*x2-thresh)*B1) ...
-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2) - - .

83

-mu3*(x3+10.0)*(20.0-x3);
prog = sosineq(prog,expr3);

[prog,mul] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu2] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));
[prog,mu3] = sossosvar(prog,monomials([x1,x2,x3],0:deg/2-1));

expr3 = -(diff(B2,x1)*F2(1)+difF(B2,x2)*F2(2)+difF(B2,x3)*F2(3)). ..

-mul*(x1+10.0)*(10.0-x1)-mu2*(x2+10.0)*(10.0-x2) . ..
-mu3*(x3+10.0)*(20.0-x3);
prog = sosineq(prog,expr3);

prog sossetobj(prog,gamma) ;

% Impose a lower bound on gamma, for better termination
prog = sosineq(prog,gamma-0.1);

%prog = sosineq(prog,gamma-0.2);

%prog = sosineq(prog,gamma-0.346) ;
%prog = sosineq(prog,gamma-0.145);
%prog = sosineq(prog,gamma-0.069);

prog = sossolve(prog);

%
% Get solution
GMA = sosgetsol(prog,gamma)

84

