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Solid - Solid Phase Transition Kinetics 

Laura Smilowitz and Bryan Henson 
Chemistry Division, Los Alamos National Laboratory 

We will give a joint presentation by video teleconference to the Institute for Shock Physics, Imperial College, 
London. The presentation will cover experimental work unifying the kinetics of the beta-delta phase transition 
in HMX. We will also present theoretical work concerning the temperature dependence of the rate of 
transformation, which let to the publication of the virtual melt model of solid -solid phase transformation in 
2004. 
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Outline 

Introduction to Thermal Explosion 
Pre-ignition thermal decomposition 

• HMX Polymorphs 

Transition to ignition 
Ignition 
Post-ignition burn propagation 

• Experimental tools 
• SHG, Raman, DSC 
• comparison of observables 

Kinetics results 

• Model of phase transition 
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HMX Polymorphs 
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R \1X.p(C,) Figure I. Unit cells for HMX polymorphs. Clockwise from top:P. Ct. and J. 
OptllIl1z~d g~Iut'lne. of H~X in nand p form 

Chakraborty et al. (200 I) 1. Phys. Chern. A 
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D. Bedrov et aI. (2004) Journal of Computer Aided Materials Design, 8. 77e 8S. 
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HMX Polymorphs: ~,a,8 

Thennodynamics- which phase is stable, not how to get there 
Kinetics- how to get there- needs to return thennodynamic phase diagram 

Phase ~ a 0 

Sensitivity 35cm 12cm 7cm 

(drop hammer) 

Volume change 0 ~+4% ~+7% 

Temperature <105 103-160 >160 
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Reference: LAMS-2652Studies 01/ the oolymorphs ofHMX 

Author: Cady, H-H_, Smith, Louis c., LANL, Oct. 18, 1961. 
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Reference: Brill, JCP 24 Aug 1978; 
vol.82, 110.17, p.1912-1917 
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Chemical Kinetic Model for Decomposition of HMX 

~-HMX .-- 8-HMX 

~-HMX + 8-HMX .-- 8-HMX _______ 

8-HMX -C 4CH20 + 4N20 L. Smilowitz (Los Alamos) 

4HCN+2NO~+ -;t:lCI 

CH20 + N02 

HCO + N02 

A HCO+N02 
• los Alamos 
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2Hp ~ ~ 

+-­- HCO + HONO 

-CO+HONO 

- H+C02 + NO 
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Focus on 1 st step: solid-solid phase transition 

·What we've done: 

-Developed SHG probe as an instantaneous measure of the solid state fraction 
of beta and delta 

-Used SHG in an imaging mode (SHG microscope) to make ansatz about 
mechanism of phase change: nucleation and growth 

- Used integral SHG signal as measure of delta fraction 

-Compare SHG observable to other observables: Raman, X-ray, DSC 

·Results: 

A nucleation and growth model for the solid state phase transition with growth 
kinetics determined by thermodynamic properties of HMX and the nucleation 
kinetics empirically fit 

.QAlamos 
"ATIONA l LA.OIIIAlORY 

Slide 7 

Operated by the l-OO-''''''- OO-N'''''''-' -"-SK-... -y,-LL-C f-~ "'-D"""'-N-S.---u-n-:-Cla-ss-';ifi:-.d:------------,.-v-.A.'-~-=--. 

Experimental suite for solid-solid phase 
transition studies: 
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SHG microscope 
Integrated SHG 
Raman (in situ, post mortem) 
FTIR (post mortem) 
DSC (differential scanning calorimetry) 
Temperature 
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Detailed study of initial thermal decomposition steps 
via dynamic SHG microscopy of J3-8 transition 

SHG microscope developed in C-PCS images with contrast is generated by the SHG 
symmetry selection rules (only generated from noncentrosymmetric systems). 

/ 

beom /l 53211064 
~ splitter 

• Los Alamos 

SHG in crystalline media has been a tool of 
chemical physics and optical spectroscopy for 
decades. We apply this technique as a dynamic 
probe of crystalline morphology by observing the 
dramatic change in harmonic efficiency from a 
polycrystalline material as a function of 
thermodynamic phase. 

Thennoooupi 532 SCO)nd hannonic light 

v...._ .,'11_ .... __ 
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eeD 

I<R=: Imaging optics 

532 OOIchtBG39 stack 
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Crystal bed photos 

Beta vs delta phase: white light images 
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Multi HMX crystal isothermal SHG microscopy 

A 
• Los Alamos Slide 11 
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Multi HMX crystal isothermal SHG microscopy 
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White light hot stage microscopy 
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Integrated SHG Results 
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• All are in agreement, assuming that the observable probes a 
representative volume element 

• Relative advantages/disadvantages of each: 
• SHG- sensitivity, but it's a relative measure 
• Raman- lose sensitivity when do spatial integration, but can distinguish 

non-centrosymmetric phases. Hard to use as an absolute me sure 
(baseline flourescence, change in optical properties) 

• DSC- not an integral measure, so less sensitive and rate dependent, but 
best for use as an absolute measure. There is a minimum conversion rate 
needed for observation (dependent on baseline thermal stability) 

Smilowitz. L.; Henson, B. F.: Romero, 1. J., lntercomparison of Calorimetry. Raman Spectroscopy. and Second 
Harmonic Generation Applied to Solid-Solid Phase Transitions. JOURNAL OF PHYSICAL CHEMISTRY A 
2009, 113. (35). 9650-9657. 

A 
• Los Alamos 
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Rate controlled by an activation energy which is equivalent to the heat of fusion. 

Balance of forward and reverse growth rates defines equilibrium temperature (cusp in half-
time curve) 

2nd order kinetics- acceleratory behavior due to dependence on interface between 13-8 
2nd order kinetic component yields a IS! order thermodynamic transition 

virtual melt state- activation energy = heat of fusion, 

but phase transition is occurring at T< T m 

Theory by V. Levitas based on the lowering of the melt temperature for a region of local 
tension at the interface - solves many previously reported conundra 

Levitas, V. I. ; Henson. B. F.; Smilowitz. L. 8. : Asay. B. W .. Solid-solid phase transformat ion via virtual melting significantly below the 
melting temperature. Physical Review Lellers 2004, II . (92). 235702-1 
Levitas. V. I.; Smilowitz. L. 8. : Henson. B. F. ; Asay. B. W .. Solid-solid phase transformation via internal stress-induced virtual melting: 

A~al confirmations. Applied Physics Lellers 2005, 87. (19).1-3 
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Comparison of observables 

• There are inherent difficulties in observing solid to solid phase 
transitions- solids are heterogeneous and optically opaque, 
hindering observation. 

• There have been confusing and contradictory reports with 
different kinetics reported depending on the observable- SHG 
vs Raman vs DSC vs X-ray vs dilatometry 

• The goal of this study was to validate SHG as a probe of 8 
fraction, and understand the contradictions between observables 

A • Los Alamos Slide 17 
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Experiment: DSCITGAlMS: with SHG 

Goal- couple existing diagnostics to probe solid state lattice, solid to gas dynamics, and 
gas phase products simultaneously 
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DSC results overview 

p-8 phase transition endotherm ~30 Jig ~9 kJ/mole 
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DSC vs time and temperature 
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Raman 
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Raman vs SHG 

1.0 
~ 

~ 0.8 
00 

<n 
"" 0.8 
. ~ 

~ 0.4 

0 
Z 0.2 

0.0 

2000 3000 4000 5000 6000 7000 8000 
Time (,) 

100 ~-----'------'------'---~~~~iiii~ -5 

~ 
"" 200 :; 
C:) 

a 300 

~ 400 

] 

A 
fSOO 

800 4r==~~==~-'------r-----.-----,t 

• los Alamos 
NATIONA L LA.O_ATOIIY 

OperIIted by the l O$ A.lamos Nation,' Security. LLC for the DOEINNSA 

Raman/SHG 

1.0 

0.8 

'" -;;; 
C 

. ~ 
VJ 0.6 
-0 

" . ~ 

~ 
c 
!3 0.4 
Z 

0.2 

0.0 

A 2000 4000 

• Los Ala. II\n 
NATIOUA L LA.ORATORY 

Oper.ted by the lOG A~ Nation,' Security, LlC for the OOElNNS .... 

unclassified 

• Delta 
- SHG 

'" 1-be1a 

o 1-be1a 

6000 
Ti me ( 5) 

unclassified 

Time(, ) 

8000 10000 

-1 

Slide 25 

SIide26 

13 



Raman/SHG/DSC vs model 
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Conclusions on comparison of observables 

• 

• 

All are in agreement, assuming that the observable probes a 
representative volume element 

Relative advantages/disadvantages of each: 
• SHG- sensitivity, but it's a relative measure 
• Raman- lose sensitivity when do spatial integration, but can distinguish 

non-centro symmetric phases. Hard to use as an absolute measure 
(baseline flourescence, change in optical properties) 

• DSC- not an integral measure, so less sensitive and rate dependent, but 
best for use as an absolute measure. There is a minimum conversion rate 
needed for observation (dependent on baseline thermal stability) 

Smilowitz, L.; Henson, B. E i Romero. J. 1 .. lotercomparison of Calorimetry. Raman Spectroscopy, and Second 
Hannonic Generation Applied to Solid-Solid Phase Transitions. JOURNAL OF PHYSICAL CHEMISTRY A 
2009,11 3. (35), 9650-9657. 
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Kinetics 
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Reversibility of phase transition 
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Reversion experiments 
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Kinetics of PBX9501 

-Observe- reversible transition 

-Sigmoidal kinetics 

-Use reversible nucleation and growth model with 
Arrhenius rates and transition state for growth step= 
melt state 

- determine thermodynamic parameters to fit forward 
reaction rates at different temperatures/ramp rates 
(feedback into larger scale experiments) 
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Model J3-8 phase transition: 

Coupled fIrst order nucleation and second order growth 

kl 

I3-HMX +--+ 8-HMX 
k. 

I3-HMX + 8-HMX 
k~ 

8-HMX 

k 
I3-HMX + 8-HMX ++ I3-HMX 

A 
• LosAlamos Slide 34 
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Transition kinetics 

p-HMX 
k, 

o-HMX ---k., 

p-HMX + o-HMX 
k, 

+---'-+ o-HMX 
k.~ 

Nucleation and growth rate law: 

Where: ~(T) = kTIh exp«nS*-6 H*)/RT) 

= kTIh exp(-6G*/RT) 

the rate is determined by the thermodynamic parameters of the transition state 

.-QAlamos 
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Transition state= melt state 
~G*=~Gfusion 
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Virtual Melt 
Valery I. Levitas,*,t Bryan F. Henson,t: Laura B. Smiiowitz,:I: and Blaine W. Asay:l: 

J Phys. Chem. 82006, 110. 10105·10119 

We theoretically predict a new phenomenon, namely. that a solid-solid phase transformation (PT) with a large transformation 
strain can OCCUf via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) 
below the melting temperature. We show that the energy of elastic stresses. induced by transformation strain, increases the 

:i~p'~~r~~~o:alidlfi~:ti~nd ~~~h: ::;:l~~ t~e:=~~:'c=i:~a~~Ch~~:~~~!tt~~~h=Od~!ic~~a~~eti~~t of 
the solidsolid transfonnation. Thus. virtual melting represents a new mechanism of solid-solid PT, stress relaxation. and loss of 
coherence at a moving solid-solid interface . . .. Sixteen theoretical pred ictions are in qualitative and quantitative agreement 
with experiments conducted on the PTs in the energetic crystal HMX. In particular. (a) the energy of internal stresses is 
sufficient to reduce the melting temperature from 551 to 430 K for the a phase during the d fa PT and from 520 to 400 K for 
the a phase during the Ii f ti PT: (b) predicted activation energies for direct and reverse PTs coincide with corresponding 
melting energies of the d and Ii phases and with the experimental values: (c) the temperaturendependence of the rate constant is 
determined by the heat of fusion. for roth direct and reverse PTs: results b and c are obtained roth for overall kinetics and for 
interface propagation: (d) considerable nanocracking. bomogeneously distributed in the transformed material. accompanies the 
PT. as predicted by theory; (e) the nanocracking does nol chanse the PT thermodynamics or kinetics appreciably for Ihe first 
and the second PTa T Ii cycles. as predicted by theory; (I) a T a PTs start al a very small driving force (m contrast 10 all known 
solid-solid transformations with large transfonnation strain). that is. elastic energy and athermal interface friction must be 
negligible; (g) a f R and R fa PTs. which are Ihennodynamically possible in the temperature range 382.4 < 0 < 430 K and 
below 382.4 K, respeclively. do not occur. 

Levitas. V. I. ; Henson, B. F.: Smilowitz, L. 8. ; Asay. 8. W.o Solid-solid phase transfonnation via virtual melting significantly 
below the melting temperalure. Physical Review Lellers 2004, II . (92). 235702-1 

Levitas. V. I. : Smilowitz. L. B.; Henson. B. F.: Asay. B. W .• Solid-solid phase transformation via internal stress-induced virtua1 
melting: Addilional confirmations. Applied Physics Lellers 2005,87. (19). 1-3 
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~-8 phase transition: Temperature extrapolation 
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Detailed study of phase transition kinetics involving 
SHG probe yielded " virtual melt" phase transition 
model 
Ref- Levitas, Smilowitz, Henson, Asay, PRL, JUN 11 
2004 

2( A rClan( - (k, ;/. , » ± A rClan«(k, + k. ,) :!lk , -k, ))) 

I ~ vB JB B 

Plot of the transition 'half life' as a 
function of temperature 
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• Los Alamos 100000(K) 

Kinetic data show slowing near the 
stability temperature of delta HMX 
and reflect regimes of temperature 
where the growth or nucleation 
process dominate the conversion 
rate. Slide 37 
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~- 8 phase transition: Parameters 

Nucleation 

Use temperature dependence to constrain first 
order component of mechanism due to lack of a 
known activation state 

Data sets in agreement with literature values 

(fit 2 parameters : E1 , S1, V1) 

Growth 

Based on observations of Cady et al. and 
theoretical prediction: Assume that the growth 
mechanism is via melt and recrystallization . 
Therefore, energy of activation for growth step 
based on heat of fusion and ~-o energy difference 

(thermodynamics determine E2, S2, V2, E-2, S-2, 
V-2, E-1 , S-1) 

A 
• Los Alamos 
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First order kinetics 

ox 
- = k (I - x) - k x ot 1 - I 

k, 
Xe = ---

k, +k_, 

exp(_-G_6) 
x.; _---:-~,------!R-'-'T------,,--,--

exp(-- G_6) + exp(-- G_P) 
RT RT 

AL AI Second order thermodynamics 
• OS amos 
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Second order kinetics 

ox 
- = a (k - k )X(I- x) ot P o 2 - 2 

T = Tphase 

First order thermodynamics 

unclassified 

Thermodynamics vs. kinetics 

Thermodynamics typically determines whether something will happen, not how fast 
However, equilibrium is not static 

Simple TST theory of sublimation 

k T [ "n" ] - Ml ' 
-'[X"" " ] ; [p . ] _B ___ q"_' _ exp( __ "_' ) 

" .. hJ " [q""." •• ] RT 

~= __ l _ p 
aAat .J21tmkT 

kinetic rate (Hertz-Knudsen) 

A • los Alamos 
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kinetic order 

---.!.; vexp( --) A(n)dA iJt tJ.G' f 
at RT 

an = - kn 2Il 

at 

an =- 101 ' 
at 
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Kinetic Model Summary 

Rate controlled by an activation energy which is equivalent to the heat of fu sion. 

Balance offorward and reverse growth rates defines equilibrium temperature (cusp in half-
time curve) 

2nd order kinetics- acceleratory behavior due to dependence on interface between p-o 
2nd order kinetic component yields a I st order thermodynamic transition 

virtual melt state- activation energy = heat of fusion, 

but phase transition is occurring at T< T m 

Theory by V. Levitas based on the lowering of the melt temperature for a region of local 
tension at the interface - solves many previously reported conundra 

Levitas. v. I. : Henson. B. F.: Smilowitz, L. 8. ; Asay. B. W .. Solid-so lid phase transfonnation via virtual melt ing significantly below the 
melt ing temper.ture. Physical Review Letlers 2004, II , (92). 235702- 1 
Levitas, V. I.: Smilowitz. L. 8. : Henson, B. F. ; Asay. B. W.o Solid-solid phase transfonnation via internal stress-induced virtual melting: 

8.1 confinn. tions. Applied Physics Leiters 200S, 87. (19). 1-3 
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Summary 

13-8 phase transition in HMX occurs via 2nd order nucleation and 
growth mechanism 

The rate of growth is controlled by the heat offusion at a temperature 
100C below the thermodynamically stable melt 

• A virtual melt mechanism has been developed which explains this 
phenomenon 

SHG as a viable tool for studying solid state phase transitions has 
been validated against DSC 

• Previously reported inconsistencies between various observables 
have been explained . 

• Q Alamos 
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The phase transition and chemical decomposition 

~ 

'0' 

10' 
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10' 

.§ 10° 
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Temperature (C) 
1727 m 393 227 127 60 12 

Solid state phase transfonnation 

j3-HMX +-+ b-HMX 

j3-HMX + b-HMX +-+ b-HMX 

Solid to gas decomposition 

b-HMX -C 4CH20 + 4N20 
4HCN + 2N02 + 2NO+ 2H20 

Gas phase ignition reactions 

CH20 + N02 +-+ HCO + HONO 
'0· 
~.~<~'~~~~~~~ 
• LosAlamos'o 

CO+HONO 
HCO + N02 -C Slide 43 1.5 2.0 2.5 3.0 3.' 
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