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Coherent control methods for detection of explosives
D.S. Moore, S.D. McGrane, M.T. Greenfield

OSA Laser applications to chemical, security and environmental analysis (LACSEA) Conference,
San Diego, CA 29 Jan — 1 Feb 2012

Abstract: _

We are exploring optimal dynamic detection of explosives (ODD-Ex) to exploit recent advances
in optimal shaping of laser pulses for control of molecular processes to significantly enhance the
standoff detection of explosives.
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Outline
—Background
—Optimal Control
—Bandwidth broadening / vibronic control

—Multiplex CARS / mixtures
—Other applications

—Summary
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NRC Review Existing and Potential Standoff
Explosives Detection Techniques (2004)
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DHS Workshop Transformational Breakthroughs - Physics
Approaches (LLNL - 2005)

Laser Spectroscopy Topic Area - Recommendations
* Tailored desorption methods to increase vapor phase concentration
and suppress substrate lift-off
—“spatial and temporal laser pulse shaping”
» Expand detected emission spectral range, especially for LIBS
—LIBS is destructive of both the explosive molecule and the surface

— Pulse shaping (quantum control) should allow use of much lower laser
energies as well as lead to expanded emission spectral range

* Non-linear optical methods

—Pulse shaping can enhance molecular resonances allowing long distance
stand-off detection (i.e., force target molecules to spill out their signatures, or

be strong emitters with a unique signature)
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Application to Explosives Detection

+ We foresee a large
number of applicable
areas for ODD

—Circled in red

—One can imagine a
large number of
spectroscopies with
vastly improved
characteristics
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Linear spectroscopy - unshaped pulses

» Conventional steady-state
or linear spectroscopy
using unshaped pulses

— Poor molecular
discrimination
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Quantum Optimal Dynamic Discrimination (ODD)

+ Concept: Optimally
tailored laser pulses
(photonic reagents)

— Enables selective
addressing of different
species
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Control of Quantum Systems

» Customization of molecular Hamiltonian by optimally shaped field

» Optimally drive quantum system towards desired final state

‘ Laser Control Field €(f) |
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= Constructive interference for [t/f)
* Destructive interference for [sr) # 1)
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Discovery of Optimal Photonic Reagents

+ Fully automated high duty cycle closed-loop operation

t //" Signals

Controlsl
e B G

! Electronics

detector
sample
« High finesse control of system without a priori model of the physical sample
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Creating Photonic Reagents on Demand
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» Start with raw, featureless, ultrafast laser pulse (30-100 fs)

+ Filter spectral amplitude and phase (SLM or AOM)

* Fully automated computer generation of photonic reagents
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Pulse Shaping : Time Dependent Electric Field

m Femtosecond optical pulse Spherical Mirrors
shaping

« Shape E(t) by adding phase to

E(w) and Fourier transforming

input output

) Grating
. E(t) = a(t)e“"(‘) Acousto-roptic

modulator (mask)

Grating
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Increasing the Control Bandwidth

Filamentation New Laser Technology
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~2000 cm! bandwidth is comparable to
vibrational fingerprint region
+ Allows coherent Raman spectroscopies
/Cj » and vibronic control of emission
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Broadband Coherent Raman

Pump Stokes ’ Probe

| Multiplex CARS in nitromethane |
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Coherent control of a single peak is easy

>100x change in peak ratios
with single sine wave spectral phase
105 inliguid nittomethane

0.8
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0.0

Intensity (normalized)

T T T T T
600 700 800 900 1000
Raman shift (cm'1)

-Same solution, same pulse energy, same pulse spectrum

-Different emission spectra
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Coherent control of a few peaks is less easy
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Coherent control of many peaks is more difficult

CARS multimode optimization simulation

—— Original spectrum —— Optimized spectrum x 20
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- Results from a computer simulated GA optimization




However, the solution is robust to
environmental changes

Change in Change in
Original solution background background
dephasing frequencies
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Since the mechanism is frequency based suppression, the optimal
excitation can be robust to changing the interferent spectra.

This is ideal for selective Raman detection.
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Controlled Detection of Mixture Components

‘ Selectivity through pulse shaping ‘

CARS of mixture: toluene; acetone; nitromethane
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Faster Optimization
‘ Use of Gerchberg-Saxton Algorithm

+ GSis independent of target complexity, pulse shaper resolution; no cost functions, weight
factors or optimization parameters.

* Only requires known target spectrum and the raw laser spectrum
* Algorithm steps:
FFT of the laser pulse (spectrum), starting with random phase

Replace amplitude with target spectrum, retain phase
[FFT back to spectral domain, replace amplitude with laser spectrum, retain phase
[terate until minimal changes

Start —> FFT(Laser) Re.ep aeein) > IFFT to “w” Finish |
| ; . with Raman | : J
FFTto "t” IFFT to “w”
Replace [{w)

| with Laser |
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Gerchberg-Saxton Simulation
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ODD-Ex with Gerchberg-Saxton Phase
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ODD-CARS in Other Samples

Trace PETN on yellow
painted surface

TL pulse GS Optimized
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ODD-CARS in Other Samples

10% Ammonium nitrate
a fluorescing solid

TL pulse GS Optimized
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Building Blocks for ODD-Ex

* A compact, engineered ODD apparatus is envisioned

Ultrafast
broadband
EM source

Pulse
shaper
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Optimal Control Space

= Not only UV/visible spectroscopic regions can be controlled, but anywhere in the
entire EM spectrum where source bandwidth is available for manipulation
= Extent of application will depend only on technology

Microwave, Infrared Visible Ultraviolet |
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Summary

» Optimal Dynamic Detection offers a viable path to significant improvements in
selectivity and sensitivity

» Photonic reagents are optimally tailored electromagnetic pulses that enable
selective addressing of different species

 Single pulse photonic reagent can be designed to create a tailored wavepacket in
the analyte excited state and interrogate the system by a stimulated signal

— The optimally controlled multispectral stimulated signal is sensitive to detailed sample
vibronic structure and dynamics

+ Large bandwidth sources allow coherent Raman spectroscopies and vibronic
control of emission

* Multiobjective optimization to balance selectivity and sensitivity
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