

LA-UR- 12-00408

Approved for public release;
distribution is unlimited.

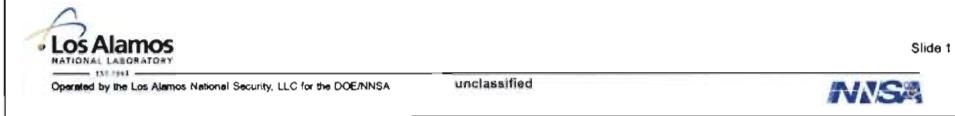
Title: Solid-Solid Phase Transition Kinetics

Author(s): Laura Smilowitz
Bryan Henson

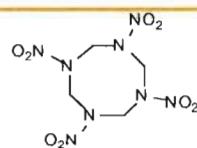
Intended for: Energetic Materials Workshop
Institute for Shock Physics
Imperial College
London, UK

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Solid – Solid Phase Transition Kinetics

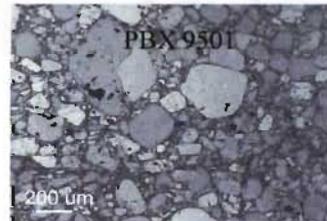
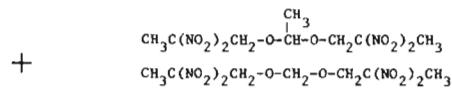

Laura Smilowitz and Bryan Henson
Chemistry Division, Los Alamos National Laboratory

We will give a joint presentation by video teleconference to the Institute for Shock Physics, Imperial College, London. The presentation will cover experimental work unifying the kinetics of the beta-delta phase transition in HMX. We will also present theoretical work concerning the temperature dependence of the rate of transformation, which led to the publication of the virtual melt model of solid –solid phase transformation in 2004.


Solid-solid phase transition kinetics

Laura Smilowitz, Bryan Henson,

Los Alamos National Laboratory
Los Alamos, NM 87545



PBX 9501 - Plastic Bonded Explosive

HMX (95%)

Estane (2.5%)

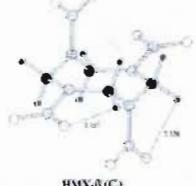
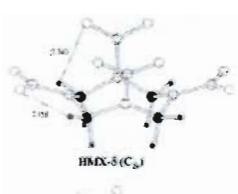
Los Alamos
NATIONAL LABORATORY

Counted by the Los Alamos National Security LLC for ORNL/DOE/NSA unclassified

NSA

Outline

- Introduction to Thermal Explosion
 - Pre-ignition thermal decomposition
 - HMX Polymorphs
 - Transition to ignition
 - Ignition
 - Post-ignition burn propagation
- Experimental tools
 - SHG, Raman, DSC
 - comparison of observables
- Kinetics results
- Model of phase transition

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

HMX Polymorphs

Optimized geometries of HMX- α and β form.

Chakraborty et al. (2001) *J. Phys. Chem. A*

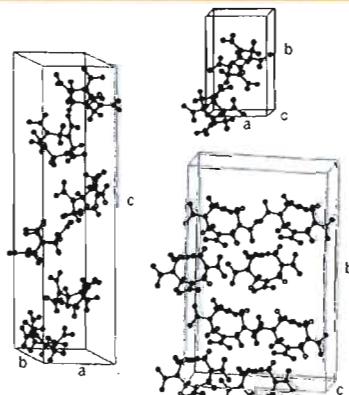


Figure 1. Unit cells for HMX polymorphs. Clockwise from top: β , α , and δ .

D. Bedrov et al. (2004) *Journal of Computer Aided Materials Design*, 8, 77-85.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 4

HMX Polymorphs: β , α , δ

Thermodynamics- which phase is stable, not how to get there

Kinetics- how to get there- needs to return thermodynamic phase diagram

Phase	β	α	δ
Sensitivity (drop hammer)	35cm	12cm	7cm
Volume change	0	$\beta +4\%$	$\beta +7\%$
Temperature stability	<105	103-160	>160

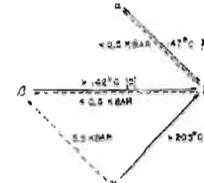
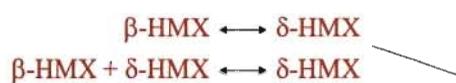


Figure 5. A summary of the temperature- and pressure-induced phase transitions of the α , β , γ , and δ -polymorphs of HMX. The solid lines are transitions with slow heating (ref 1) and the dashed lines are transitions with pressure. (R) indicates reversibility with cooling.

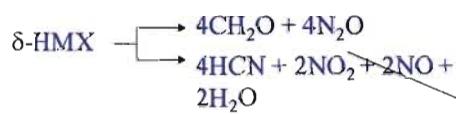
Reference: LAMS-2652Studies on the polymorphs of HMX

Author: Cady, H.H., Smith, Louis C., LANL, Oct. 18, 1961.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA


Unclassified

Reference: Brill, JCP 24 Aug 1978; vol.82, no.17, p.1912-1917


Slide 5

Chemical Kinetic Model for Decomposition of HMX

L. Smilowitz (Los Alamos)

R. Behrens (SNL)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Unclassified

Focus on 1st step: solid-solid phase transition

- What we've done:

- Developed SHG probe as an instantaneous measure of the solid state fraction of beta and delta
- Used SHG in an imaging mode (SHG microscope) to make ansatz about mechanism of phase change: nucleation and growth
- Used integral SHG signal as measure of delta fraction
- Compare SHG observable to other observables: Raman, X-ray, DSC

- Results:

A nucleation and growth model for the solid state phase transition with growth kinetics determined by thermodynamic properties of HMX and the nucleation kinetics empirically fit

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

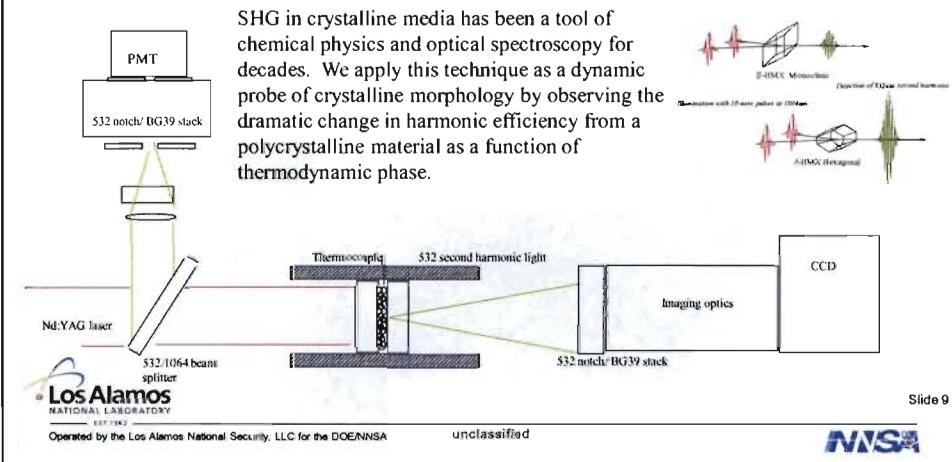
unclassified

Slide 7

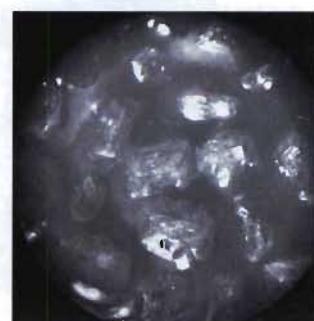
Experimental suite for solid-solid phase transition studies:

- SHG microscope
- Integrated SHG
- Raman (in situ, post mortem)
- FTIR (post mortem)
- DSC (differential scanning calorimetry)
- Temperature

Operated by the Los Alamos National Security, LLC for the DOE/NNSA


unclassified

Slide 8



Detailed study of initial thermal decomposition steps via dynamic SHG microscopy of β - δ transition

SHG microscope developed in C-PCS images with contrast is generated by the SHG symmetry selection rules (only generated from noncentrosymmetric systems).

Crystal bed photos

Beta vs delta phase: white light images

K31-1342

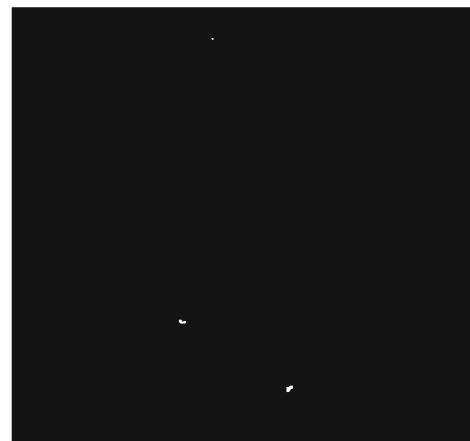
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 10

Multi HMX crystal isothermal SHG microscopy

EST 1945


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 11

Multi HMX crystal isothermal SHG microscopy

EST 1945

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

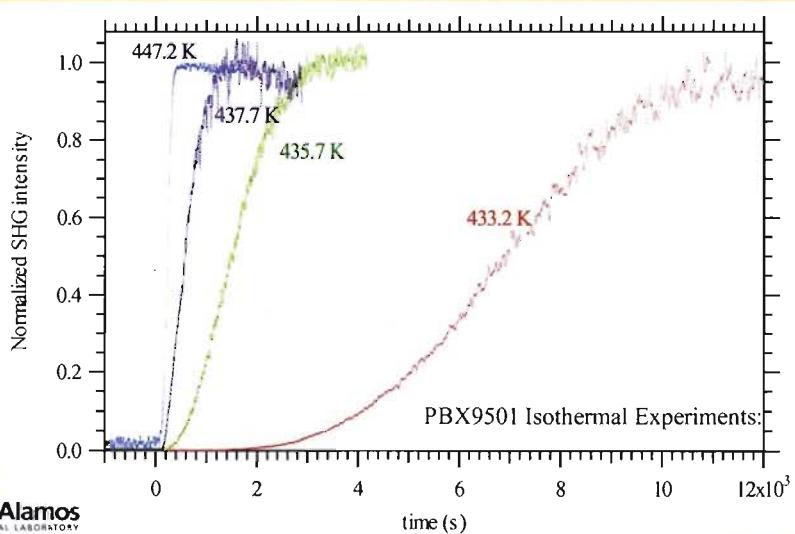
unclassified

Slide 12

White light hot stage microscopy

NATIONAL LABORATORY

EST. 1945


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 13

Integrated SHG Results

NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 14

Conclusions on comparison of observables

- All are in agreement, *assuming* that the observable probes a representative volume element
- Relative advantages/disadvantages of each:
 - SHG- sensitivity, but it's a relative measure
 - Raman- lose sensitivity when do spatial integration, but can distinguish non-centrosymmetric phases. Hard to use as an absolute measure (baseline fluorescence, change in optical properties)
 - DSC- not an integral measure, so less sensitive and rate dependent, but best for use as an absolute measure. There is a minimum conversion rate needed for observation (dependent on baseline thermal stability)

Smilowitz, L.; Henson, B. F.; Romero, J. J., Intercomparison of Calorimetry, Raman Spectroscopy, and Second Harmonic Generation Applied to Solid-Solid Phase Transitions. *JOURNAL OF PHYSICAL CHEMISTRY A* 2009, 113, (35), 9650-9657.

Los Alamos
NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Kinetic Model Summary

Rate controlled by an activation energy which is equivalent to the heat of fusion.

Balance of forward and reverse growth rates defines equilibrium temperature (cusp in half-time curve)

2nd order kinetics- acceleratory behavior due to dependence on interface between β - δ

2nd order kinetic component yields a 1st order thermodynamic transition

virtual melt state- activation energy = **heat of fusion**,

but phase transition is occurring at $T < T_m$

Theory by V. Levitas based on the lowering of the melt temperature for a region of local tension at the interface – solves many previously reported conundra

Levitas, V. I.; Henson, B. F.; Smilowitz, L. B.; Asay, B. W., Solid-solid phase transformation via virtual melting significantly below the melting temperature. *Physical Review Letters* 2004, 11, (92), 235702-1

Levitas, V. I.; Smilowitz, L. B.; Henson, B. F.; Asay, B. W., Solid-solid phase transformation via internal stress-induced virtual melting:

Additional confirmations. *Applied Physics Letters* 2005, 87, (19), 1-3

Los Alamos
NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

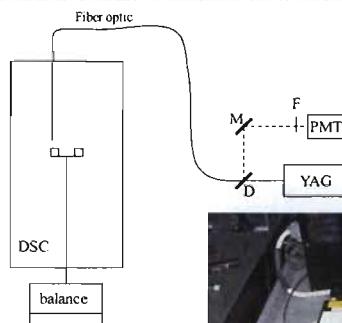
Comparison of observables

- There are inherent difficulties in observing solid to solid phase transitions- solids are heterogeneous and optically opaque, hindering observation.
- There have been confusing and contradictory reports with different kinetics reported depending on the observable- SHG vs Raman vs DSC vs X-ray vs dilatometry
- The goal of this study was to validate SHG as a probe of δ fraction, and understand the contradictions between observables

NATIONAL LABORATORY

EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA


Unclassified

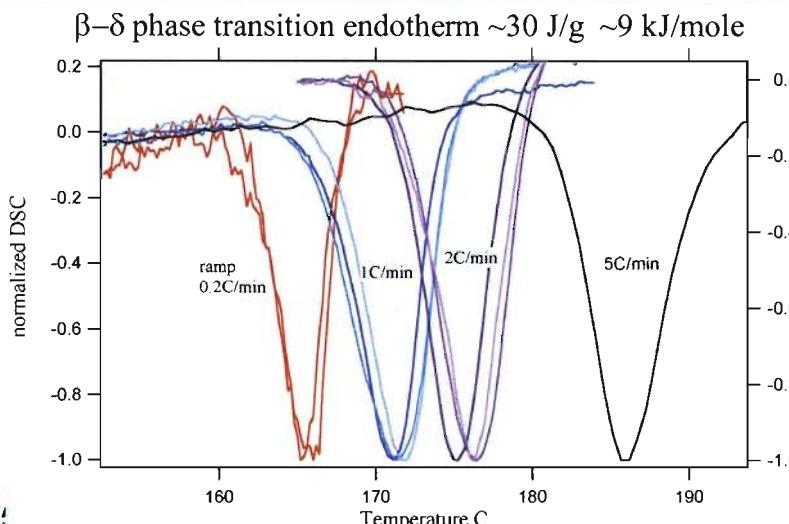
Slide 17

Experiment: DSC/TGA/MS: with SHG

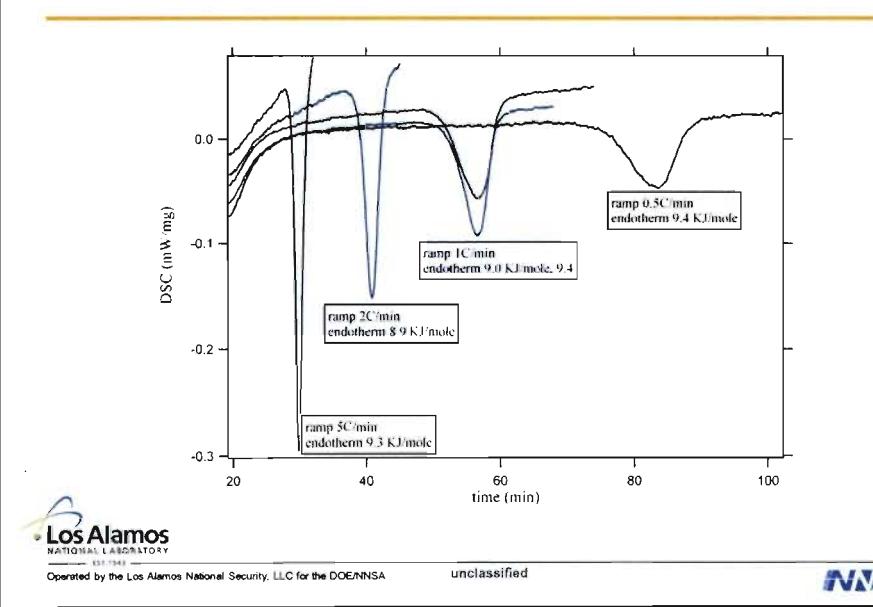
Goal- couple existing diagnostics to probe solid state lattice, solid to gas dynamics, and gas phase products simultaneously

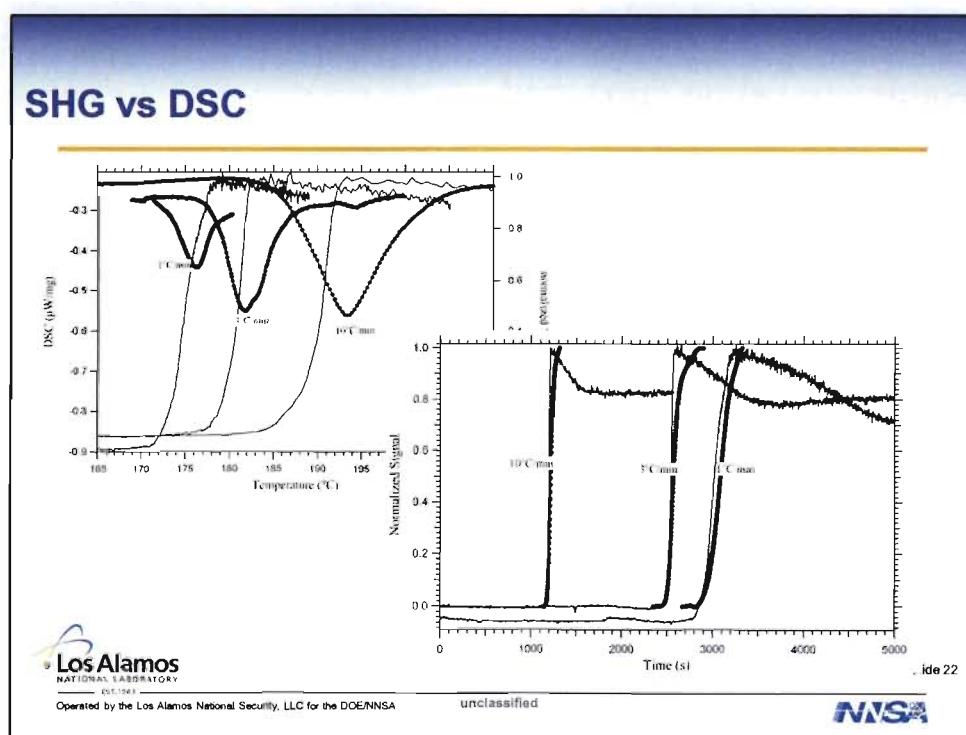
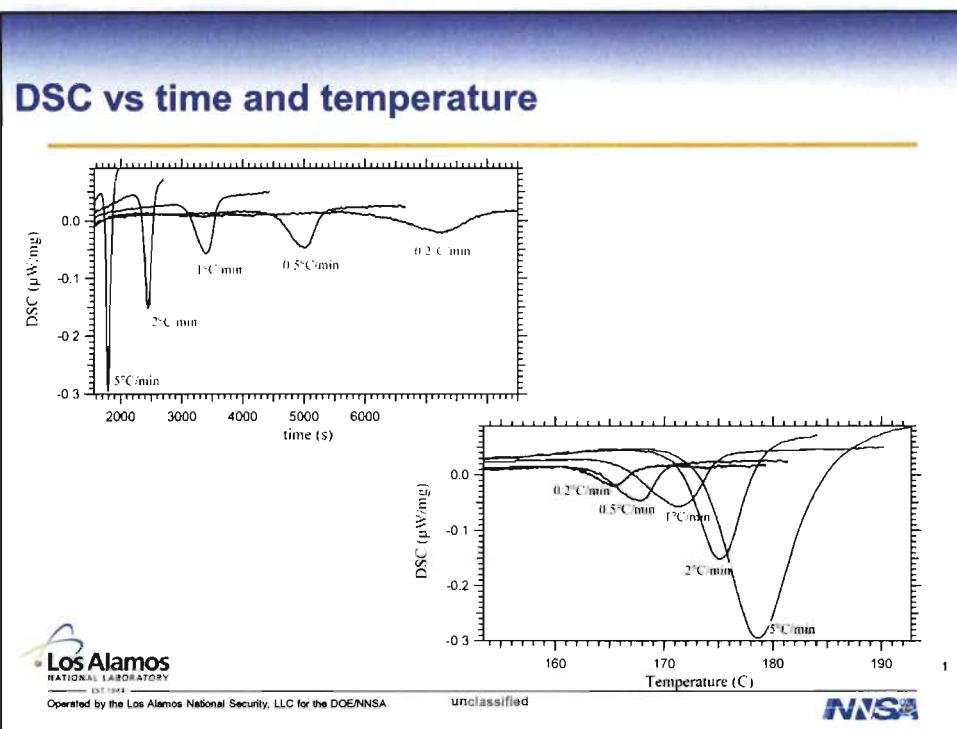
NATIONAL LABORATORY

EST. 1943

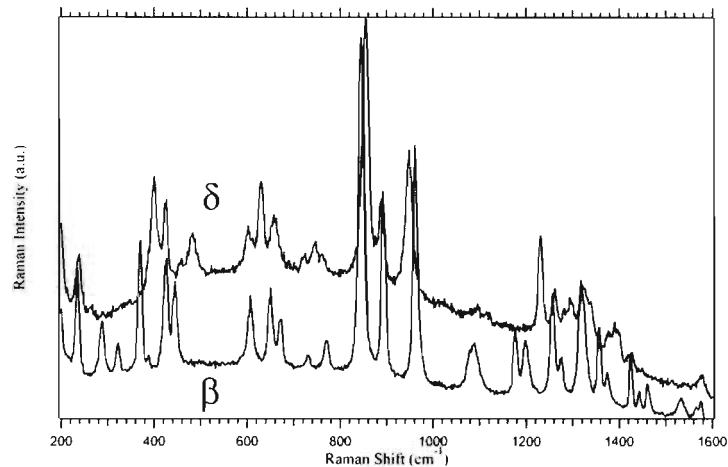

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Unclassified


Slide 18

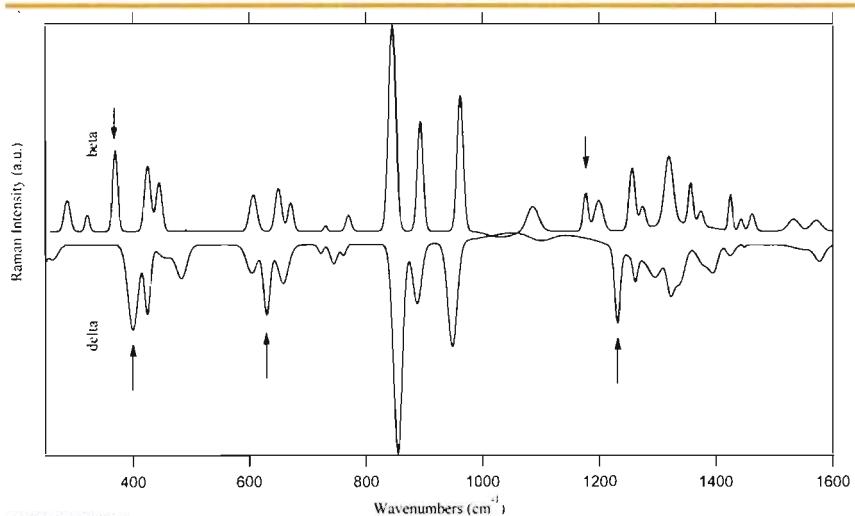
DSC results overview



DSC

Raman

Los Alamos
NATIONAL LABORATORY
EST. 1945

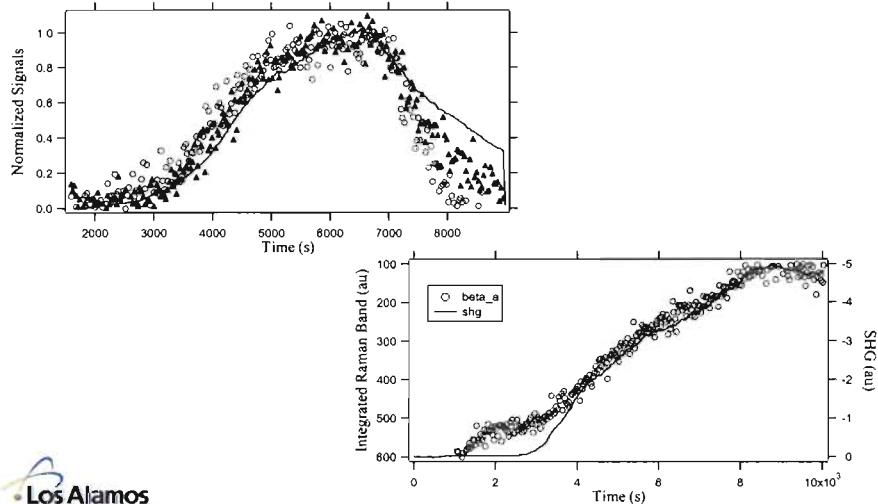

Operated by the Los Alamos National Security, LLC for the DOE/NSA

unclassified

Slide 23

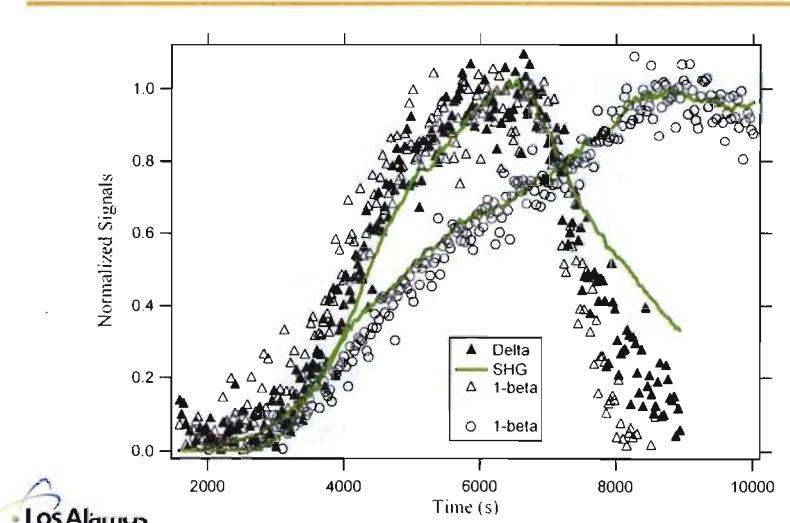
Raman baseline corrected

LOS ALAMOS
NATIONAL LABORATORY
EST. 1945

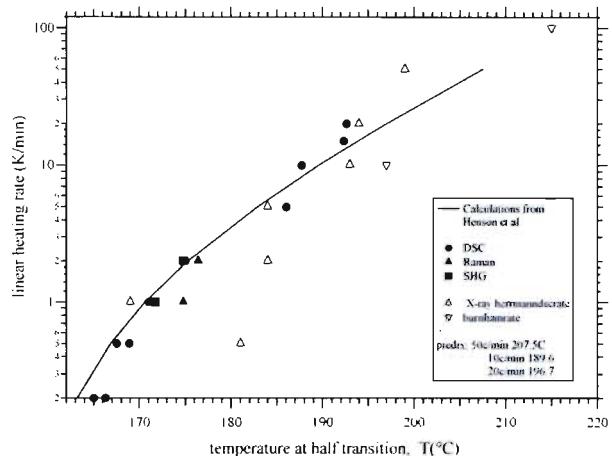

Operated by the Los Alamos National Security, LLC for the DOE/NSA

unclassified

Slide 24



Raman vs SHG


Slide 25

Raman/SHG

Slide 26

Raman/SHG/DSC vs model

Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

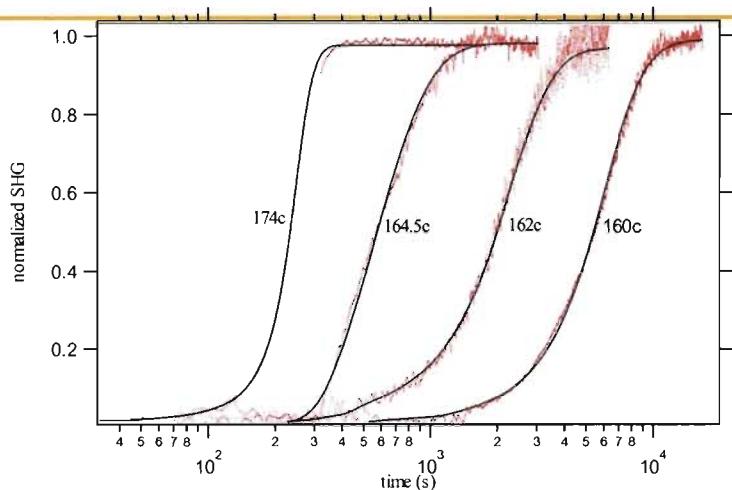
Slide 27

Conclusions on comparison of observables

- All are in agreement, *assuming* that the observable probes a representative volume element
- Relative advantages/disadvantages of each:
 - SHG- sensitivity, but it's a relative measure
 - Raman- lose sensitivity when do spatial integration, but can distinguish non-centrosymmetric phases. Hard to use as an absolute measure (baseline florescence, change in optical properties)
 - DSC- not an integral measure, so less sensitive and rate dependent, but best for use as an absolute measure. There is a minimum conversion rate needed for observation (dependent on baseline thermal stability)

Smilowitz, L.; Henson, B. F.; Romero, J. J., Intercomparison of Calorimetry, Raman Spectroscopy, and Second Harmonic Generation Applied to Solid-Solid Phase Transitions. *JOURNAL OF PHYSICAL CHEMISTRY A* 2009, 113, (35), 9650-9657.

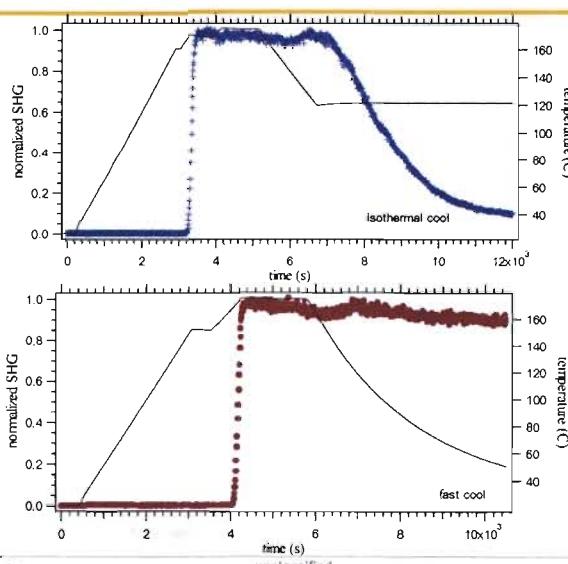
Los Alamos
NATIONAL LABORATORY
EST. 1943


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 28

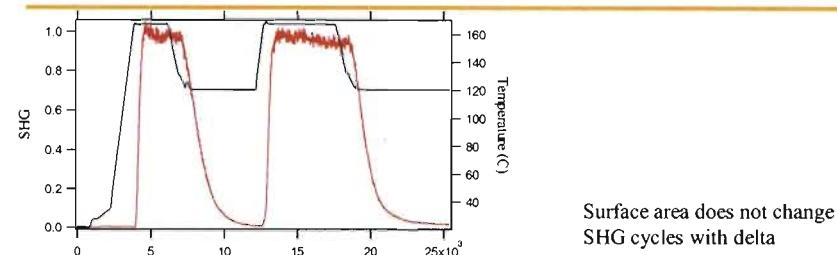
Kinetics


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 29

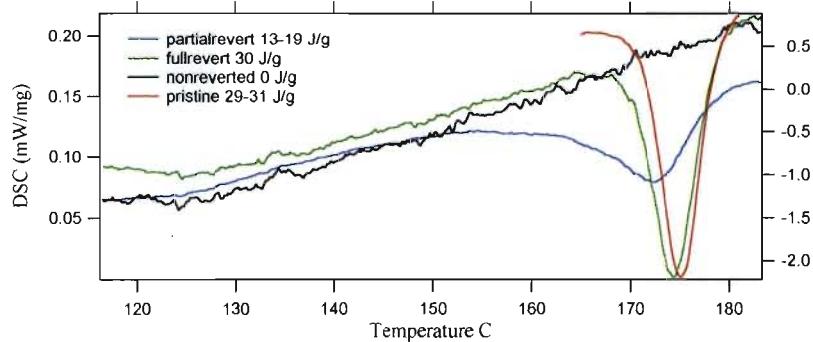
Controlling Reversion


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 30

Reversibility of phase transition


Surface area does not change
SHG cycles with delta

Implies: not a SA effect
and, mechanical damage
does not significantly affect
kinetics

Slide 31

Reversion experiments

Seeded growth
Fully reverted β – same calorimetry as pristine β
Quenched δ – no endotherm

Therefore- we can separate polymorph phase from mechanical damage state

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 32

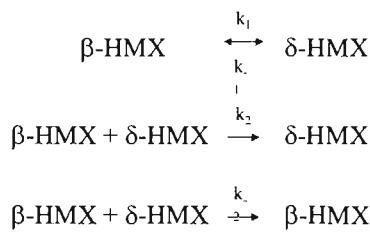
Kinetics of PBX9501

- Observe- reversible transition
- Sigmoidal kinetics
- Use reversible nucleation and growth model with Arrhenius rates and transition state for growth step= melt state
 - determine thermodynamic parameters to fit forward reaction rates at different temperatures/ramp rates (feedback into larger scale experiments)

NATIONAL LABORATORY

EST. 1945

Operated by the Los Alamos National Security, LLC for the DOE/NNSA


unclassified

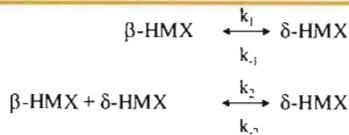
Slide 33

Model β - δ phase transition:

Coupled first order nucleation and second order growth

NATIONAL LABORATORY

EST. 1945


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 34

Transition kinetics

Nucleation and growth rate law:

$$d\delta/dt = k_1 \beta + k_2 \beta^* \delta - k_{-1} \delta - k_{-2} \beta^* \delta$$

Where: $k_i(T) = kT/h \exp((T\Delta S^* - \Delta H^*)/RT)$
 $= kT/h \exp(-\Delta G^*/RT)$

the rate is determined by the thermodynamic parameters of the transition state

Transition state = melt state
 $\Delta G^* = \Delta G_{\text{fusion}}$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

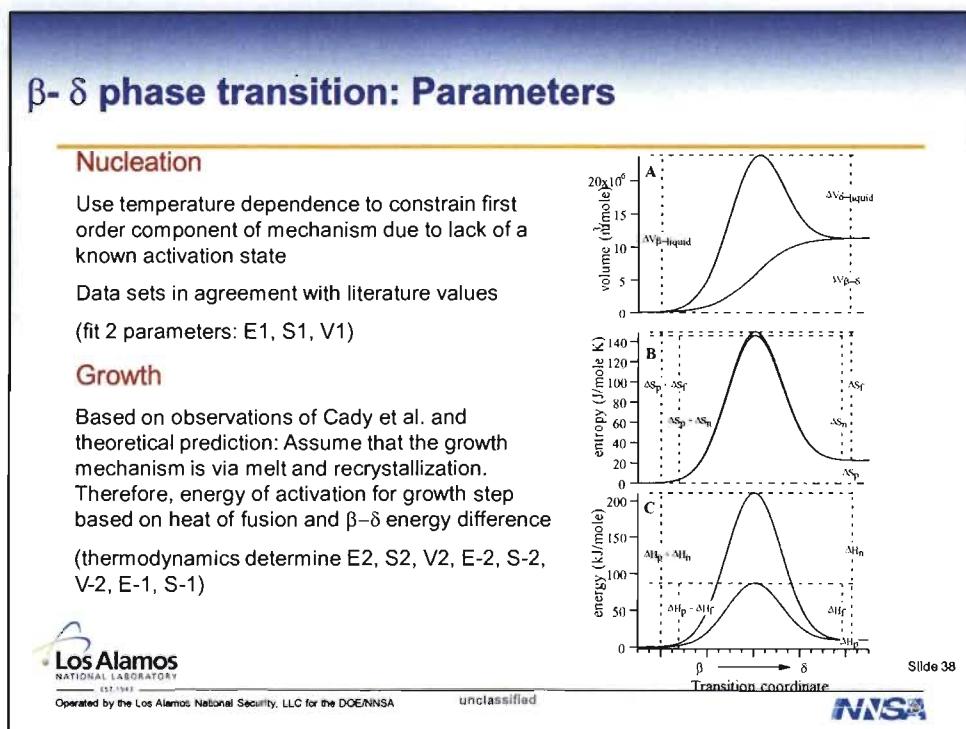
unclassified

Slide 35

Virtual Melt

Valery I. Levitas,*† Bryan F. Henson,‡ Laura B. Smilowitz,‡ and Blaine W. Asay‡
J. Phys. Chem. B 2006, 110, 10105-10119

We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. ... Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the $\bar{\alpha}$ phase during the $\bar{\alpha} \rightleftharpoons \bar{\beta}$ PT and from 520 to 400 K for the $\bar{\beta}$ phase during the $\bar{\beta} \rightleftharpoons \bar{\alpha}$ PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the $\bar{\alpha}$ and $\bar{\beta}$ phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second $\bar{\alpha} \rightleftharpoons \bar{\beta}$ cycles, as predicted by theory; (f) $\bar{\alpha} \rightleftharpoons \bar{\beta}$ PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) $\bar{\alpha} \rightleftharpoons \bar{\beta}$ and $\bar{\beta} \rightleftharpoons \bar{\alpha}$ PTs, which are thermodynamically possible in the temperature range $382.4 < \delta < 430$ K and below 382.4 K, respectively, do not occur.


- Levit, V. I.; Henson, B. F.; Smilowitz, L. B.; Asay, B. W., Solid-solid phase transformation via virtual melting significantly below the melting temperature. *Physical Review Letters* 2004, 11, (92), 235702-1
- Levit, V. I.; Smilowitz, L. B.; Henson, B. F.; Asay, B. W., Solid-solid phase transformation via internal stress-induced virtual melting: Additional confirmations. *Applied Physics Letters* 2005, 87, (19), 1-3

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

$$\frac{\partial x}{\partial t} = k_1(1-x) - k_{-1}x + \beta_o(k_2 - k_{-2})x(1-x)$$

<p>First order kinetics</p> $\frac{\partial x}{\partial t} = k_1(1-x) - k_{-1}x$ $x_e = \frac{k_1}{k_1 + k_{-1}}$ $\frac{k_1}{k_1 + k_{-1}} = \frac{\exp\left(-\frac{\Delta G_{phase}}{RT}\right)}{\left(1 + \exp\left(-\frac{\Delta G_{phase}}{RT}\right)\right)}$ $x_e = \frac{\exp\left(-\frac{G_\delta}{RT}\right)}{\exp\left(-\frac{G_\delta}{RT}\right) + \exp\left(-\frac{G_\beta}{RT}\right)}$	<p>Second order kinetics</p> $\frac{\partial x}{\partial t} = \beta_o(k_2 - k_{-2})x(1-x)$ $\beta_o(k_2 - k_{-2}) = 0$ $k_2(T) - k_{-2}(T) = \frac{k_b T}{h} Q \exp\left(-\frac{\Delta G_{fusion}}{RT}\right) \left(1 - \exp\left(-\frac{\Delta G_{phase}}{RT}\right)\right)$ $\Delta G_{phase} = \Delta H_{phase} - T\Delta S_{phase} = 0$ $T = T_{phase}$
--	---

Second order thermodynamics

First order thermodynamics

unclassified

NISA

Thermodynamics vs. kinetics

- Thermodynamics typically determines *whether* something will happen, not how *fast*
 - However, equilibrium is not static
 - Simple TST theory of sublimation

kinetic order

$\nu[X_e^{area}] = [\rho_{solid}] \frac{k_b T}{h} \frac{[q_{area}^{rea}]}{[q_{solution}]} \exp\left(-\frac{\Delta H_{sub}^*}{RT}\right)$

$\frac{\partial n}{\partial t} = \nu \exp\left(-\frac{\Delta G^*}{RT}\right) \int A(n) dA$

$\frac{\partial n}{\partial A \partial t} = \nu \exp\left(\frac{\Delta S_{sub}^* T - \Delta H_{sub}^*}{RT}\right)$

$\frac{\partial n}{\partial A \partial t} = \frac{1}{\sqrt{2\pi mkT}} P$

▪ kinetic rate (Hertz-Knudsen)

$\frac{\partial n}{\partial t} = -kn^0$

$\frac{\partial n}{\partial t} = -kn^{2/3}$

$\frac{\partial n}{\partial t} = -kn^1$

Los Alamos National Laboratory
EST. 1942
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 40

NISA

Kinetic Model Summary

Rate controlled by an activation energy which is equivalent to the heat of fusion.
Balance of forward and reverse growth rates defines equilibrium temperature (cusp in half-time curve)
2nd order kinetics- acceleratory behavior due to dependence on interface between β - δ
2nd order kinetic component yields a 1st order thermodynamic transition
virtual melt state- activation energy = heat of fusion,
but phase transition is occurring at $T < T_m$
Theory by V. Levitas based on the lowering of the melt temperature for a region of local tension at the interface – solves many previously reported conundra

Levitas, V. I.; Henson, B. F.; Smilowitz, L. B.; Asay, B. W. Solid-solid phase transformation via virtual melting significantly below the melting temperature. *Physical Review Letters* 2004, 11, (92), 235702-1
Levitas, V. I.; Smilowitz, L. B.; Henson, B. F.; Asay, B. W. Solid-solid phase transformation via internal stress-induced virtual melting: Additional confirmations. *Applied Physics Letters* 2005, 87, (19), 1-3

EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

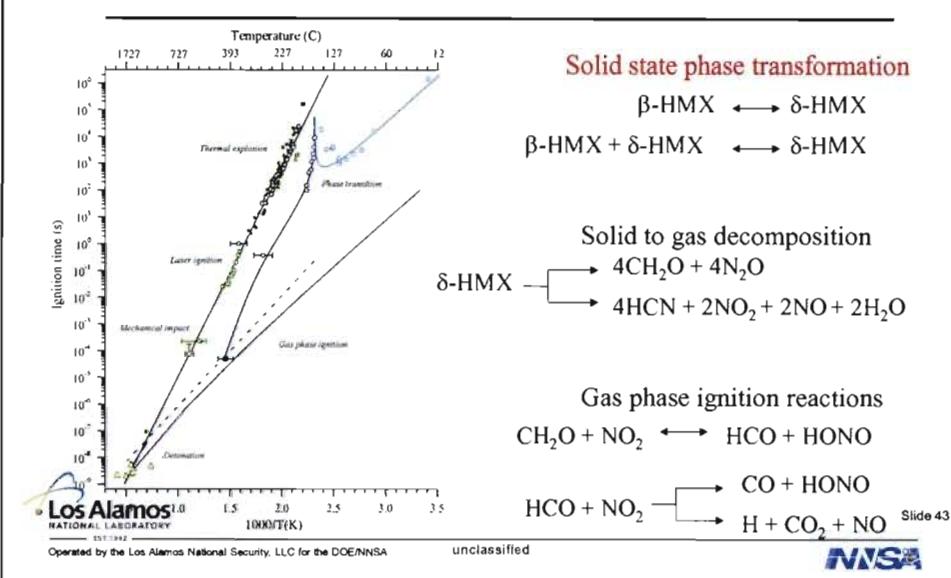
unclassified

Slide 41

Summary

- β - δ phase transition in HMX occurs via 2nd order nucleation and growth mechanism
- The rate of growth is controlled by the heat of fusion at a temperature 100C below the thermodynamically stable melt
- A virtual melt mechanism has been developed which explains this phenomenon
- SHG as a viable tool for studying solid state phase transitions has been validated against DSC
- Previously reported inconsistencies between various observables have been explained.

EST. 1943


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

unclassified

Slide 42

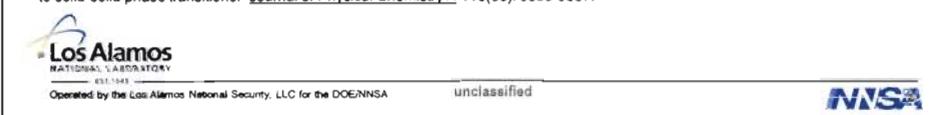
The phase transition and chemical decomposition

References

Henson, B. F., L. Smilowitz, et al. (2002). "The β - δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Thermodynamics." *Journal of Chemical Physics* 117(8): 3780-3788.

Smilowitz, L., B. F. Henson, et al. (2002). "The beta - delta phase transition in the energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Kinetics." *Journal of Chemical Physics* 117(8): 3789.

Levitas, V. I., B. F. Henson, et al. (2004). "Solid-solid phase transformation via virtual melting significantly below the melting temperature." *Physical Review Letters* 11(92): 235702-235701.


Smilowitz, L., B. F. Henson, et al. (2004). "On the nucleation mechanism of the β - δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine." *Journal of Chemical Physics* 121(11): 5550-5552.

Levitas, V. I., L. B. Smilowitz, et al. (2005). "Solid-solid phase transformation via internal stress-induced virtual melting: Additional confirmations." *Applied Physics Letters* 87(19): 1-3.

Levitas, V. I., L. B. Smilowitz, et al. (2006). "Interfacial and volumetric kinetics of the beta \rightarrow delta phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based on the virtual melting mechanism." *Journal of Chemical Physics* 124(2): 025101.

Levitas, V. I., B. F. Henson, et al. (2007). "Coupled phase transformation, chemical decomposition, and deformation in plastic-bonded explosive: Models." *Journal of Applied Physics* 102(11): 113502.

Smilowitz, L., B. F. Henson, et al. (2009). "Intercomparison of calorimetry, Raman spectroscopy, and second harmonic generation applied to solid-solid phase transitions." *Journal of Physical Chemistry A* 113(35): 9650-9657.

