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1. Introduction 

Forests of the southeastern United States are dominated by a relatively small number of conifer 
species. However, many of these forests also have a hardwood component composed of a wide 
variety of species that are found in all canopy positions. The presence or absence of hardwood 
species and their position in the canopy often dictates management activities such as thinning or 
prescribed burning. In addition, the characteristics of the under- and mid-story layers, often 
dominated by hardwood species, are key factors when assessing suitable habitat for threatened 
and endangered species such as the Red Cockaded Woodpecker (Picoides borealis) (RCW), 
making  information describing the hardwood component important to forest managers. 

General classification of cover types using LIDAR data has been reported (Song et al. 2002, 
Brennan and Webster 2006) but most efforts focusing on the identification of individual species 
or species groups rely on some type of imagery to provide more complete spectral information 
for the study area. Brandtberg (2007) found that use of intensity data significantly improved 
LIDAR detection and classification of three leaf-off deciduous eastern species: oaks (Quercus 
spp.), red maple (Acer rubrum L.), and yellow poplar (Liriodendron tulipifera L.). 

Our primary objective was to determine the proportion of hardwood species present in the 
canopy using only the LIDAR point data and derived products. However, the presence of 
several hardwood species that retain their foliage through the winter months complicated our 
analyses. We present two classification approaches. The first identifies areas containing 
hardwood and softwood (conifer) species (H/S) and the second identifies vegetation with foliage 
absent or present (FA/FP) at the time of the LIDAR data acquisition. The classification results 
were used to develop predictor variables for forest inventory models. The ability to incorporate 
the proportion of hardwood and softwood was important to the inventory as well as habitat 
assessments for the RCW. 

1.1 Data 

1.2 Study area 

This study was conducted on the Savannah River Site (SRS). SRS is a National Environmental 
Research Park covering 80,267 ha (198,344 acres) located in the southeastern coastal area of the 
United States in west central South Carolina. In partnership with the Department of Energy 
(DOE), the USDA Forest Service’s Savannah River Forest Station manages nearly 73,653 ha 
(182,000 acres) of commercial forest and more than 4,856 ha (12,000 acres) of non-forest land 
for a variety of natural resources. 

Forests of the area are about 69% pine and 31% hardwood or mixed pine-hardwood. Dominant 
pine species include longleaf (Pinus palustris Mill.) and loblolly (P. taeda L.) pine and common 
hardwood species include various oaks, yellow poplar, blackgum (Nyssa sylvatica Marsh.), 
sweetgum (Liquidambar styraciflua L.), red maple, hickories (Carya spp.), and hollies (Ilex 
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spp.). Bottomland hardwood forests are found along SRS streams and on the “islands” or 
“ridges” of the Savannah River swamp. In these forests, typical canopy species include water 
oak (Q. nigra L.), laurel oak (Q. laurifolia Michx.), sweetgum, elms (Ulmus alata Michx. and 
U. Americana L.), red maple, and yellow poplar. Swamp forests are common along the western 
boundary of the site, adjacent to the Savannah River. Baldcypress (Taxodium distichum L.) and 
water tupelo (Nyssa aquatic L.) are common in these forests. Within the forests of SRS, not all 
hardwood species are deciduous. SRS has a mixture of hardwood species that are evergreen, 
tardily deciduous, or that retain desiccated leaves through winter. 

1.3 Laser data 

LIDAR data were acquired for SRS in the spring of 2009 when deciduous trees were in leaf-off 
condition. Data were acquired using two Leica ALS50-II laser scanners (designated as sensor 46 
and sensor 77 by the data provider) mounted in separate fixed-wing aircraft and operating 
during the same time period. The average overall pulse density was approximately 10 pulses/m2. 
The total area covered by the acquisition was approximately 119,000 ha (294,055 acres). 
Acquisition specifications for the data are shown in Table 1. 
 

Table 1. Flight parameters and scanning system settings. 

Flying height above ground (planned) 1432 m 
Scan angle (flown) ±10° 
Scan angle (delivered)* ±8° 
Average scanning swath width (flown) 505 m 
Swath overlap (flown) 62.5 percent 
Scan frequency 58 Hz 
Pulse rate 150 kHz 
Beam divergence 0.22 mRad 

*Returns from the outer 2 degrees of each scan were deleted prior 
to delivery. This reduced the scan angle, swath width, and overlap. 

1.4 Field measurements 

Tree measurements were collected on 194 plots in the spring of 2009. The plot protocol used a 
nested set of circular, fixed area plots to characterize all trees with diameter at breast height 
(DBH) larger than 2.54 cm (1 inch). The basic plots were 0.04 ha (0.1 acre) unless there were 
fewer than 8 dominant or co-dominant trees present on the plot. For these sparse stands, the plot 
size was increased to 0.081 ha (0.2 acre). On the basic plot the following measurements were 
taken for live and dead trees with DBH larger than 7.62 cm (3 inches): species, DBH, height, 
crown base height, and crown class. A smaller 0.004 ha (0.01 acre) plot, nested within the basic 
plot was used to collect detailed information for the smaller trees. On this plot the same 
measurements were taken for live and dead trees with DBH larger than 2.54 cm (1 inch) and 
less than or equal to 7.62 cm (3 inches). Smaller trees on the basic plot but outside the smaller 
0.004 ha (0.01 acre) plot were tallied by species and size class (2.54 cm (1 inch) <= DBH < 5.08 
cm (2 inch) and 5.08 cm (2 inch) <= DBH < 7.62 cm (3 inch)). For this study data were 
summarized by species, hardwood/conifer classes, live/dead, and foliage absent/present 
conditions. 

A separate crew collected plot locations using dual-frequency, survey-grade GPS receivers 
(JAVAD Maxor. At least 600 positions were recorded for each plot center (10 minute 
occupation with 1-second epochs). Position data were post-processed using a continuously 
operating reference station (CORS) located close to the study site. 
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1.5 Photo measurements 

Twenty five additional 0.04 ha (0.1 acre) plots were established using aerial photography 
acquired in leaf-off conditions. The 25 photo plots were located in swamp areas where the 
dominant species were baldcypress and water tupelo. Both species were without foliage at the 
time of the acquisition. Locations for these plots were digitized directly from the digital 
orthophotos in a GIS. 

2. Methods 

2.1 Intensity adjustment 

Differences between the intensity values for the two sensors are visible in an image (7.62 m (25 
feet) square pixel) produced using the first returns (Figure 1: left image). Intensity values for 
first returns were compared using 4,419 5- by 5-meter samples distributed evenly (10m spacing) 
along the area covered by the two sensors (red line in Figure 1). These samples were extracted 
from the overall point cloud and descriptive statistics were computed for the intensity values in 
each sample (Table 2). Overall, sensor 46 recorded higher values than sensor 77 over the same 
target area. In general, the difference in the intensity values recorded by the two sensors (Figure 
2) is similar to the difference one would observe in photographs of the same area acquired using 
two different cameras or different exposure settings. Histogram matching is a relatively simple 
process that balances detector responses when dealing with images collected by different 
sensors or under different atmospheric conditions (Gonzalez and Woods 2007). A histogram 
matching procedure was implemented to adjust intensity values for first returns from sensor 46 
relative to those from sensor 77. 

     
Figure 1. Intensity images created using original intensity values for first returns (left) 
and adjusted intensity values for first returns (right). The red line on the left image 
shows the center of the area covered by both LIDAR sensors. The NE portion was 
collected using sensor 77 and the SW portion using sensor 46. 

2.2 Selection of training plots 

For our supervised classification, we wanted to identify training plots that represented a “pure” 
condition. We selected a subset of field plots based on the mix of species present on each plot. 
We wanted plots with basal area composed of either all conifer or all hardwood species. From 
the 194 field plots, 19 conifer plots and 15 hardwood plots were identified. 

Training plot selection was complicated by the presence of deciduous or tardily-deciduous 
hardwood species. When considering the presence or absence of foliage for trees on a plot, we 
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were able to identify only three plots with 98% or more of the basal area in species without 
foliage. Initially, we wanted all trees on a plot to have the same condition but found that none of 
the 194 plots met the criterion. To augment the data for the “foliage absent” condition, we used 
the 25 photo plots in addition to the three field plots. Thirty six plots had 98% or more of the 
basal area in species with foliage. 

 
Figure 2. Distribution of first return intensity values for sensor 46 and sensor 77 for the portion of the 

acquisition covered by both sensors. 

2.3 LIDAR-derived metrics 

We extracted samples from the original point cloud and the first return data with adjusted 
intensity values using the location and size of each plot. We computed metrics for all of the 
plots using 2- by 2-m cells--resulting in 98 cells for the 0.04 ha (0.1 acre) plots and 197 cells for 
the 0.081 ha (0.2 acre) plots. For the H/C classification, there were a total of 4,189 cells with 
2,071 cells representing pure hardwoods and 2,118 cell representing pure conifers. For the 
FA/FP classification, there were 6,660 cells with 2,831 representing vegetation without foliage 
and 3,829 representing vegetation with foliage. 

Two types of metrics were computed for each 2- by 2-m cells; Intensity metrics using only first 
returns with adjusted intensity values within 2m of the canopy surface, and metrics computed 
using the height above ground for LIDAR returns above 2m. We also computed a pulse 
penetration metric based on first and last-of-many return surfaces but did not find it useful for 
classification. 
 
To compute intensity metrics, a 0.5- by 0.5-meter resolution canopy surface model was used to 
isolate only first returns within 2m of the canopy surface. The returns in this sample were then 
compared to the LIDAR-derived ground model to eliminate all returns within 2m of the ground 
surface. The goal was to eliminate returns from understory vegetation, shrubs, and grasses that 
were not represented in field plot measurements. Finally descriptive metrics for the intensity 
values were computed using the remaining returns. 

Height metrics were computed using the plot samples from the original return data. Return 
heights were computed by subtracting the return elevation from an elevation interpolated from 
the bare ground surface models using the XY location of the return. Metrics were computed 
using all returns above 2m. In addition to the standard set of metrics output by the FUSION 
GridMetrics program (McGaughey 2012), we also computed relative height percentile values by 
dividing height percentile values by the 95th percentile value. The relative percentiles are not 
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sensitive to the tree height on the plots and proved more useful in the classification process than 
the actual percentile values. 

2.4 Classification 

Metrics computed for the cells were used in the R statistical package (R Development Core 
Team 2010) along with the Rattle data mining GUI (Williams 2009) to conduct a supervised 
classification to identify conifer and hardwood vegetation and vegetation with foliage 
absent/present. We applied three classification methods: Random forest (Breiman 2001, Liaw 
and Wiener 2002), a simple decision tree approach (Breiman et al. 1984), and the adaptive 
boosting model (Friedman et al. 2000). The basic process used to build and apply the 
classification rules was: 
 Conduct a Principle Components Analysis (PCA) to identify the components that explain 

the majority of the variation in the cell data, 
 Evaluate correlations between components and LIDAR-derived metrics and select metrics 

most highly correlated with the components for use in building the classification rules, 
 Conduct a classification using 70 percent of the cells to produce a set of 500 decision trees, 
 Use the decision trees and data for the remaining 30 percent of the cells to evaluate the 

performance of the classifier, 
 Apply the classification rules to cells for all plots at 2m cell resolution. 
 Compute the proportion of each plot in each of the vegetation conditions at 20m cell 

resolution. 

3. Results 

3.1 Intensity adjustment 

The adjusted intensity data were compared to the original data to evaluate the effectiveness of 
the intensity correction. An F-test indicated the original sample variances were not equal (p = 
1.98 * 10-32) and the variance of adjusted values were equal (p = 0.36) at the 5 percent level. The 
results of a t-test indicated the mean values of the samples were not equal in both the original 
data and the adjusted data. To further correct values for sensor 46, we applied a simple bias 
correction using the difference between the mean values for all samples. Table 2 shows the 
summary statistics for the original and adjusted intensity values and the right image in Figure 1 
shows an image generated using the adjusted intensity for first returns. 

Table 2. Summary statistics for first returns after intensity adjustment in 4,419 5- by 5-
meter samples. 

 Intensity values 
 Sensor 77 Sensor 46 Sensor 46  

(after histogram 
matching) 

Sensor 46  
(after bias 
correction) 

Mean 68 97 70 68 
Standard deviation 35 41 35 35 
Minimum 5 15 4 2 
Maximum 217 249 210 207 

 
3.2 Classification 

PCA led us to select four variables to build the H/C classification rules (Table 3) and four 
variables to build the FA/FP classification (Table 4). Overall, the four variables in each set were 
not highly correlated and they provided values that describe the return intensity and the shape of 
the return height distribution. 
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Classification tools used 70% of the data to build rules and the remaining 30% to evaluate 
classification error. For the H/C classification, the overall error for the random forest method 
was 1.8%. For the FA/FP classification, overall error was 3.7%. The adaptive boosting model 
produced errors of 5.5% for the H/C and 5.8% for the FA/FP classifications. The simple 
decision tree produced errors of 10.8% for the H/C and 8.7% for the FA/FP classifications. 

Table 3. Variables used in classification rules to differentiate hardwood and conifer 
species. 

Variable Description 
Int.Mean Mean intensity value for first returns close to the canopy 

surface (± 2m from canopy surface and height above 
ground greater than 2m) 

Elev.RP30 30th percentile (height) for all returns above 2m divided by 
the 95th percentile for all returns above 2m 

Percentage.all.returns.above.mean Proportion of all returns above the mean height 
Int.L3 Third L-moment for adjusted intensity values for first 

returns close to the canopy surface 
 

Table 4. Variables used in classification rules to differentiate vegetation with and 
without foliage. 

Variable Description 
Int.Mean Mean intensity value for first returns close to the canopy 

surface (± 2m from canopy surface and height above 
ground greater than 2m) 

Elev.RP40 40th percentile for all returns above 2m divided by the 95th 
percentile for all returns above 2m 

Percentage.first.returns.above.mean Proportion of first returns above the mean 
Int.L.CV L-moment coefficient of variation for adjusted intensity 

values for first returns close to the canopy surface 
 
The classification rules were applied to the 2- by 2-m grid cells for all plots and the results 
summarized to produce “hardwood fraction” (HF) and “foliage absent fraction” (FAF) metrics. 
We compared these proportions to those computed using the basal area measured on field plots. 
Figure 3 compares the summarized cell classifications for the H/S classification and Figure 4 
compares those for the FA/FP classification. In Figure 3 plots are separated based on the 
proportion of the basal area for hardwood species that retain their foliage through the winter. 
The red markers represent plots where more than five percent of the basal area is from species 
that retain their foliage and the green markers represent plots with less than five percent. 

4. Discussion 

A direct comparison of the H/S and FA/FP proportions is difficult since the plot data do not 
reflect the horizontal and vertical arrangement of trees and thus the proportion of a type visible 
from an aerial viewpoint may be different from the proportion measured on the ground. In 
reality, many of the hardwood species are shade tolerant and develop below a pine overstory. In 
many stands, the majority of the crowns associated with hardwood species would not be within 
2m of the upper canopy surface and so returns from hardwood vegetation would not appear in 
the point-cloud data used to compute the intensity metrics. 

For our data, the intensity values were not normalized to account for pulse strength, range, 
sensor gain, or atmospheric effects. While intensity normalization procedures have been 
described (Korpela 2008; Korpela et al. 2010), the process is not straight forward for the Leica 
ALS50-II sensors. This scanner provides automatic gain correction (AGC) to dynamically 
adjust the sensitivity of the detection circuitry to compensate for more or less reflective targets. 
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The gain settings and outgoing pulse strength were not available for use in a correction process 
so we adopted a more simplistic solution. The topography at SRS is generally mild with 
elevations ranging from 18 to 140 m. Flying height during the acquisition was consistent so the 
only range effects were due to the scan angle (±10 degrees as flown). Possible explanations for 
the different intensity values between the two sensors (Figure 2) include differences in laser 
power, detector sensitivity, manufacturer calibration, and hardware defects. Both instruments 
were configured identically and flown at the same height and during the same time period. 
Given the information available to us, we can offer no definitive explanation for the differences. 

 
Figure 3. Scatterplot comparing hardwood/conifer fraction derived from field and 
LIDAR data. 

 
Figure 4. Scatterplot comparing foliage absent/present fraction derived from field and 
LIDAR data. 

5. Conclusions 

The results from our classification, proportions of hardwood/softwood and canopy with/without 
foliage, were used as predictor variables when modeling forest inventory parameters for SRS. 
The proportion of canopy with/without foliage was found to be a significant predictor variable 
for most models that predicted values for softwoods and hardwoods. Having the proportion 
available for use in regression modeling significantly improved the final models.  

In general, our approach of building the classification rules using high-resolution data (2- by 2-
meter pixels) and then summarizing the results at lower-resolution (20- by 20-meter pixels) 
produced results useful to managers. When we compare the results at both resolutions to ortho-
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rectified aerial photos acquired in leaf-off conditions during the same year the LIDAR data were 
acquired, we see strong agreement (Figure 6). A similar approach would be useful for 
classifying live and dead trees in pure conifer types. 

   
Figure 6. 2007 color infrared aerial photograph (left) and 2009 LIDAR 
proportion of canopy with/without foliage at 20m resolution (right). 
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