

Position Paper: Modeling and Simulation for Process Control System Cyber Security Research, Development and Applications

For presentation at The Department of Homeland Security Workshop
on Future Directions in Cyber-physical Systems Security
July 22-24, 2009

Michael J McDonald
Bryan T Richardson
Sandia National Laboratories¹
1/20/2010

Introduction

The greatest security challenge that industrial control systems (ICS) face over traditional Information Technology (IT) systems is that they interface with, and control, physical systems. At a cyber² level, this difference results in topological configurations, data characteristics and timing requirements that are unique to ICS. At a system level, this uniqueness is particularly important because cyber attacks on the system could lead to serious consequences ranging from loss of product up to large-scale loss of life.

Research Needs

Significant research is needed to provide new and improved component-level security and threat mitigation technologies to ICS. Moreover, new approaches and tools are needed to better understand the specific vulnerabilities of ICS at a system level so that we can successfully defend them against cyber attacks. The tight interplay between the human, physical and cyber aspects of these systems compounds the complexity of defending these systems. Additionally, serious attackers might well execute complex cyber battles plans in carrying out their attacks. The two recently reported national-level cyber attacks experienced by Estonia¹ and Georgia² may foreshadow future attacks upon the United States. We need to prepare ourselves to survive these cyber attacks at a system level.

We assert that the key system-level need is threefold. First, we need to improve our ability to analyze, in depth, ICS threat vectors and their potential impacts upon the systems they control. Second, we require a new means of performing deep vulnerability assessments of existing systems without having to perturb the on-line operations of those systems. Third, we need an environment where engineers, security experts and operators can exercise their security systems and train for both large and small attacks upon ICS. By addressing these needs in concert, we assert that the combined analyze, exercise and train regime will result in increasingly valid understandings and responses that, in the end, produce more secure ICS.

One promising area of research to address these needs is in hybrid analytic environments that serve as testbeds for analysis, design and training. Cyber security analyses traditionally utilize real systems (e.g., computers, network equipment), computer emulations (e.g., virtual machines) and simulation models separately to understand the interplay between cyber threats and safeguards. In contrast, new systems are being developed to combine these three into what we term simulated, emulated and physical environments for our investigative analysis (SEPIA).³ SEPIA environments provide relatively high fidelity representations of key system nodes while still leveraging the scalability and cost advantages of simulation tools for nodes that contribute to the analysis, but whose salient features for that analysis can be expressed at higher levels of abstraction. The need for these SEPIA environments is especially heightened when

¹ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

² Here, cyber includes everything that directly interfaces with the computers and networks.

investigating large-scale ICS infrastructures and other critical systems that cannot be completely replicated in a lab. Deep threats are best understood when the cyber, control and physical issues are addressed together.

Sandia,⁴ INL⁵ and UIUC⁶ have each developed hybrid simulation environments to address ICS security to varying levels of maturity. These Virtual Control System Environments (VCSEs) can already be used as analytic, exercise and training testbeds for cyber control security work. They typically include actual supervisory control and data acquisition (SCADA) elements, including operator control stations, which run on real and virtualized computers. These control stations connect through simulated, emulated and physical (SEP) networks to SEP control equipment that uses real network interfaces to represent the cyber parts of the systems that are subject to attack. Thus, even though simulation and emulation is used as a cost-effective yet scalable way to represent portions of the network, these elements typically support native cyber interfaces (e.g., Modbus, DNP3 and IEC68150 over TCP/IP and serial lines) such that they can interface directly with cyber threat and protection elements. The control equipment connects to plant and infrastructure simulation models that are programmed to respond in the same ways that real systems would respond when under the stresses of attack. For some problems, these simulation models extend beyond the immediate system when doing so adds to the realism that operators would experience and analysts would use in performing their work.

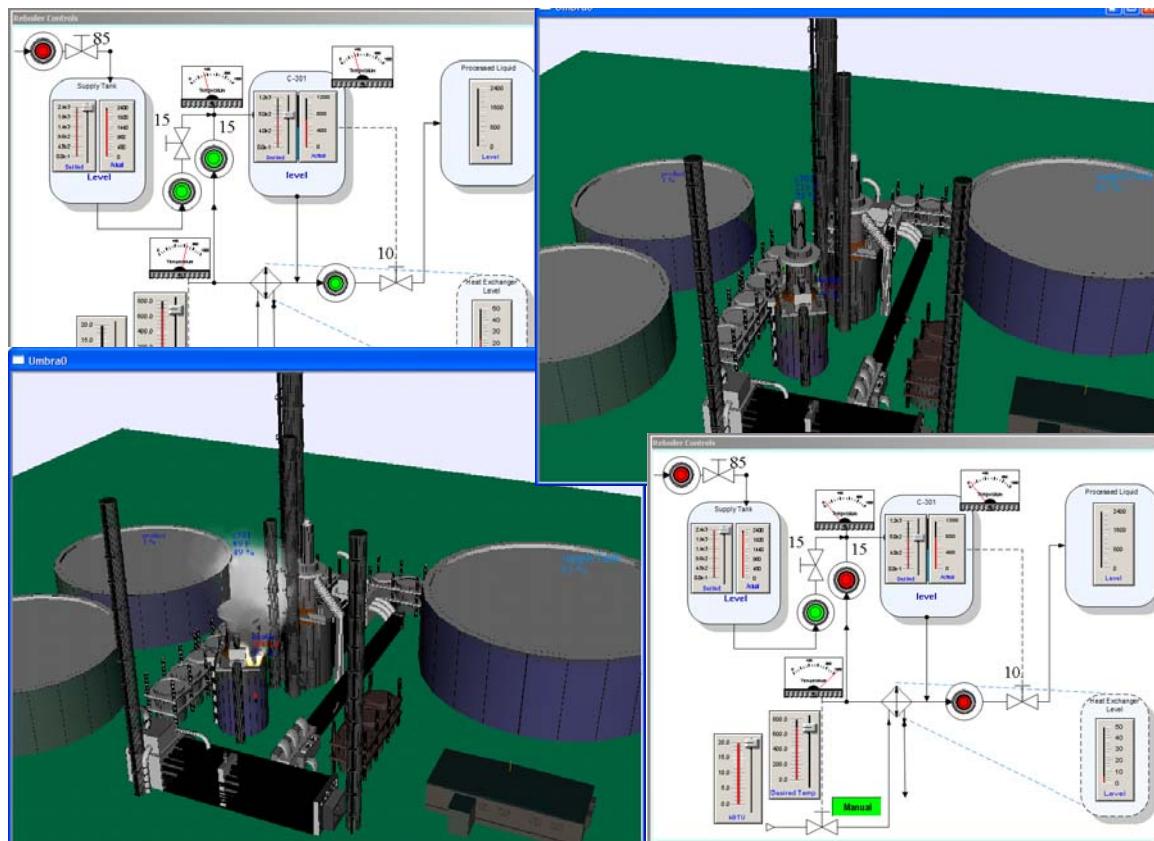


Figure 1: VCSE model of a small refinery before and after damaging cyber attack

Present Day Status of Sandia's VCSE Technologies

Figure 1 shows screen images from a recently-developed VCSE physical system simulator that was developed to train cyber defense concepts to oil refinery operators. The top images show its WonderWare-based⁷ controls and plant model before a cyber attack and the bottom after attack. In operation, students could experience and attempt to defend against actual malware that had been harvested from the Internet.

Sandia's VCSE physical system modeler is based upon Sandia's patented⁸ Umbra Framework.⁹ Umbra is a robust framework that was developed to model and, for some applications, control sophisticated systems. It has been used previously to develop and analyze a wide variety of automation systems including robotics, factory automation, military systems, and security technologies. It is an ideal tool for modeling physical and control systems and for interfacing with actual equipment and SCADA system elements.

Sandia has developed a variety of ways to represent key portions of ICS networks. For some experiments, Sandia uses real Ethernet connections with real switches, firewalls and routers to represent the ICS networks. In other experiments, Sandia uses a combination of emulation and simulation technologies to represent portions of the network. Included here is Network –in-a-Box (NIB), a Sandia tool that can instantiate and configure networks of emulated Cisco routers¹⁰ through a Sandia-developed hypervisor. With it, complex emulated networks can be quickly defined in XML and then instantiated with the click of a mouse. In addition, Sandia has developed extensive experience in, and extended the capabilities of, OPNET and its System-in-the-Loop (SITL)¹¹ simulation capability. For example, Sandia can generate NIB network emulation configurations directly from the OPNET editor, along with additional configurations that integrate OPNET network simulations (via SITL) into the overall system.

Sandia has developed a variety of SEPIA approaches to represent controllers, plant floor interfaces, sensors, intelligent actuators and remote terminal units (RTUs). In the examples in Figure 1, Sandia embedded simulated RTU models within its physical modeling environments. These simulated RTUs utilize commercial standard SCADA protocols (i.e., Modbus) and can accept real traffic from commercial SCADA systems and control equipment (e.g., other RTUs). In addition, Sandia has utilized and integrated a variety of commercial control equipment into its VCSE environment. In one effort, Sandia is utilizing both real and emulated SoftPLC Programmable Logic Controllers (PLCs) that can control elements within the physical system models, as well as be controlled through the SCADA system. The goal is to run a significant number of emulated PLCs on each host computer in large-scale ICS studies

Finally, Sandia has tested a variety of cyber threat representations against VCSE environments. These include using Ettercap for Man-in-the-Middle exploits, the Metasploit framework for testing a variety of host exploits, and several ICS-specific tools for investigating concepts on malicious assumption of control.

Conclusions

While still in their prototype form, the published successes at both Sandia and UIUC testify to the validity and practicality of VCSE for modeling and analysis. VCSE approaches provide new ways to conduct threat assessments that identify cyber-control system vulnerabilities, analyze the threat mechanisms and their potential effects, develop and test technologies to mitigate the threats, and train operators to fight threats that make it past our technical defenses. The ICS security community needs to extend its use of the VCSE approach to design solutions to pressing ICS cyber security problems. This will allow:

- Organizations to better secure their systems and prepare themselves (through training) to survive future cyber attacks that adversaries might one day launch directly against their cyber-controlled infrastructure systems.
- Government policy makers to better determine which aspects of cyber security protection should be regulated, which should be encouraged, and which are best left to free enterprise to address.
- Technology developers to better fit their technologies to the problem so that they can address the most pressing problems and develop the most cost-effective solutions possible.

ICS security researchers additionally need to improve the VCSE technology base itself. A variety of technologies, including additional simulators, emulators, physical components, cyber protection devices and penetration testing technologies, are available that future VCSE models might effectively draw from. VCSE system solutions are needed to more rapidly bring together these elements to address realistic systems at more appropriate scales and fidelities. Also needed are better ways to represent the control and threat environments at diverse degrees of detail, the ability to scale the simulation to represent the key systems of interest, the ability to rapidly design and configure experiments, the ability to conduct realistic and meaningful analyses, exercises, and training events, and the ability to capture data from these events for meaningful post-event analysis.

References

¹ Mark Landler and John Markoff, Digital Fears Emerge After Data Siege in Estonia, New York Times, May 29, 2007, http://www.nytimes.com/2007/05/29/technology/29estonia.html?_r=1&oref=slogin

² John Markoff, Before the Gunfire, Cyberattacks, New York Times, August 12, 2008, <http://www.nytimes.com/2008/08/13/technology/13cyber.html>

³ McDonald, Michael J., Onunkwo, Uzoma, Van Leeuwen, Brian P., "BGP Analysis using System-in-the-Loop (SITL) Testbed," OPNETWORK 2008, Washington DC, 08/25/2008.

⁴ Michael J. McDonald, Gregory N. Conrad, Travis C. Service, Regis H. Cassidy, "Cyber Effects Analysis Using VCSE: Promoting Control System Reliability" Sandia Report SAND2008-5954, Printed September 2008

⁵ Curtis Papke, & Stuart Walsh, "CIPR/sim, A comprehensive, real-time critical infrastructure modeling technology" https://inlportal.inl.gov/portal/server.pt/gateway/PTARGS_0_200_816_259_0_43/http%3B/inlpublisher%3B7087/publishedcontent/publish/communities/inl_gov/about_inl/home_page_fact_sheets/sheets/critical_infrastructure_resiliency_simulation_4.pdf

⁶ C. M. Davis, J. E. Tate, H. Okhravi, C. Grier, T. J. Overbye, and D. Nicol, "SCADA Cyber Security Testbed Development," Proceedings of the 38th North American Power Symposium, Carbondale, IL, September 2006, p. 613.

⁷ Invensys WonderWare, Lake Forest, CA <http://global.wonderware.com/EN/Pages/default.aspx>

⁸ Xavier; Patrick G., Gottlieb; Eric J., McDonald; Michael J., Oppel, III; Fred J., "Apparatus and method for interaction phenomena with world modules in data-flow-based simulation" United States Patent 7,085,694, Filed: October 22, 2001, issued August 1, 2006

⁹ Gottlieb, Eric Joseph, McDonald, Michael James, Oppel, Fred John III, Rigdon, James Brian, Xavier, Patrick Gordon, "The Umbra simulation framework as applied to building HLA federates," 2002 Winter Simulation Conference, December 8-11, 2002 in San Diego, CA. (Also Sandia Report SAND2002-0975C)

¹⁰ Using the Dynamips Cisco 7200 Simulator, http://www.ipflow.utc.fr/index.php/Cisco_7200_Simulator

¹¹ Press Release: OPNET Announces New System-in-the-Loop Software for Inter-operability Testing, Training, and Wargaming Exercises, OPNET, Bethesda, MD – December 13, 2005