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Coherent control methods for detection of explosives 
0.5. Moore, S.D. McGrane, M.T. Greenfield 

OSA Laser applications to chemical, security and environmental analysis (LACSEA) Conference, 
San Diego, CA 29 Jan - 1 Feb 2012 

Abstract: 
We are exploring optimal dynamic detection of explosives (ODD-Ex) to exploit recent advances 
in optimal shaping of laser pulses for control of molecular processes to significantly enhance the 
standoff detection of explosives. 
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NRC Review Existing and Potential Standoff 
Explosives Detection Techniques (2004) 

(b) 

! A.fr.; of the • mffers · qualify as 
eleclfonic 00588. 

I Trace Detection I 

o 
[ZJ Remote Detection Direction 

o R&O [);,ection 

"Using a new research 
technique called coherent 
control could further 
enhance molecular 
selectivity ... one could 
choose to selectively ionize 
or dissociate particular 
explosive molecules ... " 
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DHS Workshop Transformational Breakthroughs - Physics 
Approaches (LLNL - 2005) 

Laser Spectroscopy Topic Area - Recommendations 

• Tailored desorption methods to increase vapor phase concentration 
and suppress substrate lift-off 
- "spatial and temporal laser pulse shaping" 

• Expand detected emission spectral range, especially for LIBS 
- LIBS is destructive of both the explosive molecule and the surface 

- Pulse shaping (quantum control) should allow use of much lower laser 
energies as well as lead to expanded emission spectral range 

• Non-linear optical methods 
- Pulse shaping can enhance molecular resonances allowing long distance 

stand-off detection (i.e. , force target molecules to spill out their signatures, or 
be strong emitters with a unique signature) 
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Application to Explosives Detection 

• We foresee a large 
number of applicable 
areas for ODD 

- Circled in red 

- One can imagine a 
large number of 
spectroscopies with 
vastly improved 
characteristics 
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Surface 

Methods (as above) 

Linear spectroscopy - unshaped pulses 

• Conventional steady-state 
or linear spectroscopy 
using unshaped pulses 
- Poor molecular 

discrimination 
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Quantum Optimal Dynamic Discrimination (ODD) 

• Concept: Optimally 
tailored laser pulses 
(photonic reagents) 
- Enables selective 

addressing of different 
species 
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Control of Quantum Systems 

NO~NO, 

CH(V 

NO,~NO, 

CH(V 

• Customization of molecular Hamiltonian by optimally shaped field 

I H(t) = Ho - J-LE(t) 

• Optimally drive quantum system towards desired fmal state 

------ ~: 
l1/Ji)C ~~I~I) 

• Constructive interference for 11/J I ) 
• Destructive interference for 11/J I') i= 11/J I) 
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Discovery of Optimal Photonic Reagents 

• Fully automated high duty cycle closed-loop operation 

• 
Signals 

Electronics 

ControlsJ 

B~ .~~~....J 

sample 

• High finesse control of system without a priori model of the physical sample 
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UNIVERSITY 

Creating Photonic Reagents on Demand 

• Start with raw, featureless, ultrafast laser pulse (30-100 fs) 

• Filter spectral amplitude and phase (SLM or AOM) 

• Fully automated computer generation ofphotonic reagents 
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Pulse Shaping: Time Dependent Electric Field 

• Femtosecond optical pulse 
shaping 

• Shape E(t) by adding phase to 

E( ill) and Fourier transforming 

• E(t) = a(t)eiq>(t) 
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Increasing the Control Bandwidth 
Filamentation 

- Input spectrum (520 cm-' ) 
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New Laser Technology 
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- 2000 cm- I bandwidth is comparable to 
vibrational fingerprint region 
Allows coherent Raman spectroscopies 

• and vibronic control of emission 
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Broadband Coherent Raman 

I Multiplex CARS in nitromethane I 
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Coherent control of a single peak is easy 
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·Same solution, same pulse energy, same pulse spectrum 

·Different emission spectra 
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Coherent control of a few peaks is less easy 

CARS 
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Coherent control of many peaks is more difficult 
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However, the solution is robust to 
environmental changes 

Change in Change in 
Original solution background background 

dephasing frequencies 
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Since the mechanism is frequency based suppression, the optimal 
excitation can be robust to changing the interferent spectra. 

This is ideal for selective Raman detection. 
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Controlled Detection of Mixture Components 
I Selectivity through pulse shaping I 

CARS of mixture: toluene; acetone; nitromethane 
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Faster Optimization 
rl --U- s-e-o-[-O- e-r-ch-b-e-rg---S-ax-t'-o-n-A-I-g-or-it-hm----, 

· as is independent of target complexity, pulse shaper resolution; no cost functions, weight 
factors or optimization parameters. 

• Only requires known target spectrum and the raw laser spectrum 

• Algorithm steps: 

- FFT of the laser pulse (spectrum), starting with random phase 

- Replace amplitude with target spectrum, retain phase 

- IFFT back to spectral domain, replace amplitude with laser spectrum, retain phase 

- Iterate until minimal changes 
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Replace I(t) 
with Raman 

Replace I(ev) 
with Laser 
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ODD-Ex with Gerchberg-Saxton Phase 

One peak 
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ODD-CARS in Other Samples 
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ODD-CARS in Other Samples 
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ODD-CARS in Other Samples 

TL pulse 

2000 20 IJJ 2000 

Ci)1500 1500 ..... 
u 
;;;'1000 1000 
c:r:: 
<t: 500 500 u 

0 0 
-1000 -400 

~Alamos 
NATIONAL LABORATORY 

10% Ammonium nitrate 
a fluorescing solid 

GS Optimized 

20 IJJ 60 65 IJJ 

40 
'" 0 
~ 

x20 

0 
-1000 -400 -1000 -400 

Raman shift (cm-') 

12 



lock. to 
A compact, engineered ODD apparatus is envisioned 

Ultrafast 
broadband 

t c tr I 
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Not only UV/visible spectroscopic regions can be controlled, but anywhere in the 
entire EM spectrum where source bandwidth is available for manipulation 

Extent of application will depend only on technology 
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Summary 

• Optimal Dynamic Detection offers a viable path to significant improvements in 
selectivity and sensitivity 

• Photonic reagents are optimally tailored electromagnetic pulses that enable 
selective addressing of different species 

• Single pulse photonic reagent can be designed to create a tailored wavepacket in 
the analyte excited state and interrogate the system by a stimulated signal 
- The optimally controlled multispectral stimulated signal is sensitive to detailed sample 

vibronic structure and dynamics 

• Large bandwidth sources allow coherent Raman spectroscopies and vibronic 
control of emission 

• Multiobjective optimization to balance selectivity and sensitivity 
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