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Solid — Solid Phase Transition Kinetics

Laura Smilowitz and Bryan Henson
Chemistry Division, Los Alamos National Laboratory

We will give a joint presentation by video teleconference to the Institute for Shock Physics, Imperial College,
London. The presentation will cover experimental work unifying the kinetics of the beta-delta phase transition
in HMX. We will also present theoretical work concerning the temperature dependence of the rate of
transformation, which let to the publication of the virtual melt model of solid —solid phase transformation in
2004.
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Outline
* Introduction to Thermal Explosion
— Pre-ignition thermal decomposition
»  HMX Polymorphs
~ Transition to ignition
- lIgnition
— Post-ignition burn propagation

* Experimental tools
* SHG, Raman, DSC
« comparison of observables

= Kinetics results

* Model of phase transition
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HMX Polymorphs

4 - -
ey (&
HMX-3(C,))
.
. i 5 v
°
. "
A - ‘ . -
. A
HMN-B(C Figure 1. Unit cells for HMX polymorphs. Clockwise from top: ., «, and 6.
Optumized geometies of HMX w & and § formy
Chakraborty et al. (2001) J. Phys. Chem. A D. Bedrov et al. (2004) Journal of Computer Aided Materials Design. 8, 77-85.
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HMX Polymorphs: $3,a,6

Thermodynamics- which phase is stable, not how to get there
Kinetics- how to get there- needs to return thermodynamic phase diagram

Phase B o 8 RN

Sensitivity 35cm | 12cm 7cm

(drop hammer)

Volume change 0 B +4% B+7%

Temperature <105 103-160 | >160

sbability Figere 5. A summary ¢f the lmpsmture- and pressure-nd.xced phase
wansiions of he o=, d-. -, and I-palymorpes of W The soild anes

ar0 wanssoms wih siow heating (ref 1) and tha dashed inos sre
runsions with pragscre. (R indicates revecsiniity with cooling

Reference: LAMS-2632Studies on the polymorphs of HMX

Author: Cady, H.H., Smith, Louis C., LANL, Oct. 18, 1961. Reference: Brill, JCP 24 Aug 1978:
vol.82, no. 17, p.1912-1917
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Chemical Kirietfc Model for Decomposition of HMX

3-HMX —,:: 4CH20 L 4NZO L. Smilowitz (Los Alamos)
4HCN + 2NO, O+
2H,0

CH,0 + NO, *——, HCO + HONO

HCO+NO, —— CO+HONO IR i
~HCO+NO, —H+CO,+NO 'J] LN . ;
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Focus on 1t step: solid-solid phase transition

*What we’ve done:

—Developed SHG probe as an instantaneous measure of the solid state fraction
of beta and delta :

—Used SHG in an imaging mode (SHG microscope) to make ansatz about
mechanism of phase change: nucleation and growth

—Used integral SHG signal as measure of delta fraction
—Compare SHG observable to other observables: Raman, X-ray, DSC

*Results:
A nucleation and growth model for the solid state phase transition with growth
kinetics determined by thermodynamic properties of HMX and the nucleation
kinetics empirically fit

2
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Experimental suite for sol’id-solid p!ase

_transition studies:

SHG microscope
Integrated SHG
Raman (in situ, post mortem)

FTIR (post mortem)
DSC (differential scanning calorimetry)
Temperature
e
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Detailed study of initial thermal decomposition steps
via dynamic SHG microscopy of -5 transition

SHG microscope developed in C-PCS images with contrast is generated by the SHG
symmetry selection rules (only generated from noncentrosymmetric systems).

SHG in crystalline media has been a tool of

. . . d e J_
chemical physics and optical spectroscopy for 4!},_1‘.-_259 _4;_.

PMT

decades. We apply this technique as a dynamic P
. . PN —
probe of crystalline morphology by observing the ____ ... . _ ..
s1200c BGX9 ek | dramatic change in harmonic efficiency from a ] i
— == polycrystalline material as a function of @
. -
thermodynamic phase.
—_
i 4 mwnc Tight ccp
— Imaging optics
N&:YAG laser
5321064 beam 332 notch’ BG39 stack
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Crystal bed photos

Beta vs delta phase: white light images

Y
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Mult| HMX crystal isothermal SHG microscopy
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Multi HMX crystal isothermal SHG microscopy
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White light hot stage microscopy
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Integrated SHG Results
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e All are in agreement, assuming that the observable probes a
representative volume element

* Relative advantages/disadvantages of each:

= SHG- sensitivity, but it’s a relative measure

= Raman- lose sensitivity when do spatial integration, but can distinguish
non-centrosymmetric phases. Hard to use as an absolute measure
(baseline flourescence, change in optical properties)

= DSC- not an integral measure, so less sensitive and rate dependent, but
best for use as an absolute measure. There is a minimum conversion rate
needed for observation (dependent on baseline thermal stability)

Smilowitz, L.; Henson, B. F.; Romero, J. 1., Intercomparison of Calorimetry. Raman Spectroscopy. and Second

Harmonic Generation Applied to Solid-Solid Phase Transitions. JOURNAL OF PHYSICAL CHEMISTRY A
2009, 113.(35). 9650-9657.
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Rate controlled by an activation energy which is equivalent to the heat of fusion.

Balance of forward and reverse growth rates defines equilibrium temperature (cusp in half-
time curve)

2nd order kinetics- acceleratory behavior due to dependence on interface between -6
2% order kinetic component yields a 1% order thermodynamic transition
virtual melt state- activation energy = heat of fusion,

but phase transition is occurring at T<T

Theory by V. Levitas based on the lowering of the melt temperature for a region of local
tension at the interface — solves many previously reported conundra

Levitas, V. 1.; Henson, B. F.; Smilowitz, L. B.; Asay. B. W.. Solid-solid phase transformation via virtual melting significantly below the
melting temperature. Physical Review Letters 2004, 11, (92). 235702-1
Levitas, V. 1. Smilowitz. L. B.: Henson. B. F.; Asay. B. W., Solid-solid phase transformation via internal stress-induced virtual melting:

Add)'ﬁqnal confirmations. Applied Physics Letters 2005,87. (19). 1-3
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Comparison of observables

* There are inherent difficulties in observing solid to solid phase
transitions- solids are heterogeneous and optically opaque,
hindering observation.

* There have been confusing and contradictory reports with
different kinetics reported depending on the observable- SHG
vs Raman vs DSC vs X-ray vs dilatometry

* The goal of this study was to validate SHG as a probe of 6
fraction, and understand the contradictions between observables
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Experiment: DSC/TGA/MS: with SHG

Goal- couple existing diagnostics to probe solid state lattice, solid to gas dynamics, and
gas phase products simultaneously
Fiber optic

DSC

balance
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3—d phase transition
|

DSC results overview

endotherm ~30 J/g ~9 kJ/mole
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DSC (mW my}

ramp |C min
endatberm 2.0 K1 mole. V.4

endotherm 8 9 Kl'iole

ramp $Cmin
endatherm 9.3 Kl'maole

ramp ¢3¢ min
endotherm 9.4 Klimole
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DSC vs time and temperature
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Raman Intensity (a.u.)
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Raman baseline corrected

Raman Intensity (a.0.)
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Raman vs SHG

Normalized Signals
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Conclusions on comparison of observables

* All are in agreement, assuming that the observable probes a
representative volume element

¢ Relative advantages/disadvantages of each:

= SHG- sensitivity, but it’s a relative measure

= Raman- lose sensitivity when do spatial integration, but can distinguish
non-centrosymmetric phases. Hard to use as an absolute measure
(baseline flourescence, change in optical properties)

= DSC- not an integral measure, so less sensitive and rate dependent, but
best for use as an absolute measure. There is a minimum conversion rate
needed for observation (dependent on baseline thermal stability)

Smilowitz, L.; Henson, B. F.: Romero. J. J.. Intercomparison of Calorimetry, Raman Spectroscopy. and Second

Harmonic Generation Applied to Solid-Solid Phase Transitions. JOURNAL OF PHYSICAL CHEMISTRY 4
2009, 113, (35). 9650-9657.

e
- Los Alamos Slide 28
NATIOWAL | ARORATOARY
Operated by the Los Alamos National Secunty, LLC for tha DOE/NNSA unclassified Il
’ ="

14



- -
Kinetics
&}
T
n -
b=l
8
; I
Pa
=2
- Los Alamos Slide 26
MATIONAL LARDEATORY
Opernted lt:y n.: Los Alamoa National Security. LLC for the DOENNSA unclassified Nl‘m

Controlling Reversion
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Reversibility of phase transitioh
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Kinetics of PBX9501

*Observe- reversible transition
*Sigmoidal kinetics

*Use reversible nucleation and growth model with
Arrhenius rates and transition state for growth step=
melt state

* determine thermodynamic parameters to fit forward
reaction rates at different temperatures/ramp rates
(feedback into larger scale experiments)

i
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Model -6 phase transition:

Coupled first order nucleation and second order growth

kI
B-HMX ‘k_’ 5-HMX

k,
B-HMX + 8-HMX — &-HMX

k.
B-HMX + §-HMX =+ B-HMX

/-\
-
- Los Alamos Slide 34
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Transition kinetics

k
B-HMX <« 5-HMX
k-)

ks
B-HMX + 8-HM X «—— §-HMX
ks

Nucleation and growth rate law:

dd/dt =k,B + k, P*o—k_, & - k, B*8

Where: k(T) = KT/h exp((TAS*-AH*/RT)
= kT/h exp(-AG*/RT)

the rate is determined by the thermodynamic parameters of the transition state

Transition state= melt state
AC!*=AC'futiic|n
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Virtual Melt

Valery L. Levitas,* .} Bryan F. Henson,1 Laura B. Smilowitz.} and Blaine W. Asay$
J. Phys. Chem. B 2006, 110, 10105-10119

We theoretically predict a new phenomenon. namely. that a solid-solid phase transformation (PT) with a large transformation
strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K)
below the melting temperature. We show that the energy of clastic stresses. induced by transformation strain, increases the
dri\'inrg foree for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt
solidifies, Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of
the solidsolid transformation. Thus. virtual melting represents a new mechanism of solid-solid PT. stress refaxation, and loss of
coherence at a moviny solid-solid interface. ... Sixteen theoretical predictions are in qualitative and quantitative agreement
with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is
suffictent to reduce the melting temperature from 551 10 430 K for the 8 phase during the d f 8 PT and from 520 to 400K for
the d phase during the & fa P1; (b) predicted activation encrgies for direct and reversc PTs coincide with corresponding
mclting energies of the ¢ and & phases and with the experimental values; () the temperaturendependence of the ratc constant is
determined by the heat of fusion. for both direct and reverse PTs: results b and ¢ are obtained both for overall kinetics and for
interface propagation: (d) considerable nanocracking. homogeneously distributed i the transformed material, accompanics the
PT, as predicted by theory: (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first
and the second PTa T & cycles. as predicted by theory: (f) @ T @ PTs start at a very small driving force (in contrast to all known
solid-solid transformations with large transformation strain), that is. elastic energy and athermal interface friction must be
negligible: (g) @ f R and R f @ PTs. which are thermodynamically possible in the temperature range 382.4 < ¢ < 430 K and
bei’ow 382.4 K, respectively. do ot occur.

*  Levitas, V. . Henson. B. F.: Smilowitz, L. B.; Asay, B. W, Solid-solid phase transformation via virtual melting significantly
below the melting temperature. Physical Review Letters 2004, 11, (92). 235702-1

«  Lewitas, V. L: Smilowitz, L. B.; Henson, B. F.: Asay. B. W., Solid-solid phase transformation via internal stress-induced virtual
melting: Additional confirmations. Applied Physics Letrers 2005, 87, (19). 1-3
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B-5 phase transition: Temperature extrapolation
Temperanure (C) Detailed study of phase transition kinetics involving
3?‘ 2127 27 ﬁ" ‘IJ SHG probe yielded “virtual melt” phase transition
» 1 Equilibrium T forward:and reverse ~E model ) o
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Nucleation

known activation state

(fit 2 parameters: E1, S$1, V1)
Growth

B-0 bhase transition: Parameters

Use temperature dependence to constrain first
order component of mechanism due to lack of a

Data sets in agreement with literature values

Based on observations of Cady et al. and
theoretical prediction: Assume that the growth
mechanism is via melt and recrystallization.

Therefore, energy of activation for growth step

20;@0"—A
c

m
@
I

3

| WBiqud

>

volume (1

”
1

based on heat of fusion and B-3 energy difference =
£
(thermodynamics determine E2, $2, V2, E-2, S-2, =
V-2, E-1, S-1) g'®
5 50
s
2. 0
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Ox
= =k(1=x) =k x4 B,k ~k)x(1-3)
First order kinetics Second order kinetics
Ox Ox
5=k1(1—X)—k_1x 5=ﬂo(k2-k_z)X(l—X)
k, i
R ; B,k =k ,) =0
1 -1 B
A i
L | (2250 ) -exp(2=))
= k(T)-k Z(T)— Qexp """ | —exp
ko +k (I +exp( AGm.‘ ))
exp( ) : AGplm.te = AHpImJe - TASphace = O
Gy
exp( )+ exp( ) T = Tohase
A d order thermodynamics |
-LosAla Al..m%?n ble Rl i First order thermodynamics
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Thermodynamlcs VS. kmetlcs

¢ Themodynamics typically determines whether something will happen, not how fast
»  However, equilibrium is not static

= Simple TST theory of sublimation kinetic order
area lg;™1 AH,, on AG”
X = kT la. - Z- -2 )| A(nydaA
X121 T ee(50) ~=venn(-7) | 40
on AS_HT—AH;,,_ 6n ko
= exp( RT 6’

oAt

c"n /7 A
k] 2/} [} 1
ai = ! P 01 O

0Adt  J2mmkT

. o _ —kn' 020 000
= kinetic rate (Hertz-Knudsen) ot % OOOO goooo
2,
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Kinetic Model Summary

Rate controlled by an activation energy which is equivalent to the heat of fusion.

Balance of forward and reverse growth rates defines equilibrium temperature (cusp in half-
time curve)

2nd order kinetics- acceleratory behavior due to dependence on interface between f—6
2" order kinetic component yields a 1** order thermodynamic transition
virtual melt state- activation energy = heat of fusion,

but phase transition is occurring at T< T

Theory by V. Levitas based on the lowering of the melt temperature for a region of local
tension at the interface — solves many previously reported conundra

Levitas, V. [.: Henson, B. F: Smilowitz. L. B.; Asay. B. W.. Solid-solid phase transformation via virtual meking significantly below the
melting temperature. Physical Review Letters 2004, 11, (92), 235702-1
Levitas, V. .. Smilowilz, L. B.; Henson. B. F: Asay, B. W., Solid-solid phasc transformation via internal stress-induced virtual melting:

Adcﬁu’qnal confirmations. dpplied Physics Letters 2005, 87, (19). 1-3
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Summary

* -8 phase transition in HMX occurs via 2™ order nucleation and
growth mechanism

* The rate of growth is controlled by the heat of fusion at a temperature
100C below the thermodynamically stable melt

* A virtual melt mechanism has been developed which explains this
phenomenon

* SHG as a viable tool for studying solid state phase transitions has
been validated against DSC

» Previously reported inconsistencies between various observables
have been explained.

Val
2
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The phase transition and chemical decomposition

Temperature (C)
1727 77 393 227 127 60 12
L '

L) L Solid state phase transformation

. B-HMX « s 8-HMX
" dundin B-HMX + 8-HMX «— §-HMX

H ::: Solid to gas decomposition

é v S-HMX ﬂ 4CH,0 + 4N,0

5 4HCN + 2NO, + 2NO+ 2H,0

107 Y e

w4y

|0’ 1 . . .

1w Gas phase ignition reactions

0’ | CH,0 + NO, “— HCO + HONO

w0y
'4336 E I/- T i | T T ] HCO NO ﬂ CO + HONO

. 4 5 20 28 Yo 38 + "
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