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• Be strength results

– Hugoniot experiments

– Preliminary isentropic compression experiments

• Diamond strength results

– Hugoniot experiments
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A wave profile technique is used to

estimate high pressure compressive strength
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• Experiments required an Al/Cu flyer with 
peak velocities in the range of 7-14 km/s

• Three asymmetric loads were designed to 
produce 2 flyers per shot with ~10% 
difference in peak velocity

• ALEGRA 2D MHD was used  to set flight 
distances and to set charge voltages on Z

MHD simulations were critical in providing
load geometries to achieve desired flyer velocities

700 m Al / 150 m Cu flyer

Be stepped target (500, 700, 900, 
and 1100 m steps) with 100 m 

Cu on impact side (20 mm length)

Quartz (or LiF) 
windows
(4mm )
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Impact experiments provide a very

controlled, well defined loading at high velocity
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Multiple profiles allow for analysis of wave
speeds and estimation of strength on the Hugoniot

• Both cL and cB can be obtained from the 
Lagrangian analysis

• “Area under curve” provides an 
estimation of strength on the Hugoniot

• A similar analysis can be performed with 
the data with quartz windows by 
backward integrating to the Be/quartz 
interface

• Multiple profiles provides evolution of the 
wave enabling estimation of wave speed

• Enabled by the multiple diagnostics and 
the large area flyer plates on Z

• Similar experiments will be performed on 
Be obtained from LANL towards the level 
2 milestone for FY08

cL

cB

150 GPa
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Comparison of Hugoniot and sound speed 

measurements with QMD calculations for hcp Be
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• Mie-Grüneisen equation of state 
fit to the Hugoniot data

• Piecewise linear fit to the 
Poisson’s ratio

• QMD calculations in good 
agreement with experiment for 
the hcp phase of Be

Z data
QMD long.
QMD bulk

Z dedicated Hugoniot

Z impedance match

QMD

Z data
QMD

longitudinal

bulk

onset 
of melt

onset 
of melt
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The release data is providing an

estimate of the yield strength of Be below melt
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Assumes that Y=during unloading
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Different techniques are being evaluated to infer 

compressive strength from wave profile measurements
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Coax strength load hardware
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~60 GPaZ1790

We have obtained useful wave
profile data to infer strength in several materials
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Analysis of wave profiles is providing
reasonable estimates of strength at high pressure
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These same techniques will now

be applied to Be samples provided by LANL
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Preliminary results on Be

have been recently obtained on Z

Coax strength load hardware
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Preliminary results suggest the strength

effect is not as clean as in a single crystal material
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• Be strength results

– Hugoniot experiments

– Preliminary isentropic compression experiments

• Diamond strength results

– Hugoniot experiments
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• Wave speed determined from VISAR release 
or reloading profiles

• Elastic response on reloading indicates 
material not on current yield surface in 
shocked state

• h for aluminum non-zero, approximately zero 
for tungsten

targetimpactor

low or high impedance 
backing material

transparent 
window

laser 
interferometer

Shock-release and shock-reshock data indicate
that the material may not be on yield surface
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• Release paths below Hugoniot 

• Reshock paths significantly 
above Hugoniot

• Suggests significant relaxation 
of shear stress

• Release paths below Hugoniot 

• Reshock paths slightly above 
Hugoniot

• Suggests slight relaxation of 
shear stress

In some cases the deviation from the yield surface 
can be significant, suggesting negligible shear stress
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• Ceramics have very 
high strength in the 
shocked state

• Same value of Y from 
30-65 GPa

• Different values of h
seen
–AD-995 in 

hydrostatic state
–SiC most metal-like

• Damage mechanisms 
may play a role similar 
to that of thermal 
trapping or 
heterogeneous 
deformation in metals

Shear strength of shocked ceramics

Strength results for some ceramics
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C targets (500, 
750, and 1000 m) 

(6 mm )

Quartz (or 
Sapphire) windows

(4mm )

• Experiments required an Al/Cu flyer with 
peak velocities in the range of 13-24 km/s

• Three asymmetric loads were designed to 
produce 2 flyers per shot with ~10% 
difference in peak velocity

• ALEGRA 2D MHD was used  to set flight 
distances and to set charge voltages on Z

MHD simulations were critical in providing
load geometries to achieve desired flyer velocities

C

700 m Al / 150 m Cu flyer
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Z Hugoniot data provides evidence

for a triple point in the diamond melt curve

triple 
point

• Piecewise weighted 
least squares linear fits 
to the Z data

• Breakpoints for linear 
segments determined 
through minimization of 
Chi-square in non-
linear optimization

• Same trends in the 
magnitude of slope 
changes observed in 
experiment

• Experimental results 
consistent with QMD 
predictions regarding 
diamond-liquid-bc8 
triple point
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Use back integration to 
estimate the profiles at the 
diamond quartz interface

Multiple profiles allows for analysis of wave
speeds and estimation of strength on the Hugoniot

~600 GPa in C
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Estimated soundspeed for diamond

Multiple profiles allow for analysis of wave
speeds and estimation of strength on the Hugoniot

peak state

If we assume soundspeed 
is linear in strain then:

    dcc B
22

0
4

3

leads to:

 
    pBBpLp

BLp

BpLp uccc
cc

cc







2
0

Bulk soundspeed 
from Kerley model

which for this case gives:

cLp

cB
cBp

up
 36 GPa
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Release wave profiles corroborate

significant yield strength in the Hugoniot state
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• Reasonable agreement 
for direct impact into 
quartz window

• Significant difference 
between measured and 
simulated profiles with 
inclusion of diamond

quartz 
shock 
front

Direct quartz
impact

~600 GPa shock in diamond

measured

simulated
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Preliminary inference of  shear stress
suggest values in the range of ~25-40 GPa

• Hydrocode simulations 
provide insight into the yield 
strength 

• Poisson’s ratio is quite low, of 
order  = 0.1

• Reasonable agreement with 
measured profiles suggests 
 ~ 25-40 GPa
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Stress

Elastic perfectly 
plastic response

Modified 
response

~600 GPa shock in diamond

 ~ 0.1
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Impedance matching at window suggests
negligible shear stress in the Hugoniot state
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• Difference in impedance match 
state in Quartz is statistically 
significant, ~2.7% in Us

• Uncertainty in the measured 
Quartz shock velocity is <1%

• Incompatible with the release 
data

+c

-c
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Sesame EOS

Omega Data

Z Data

Al'tshuler
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Polynomial fit to Z data

0.9 Mbar

2.5 Mbar

11.8 Mbar

High pressure 
response of Silica 
is of fundamental 

importance to 
geophysics

Quartz is 
becoming the 
standard of 

choice for high 
pressure laser 

Hugoniot 
measurements

Dissociation 
of dense 

fluid

Silica

3.8 Mbar

Very precise Hugoniot data for
silica have been obtained on the Z accelerator
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Impedance matching at window suggests
negligible shear stress in the Hugoniot state

S
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Strain

• Better agreement between 
impedance match and 
experimental measurement

• Strong case for negligible 
shear stress in Hugoniot state

• Difference in impedance match 
state in Quartz may be 
statistically significant, ~1.7% 
in Us
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 – up Impedance match
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Hydrostat

Copper
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These results suggest that the simplistic
picture of strength is grossly inadequate
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 = Y
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A picture for diamond consistent with
present measurements has strength recovering

t ~ 10 ns
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• Be melts on the Hugoniot at ~210 GPa

• Be coexistence ~50 GPa

• Be melts directly from hcp (not bcc)

– Caused us to revisit the phase diagram

• Be exhibits significant yield strength near melt, ~3.5 GPa

• Extremely precise Hugoniot measurements obtained for diamond at 
multi-Mbar pressures

• Diamond melts on the Hugoniot at ~700 GPa

• Diamond coexistence is large, ~350-400 GPa

• There appears to be a diamond-liquid-bc8 triple point along the 
coexistence curve at ~880 GPa

• Diamond exhibits an extremely large yield strength near melt, ~50-
80 GPa

– It appears there is negligible shear stress in the shocked state

• Nano- and Micro-crystalline samples appear to behave similarly

Beryllium Conclusions

Diamond Conclusions

Summary


