SAND2011- 3474C

AN ASYNCHRONOUS PARALLEL HYBRID OPTIMIZATION APPROACH TO
SIMULATION-BASED MIXED-INTEGER NONLINEAR PROBLEMS

K.R. Fowler®, T. Kopp®, J. Orsini®, J.D. Griffin®, G.A. Gray®,

@b9Department of Mathematics and Computer Science, Clarkson University

@DsAs

©sandia National Labs

@kfowler@clarkson.edu, ® kopptr@clarkson.edu, ©orsinijw@clarkson.edu, @joshua.griffin@sas.com,

®gagray@sandia.gov

ABSTRACT

To address simulation-based mixed-integer problems, a
hybrid algorithm was recently proposed that combines
the global search strengths and the natural capability of
a genetic algorithm to handle integer variables with a
local search on the real wvariables using an
implementation of the generating set search method.
Since optimization is guided only by function values,
the hybrid is designed to run asynchronously on a
parallel platform. The algorithm has already been
shown to perform well on a variety of test problems,
and this work is a first step in understanding how the
parallelism and local search components influence the
search phase of the algorithm. We show that the
hybridization can improve the capabilities of the genetic
algorithm by using less function evaluations to locate
the solution and provide a speed-up analysis on a
standard mixed-integer test problem with equality and
inequality constraints.

Keywords: genetic algorithm, pattern search,
asynchronous, mixed-integer nonlinear programming

1. INTRODUCTION

The need for reliable and efficient optimization
algorithms that do not require derivatives is common
across engineering disciplines. In general, the optimal
design process requires such algorithms to work in
conjunction with simulation tools, resulting in what is
known as black-box optimization. For example, the
simulation may require the solution to a system of
partial differential equations that describes a physical
phenomenon. These problems are challenging in that
optimization must be guided by objective function (and
possibly constraint) values that rely on a computer
simulation, without any additional knowledge other
than the output from the simulation itself. The
simulation may be computationally expensive and add
undesirable features to the underlying problem such as
low amplitude numerical noise, discontinuities, or
hidden constraints (i.e. when the program simply fails to
return a value due to its own internal solver failure).
Derivative-free optimization (DFO) methods have been
developed, analyzed, and demonstrated successfully

over the last several decades on a wide range of
applications (Conn, Scheinber, and Vincente 2009).
Because DFO methods only rely on function values,
parallelism is often straightforward and, in the case of
expensive simulation calls, can make otherwise
intractable problems solvable.

Hybrid DFO algorithms have emerged to overcome
inherent weaknesses and exploit strengths of the
methods being paired (Talbi 2004; Raidl 2006; Alba
2005). Often, the hybrid algorithms are designed to
address problems that could not otherwise be solved. In
this work, we focus on the parallelism of a hybrid
evolutionary algorithm with a local search that was
designed for simulation-based mixed-integer problems
with nonlinear constraints (Griffin, Fowler, Gray,
Hemker, and Parno). The performance of the hybrid
was demonstrated on a suite of standard test problems
and on two applications from hydrology (Gray, Fowler,
and Griffin 2009; Gray, Fowler, and Griffin 2010;
Griffin, Fowler, Gray, Hemker, and Parno) that were
known to be challenging for a wide range of DFO
methods (Fowler, Kelley et al 2004; Fowler 2008).
Some of those challenges, which are not unique to
environmental engineering, included discontinuous
optimization landscapes, low amplitude noise, multiple
local minima. Specifically, in (Fowler, Kelley et al
2004), a comparison of derivative-free methods on the
hydrology applications showed that a genetic algorithm
(GA) performed well in terms of identifying the correct
integer variables but then failed to achieve sufficient
accuracy for the real variables. On the other hand, given
a reasonable initial iterate with respect to the integer
variables, the local search methods showed fast
convergence. These observations motivated the pairing
of the GA with a generating set search approach,
referred to as Evolutionary Algorithms Guiding Local
Search (EAGLS). The resulting algorithm pairs the
binary mapping of the genetic algorithm to handle
integer variables with asynchronous, parallel local
searches on only the real variables. The resulting
method has strong global search aspects and can still
maintain high accuracy from the local search phase.

Previous studies focused on the ability of EAGLS
to solve a variety of MINLPs with varying difficulties

mailto:kfowler@clarkson.edu
mailto:kopptr@clarkson.edu
mailto:orsinijw@clarkson.edu
mailto:joshua.griffin@sas.com
mailto:gagray@sandia.gov

in constraint formulations and problem size. In (Griffin,
Fowler, Gray, Hemker, and Parno), EAGLS was able to
solve a water supply hydrology application that
previously could not be solved without significant
parameter tuning of either of the two software tools that
were merged to create the hybrid. Little work has been
done to understand how the asynchronous parallelism
that is inherent in the implementation impacts the search
phase of the algorithm. This work is a first attempt at
using parallel performance measures to understand the
algorithms strengths and weaknesses.

For this work, we consider objective functions of the
form f: R™*"z - R and mixed-integer nonlinear
optimization problems of the form

minyeq f(p). 1)

Here n,. and n, denote the number of real and integer
variables and, x € R"z, z € Z"z. In practice, may be
comprised of component-wise bound constraints on the
decision variable in combination with linear and
nonlinear equality or inequality constraints. Often,
Q may be further defined in terms of state variables
determined by simulation output. We proceed by first
reviewing the genetic algorithm, the generating set
search method, and software that are hybridized to form
the new algorithm. We then present numerical results
and outline future directions.
2. EAGLS

2.1. Genetic Algorithms
The EAGLS approach combines a genetic algorithm
and a generating set search approach. GAs (Goldberg
1989; Holland 1975; Holland SIAM) are one of the
most widely-used DFO methods and are part of a larger
class of evolutionary algorithms called population-
based, global search, heuristic methods (Goldberg
1989). Gas are based on biological processes
such as survival of the fittest, natural selection,
inheritance, mutation, or reproduction. Design points
are coded as “individuals” or “chromosomes”, typically
as binary strings, in a population and then undergo the
above operations to evolve towards a better fitness
(objective function value).

A simple GA can be outlined with:

1. Generate a random/seeded initial population of
size n,
2. Evaluate the fitness of individuals in initial
population
3. Iterate through the specified number of
generations:
a. Rank fitness of individuals
b. Perform selection
c. Perform crossover and mutation
d. Evaluate fitness of newly-generated
individuals
e. Replace non-elite members of
population with new individuals
During the selection phase, better fit individuals are
arranged randomly to form a mating pool on which

further operations are performed. Crossover attempts to
exchange information between two design points to
produce a new point that preserves the best features of
both ‘parent points'. Mutation is used to promote a
global search and prevent stagnation at a local
minimum. Termination of the algorithm is typically
based on a function evaluation budget that is exhausted
as the population evolves through generations.

Often, GAs are criticized for their computational
complexity and dependence on optimization parameter
settings, which are not known a priori (Dejong and
Spears 1990; Grefenstette 1986; Lobo, Lima, and
Michalewicz 2007). Parameters like the population size,
number of generations, as well as the probabilities and
distribution indices chosen for the crossover and
mutation operators affect the performance of a GA
(Reed, Minsker et al. 2000; Mayer, Kelley, et al. 2002).
Also, since the GA incorporates a randomness to the
search phase, multiple optimizations are often useful to
exhaustively search the design space. However, if the
user is willing to spend a large number of function
evaluations, a GA can help provide insight into the
design space and locate initial points for fast, local,
single search methods. The GA has many alternate
forms and has been applied to a wide range of
engineering design as shown in references such as (Karr
and Freeman 1998). Moreover, hybrid GAs have been
developed at all levels of the algorithm and with a
variety of other global and local search DFO methods.
See for example (Blum, Aquilera, et al. 2008; Talbi
2004; Raidl 2006) and the references therein.

The EAGLS software package was created using
the Non-dominated Sorting Genetic Algorithm (NSGA-
I) software, which is described in (Deb, Pratap et al.
2002; Zitzler, Deb and Thiele 2000; Deb 2000; Deb and
Goel 2001). Although a variety of genetic algorithms
exist, the NSGA-II has been applied to both single and
multi-objective problems for a wide range of
applications and is well supported. In particular, it is
deigned to be used “off-the-shelf” which made it a good
candidate for hybridization.

2.2. Generating Set Search and APPS
Asynchronous Parallel Pattern Search (APPS) (Hough
and Kolda 2001; Kolda 2004) is a direct search methods
which uses a predetermined pattern of points to sample
a given function domain. APPS is an example of a
generating set search (GSS), a class of algorithms for
bound and linearly constrained optimization that obtain
conforming search directions from generators of local
tangent cones (Lewis, Shepherd et al. 2005; Kolda,
Lewis et al. 2006). In its simplest form, the method
evaluates the objective function on a stencil of points
and if a better point is found, the stencil is moved to that
point, otherwise the size of the stencil is reduced.
Optimization is terminated either based on a function
evaluation budget or when the stencil becomes
sufficiently small. The basic GSS algorithm is:

Let x, be the starting point, A, be the initial step
size and D{di}f:{ be the set of positive panning

directions.
While not converged Do:

1. Generate trial points
Qu={x; +Ad;|]1 <i<D} where A€
[0,A,] denotes the maximum feasible step
along d;.

2. Evaluate trial points (possibly in parallel).
3. If3x, € Q such that f(xq) — fx) < a2
Then xi.1 = x4 (successful iteration)

Else xx.1 = x4 (unsuccessful iteration) and
A . .
Ary1 = =f (step size reduction)

The majority of the computational cost of pattern
search methods is the 2n, function evaluations, so
parallel pattern search (PPS) techniques have been
developed to perform function evaluations
simultaneously on different (Dennis and Torczon 1991;
Torczon 1992). For example, for a simple two-
dimensional function, consider the illustrations in
Figure 1 taken from (Gray and Fowler 2011). First, the
points f,g,h,and i in the stencil around point c are
evaluated. Then, since f results in the smallest function
value, the second picture shows a new stencil around
point f. Finally, in the third picture, since none of the
iterates in this new stencil result in a new local minima,
the step size of the stencil is reduced.

Figure 1: Illustration of the steps of Parallel Pattern
Search (PPS) for a simple two-dimensional function.
On the upper left, an initial PPS stencil around starting
point ¢ is shown. In the upper right, a new stencil is
created after successfully finding a new local min f. On
the bottom left, PPS shrinks the stencil after failing to
find a new minimum

Note that in a basic GSS, after a successful iteration
(one in which a new best point has been found), the step
size is either left unchanged or increased. In contrast,
when the iteration was unsuccessful, the step size is

necessarily reduced. A defining difference between the
basic GSS and APPS is that the APPS algorithm
processes the directions independently, and each
direction may have its own corresponding step size.
Global convergence to locally optimal points is ensured
using a sufficient decrease criterion for accepting new
best points. A trial point x; + Ad; is considered better
than the current best point if

f x4+ Ady) = f(xg) < ad?, @)
fora > 0.

Because APPS processes search direction
independently, it is possible that the current best point is
improved before all the function evaluations associated
with a set of trial points Q, have been completed.
These results are referred to as orphaned points as they
are no longer tied to the current search pattern and
attention must be paid to ensure that the sufficient
decrease criteria is applied appropriately. The support
of these orphan points is a feature of the APPS
algorithm which makes it naturally amenable to a
hybrid optimization structure. lterates generated by
alternative algorithms can be simply be treated as
orphans without the loss of favorable theoretical
properties or local convergence theory of APPS.

2.3. Why EAGLS works

EAGLS combines the NSGA-II with the APPSPACK
software (Gray and Kolda 2006). APPSPACK is written
in C++ and uses MPI (Gropp, Lusk et al. 1996; Gropp
and Lusk 1996) for parallelism. Function evaluations
are performed through system calls to an external
executable which can write in any computer language.
This simplifies its execution and also makes it a good
candidate for inclusion in a hybrid scheme. Moreover, it
should be noted that the most recent version of
APPSPACK can handle linear constraints (Kolda,
Lewis, and Torczon 2006; Griffin, Kolda and Lewis
2008), while a software package called HOPSPACK
builds on the APPSPACK software and includes a GSS
solver that can handle nonlinear constraints (Griffin and
Kolda 2010a; Plantega 2009). To implement EAGLS,
as in (Griffin and Kolda 2010b), a preliminary version
of HOPSPACK was used.

The EAGLS algorithm is designed to exploit
parallelism. A goal of a parallel program is to ensure
that all available processors are continuously being
used. However, in practice this is often not the case.
To understand this more fully in our context, consider a
hypothetical black-box bound constrained optimization
problem that has two real variables and an objective
function with an evaluation time of at least one hour;
further, we assume the user has 128 nodes with 2
processors each. There are a number of advantages that
come from the use of parallelism in this context.

e Most local search algorithms (even
asynchronous parallel ones) have a cap on the
maximum number of processors they can

effectively use. For our example problem,
APPS will generate at most 4 trial-point per
iteration. For the first hour APPS is called
252 processors will be idle. The user would
need to start by hand 64 different instances of
APPS centered at unique starting points, to
fully exploit the computational power at hand
with APPS alone.

e Most algorithms are synchronous by design,
and parallel versions typically run in a “batch”
mode. For example, a genetic algorithm
requires all points in the current generation be
evaluated before creating the next. Suppose a
parallel GA uses a population of size 256 and
submits all 256 points to be evaluated in
parallel. Before the second iteration can
begin, all 256 points must be evaluated; if all
evaluations are complete but one, then the
entire optimization processes is halted until
this final evaluation is completed, even if this
remaining evaluation takes hours longer to
complete. Thus synchronous parallel
algorithms necessarily move at the rate of the
slowest evaluation.

The downsides described in the preceding bullets are
actually advantageous for hybrid algorithms. Rather
than attempt to redesign APPS so that it will submit
more points in each iteration or invent a new
asynchronous genetic algorithm that seeks to update
multiple generations asynchronously, we simply tie
multiple algorithms together loosely, pooling the
resources in such a way that any unused resources can
be shared. In the case of EAGLS, a single GA is run,
and remaining idle processors are used to perform local
searches. However, because local searches are often
much faster than a GA at finding a local minimum,
priority is given each generation to the local searches in
the evaluation queue until that iterations local search
evaluation budget has been expended. An immediate
consequence and benefit of the EAGLS structure is that
there is virtually no cap on the maximum number of
processors that can be utilized for a given problem. At
the same time, even with a few extra processors,
significant wall-clock gains can be achieved, as the
local search can be used to quickly find the global
minimum once the GA is sufficiently near.

2.4. EAGLS Algorithm
EAGLS uses the GA's handling of integer and real
variables for the global search, and APPS's handling of
real variables in parallel for local search. Note that a
MINLP could be immediately reduced to an integer
programming problem if there was an analytic formula
that provided x* where

x* = argmin f(x, z)
X

given an integer variable z. Though for a general
MINLP, such a formula may not exist, local searches
can be used (in parallel) to repeatedly

replace (x, z) pairs in the GA population pool with
(%,2), where X is an improved estimate of x* provided
by a local search. The GA still governs point survival,
mutation, and merging as an outer iteration, but, during
an inner iteration, individual points are improved via
APPS applied to the real variables, with the integer
variables held fixed. For simplicity, consider the
parallel synchronous EAGLS algorithm with k local
searches:

1. Evaluate initial population in parallel
2. While not converged Do

a. Choose a subset £ of k points from
current population for local search

b. Simultaneously run k instances of
APPS centered at points in £

c. Replace respective points with their
optimized values

d. Perform mutation,

crossover

selection,

e. Evaluate new GA points in parallel

Figure 2: In EAGLS the genetic algorithm optimizes
over both integers and real variables, while local search
instances work solely within a given integer plane
(Griffin, Fowler, Gray, Hemker, and Parno).

To select points for the local search, EAGLS uses a
ranking approach that takes into account individual
proximity to other; better points (see Figure 2). The
goal of this step is to choose promising individuals
representing distinct integer subdomains. The EAGLS
algorithm allows the local search and the GA to run
simultaneously using the same pool of evaluation
processors. For the most part, the GA and each local
search run asynchronously. However, after each GA
generation, a new batch of local searches are created
and given priority in the evaluation queue. This implies
that given an adequate number of local search instances,
the GA generations and local search generation will
necessarily be nested, as the number of local search
trial-points will always be greater than the number of
available processors in the evaluation queue. This forces
the GA to wait until the local search generation depletes
its current evaluation budget prior to proceeding. Once
the GA population has been evaluated, the local

searches begin and operate asynchronously. To avoid
re-evaluating points, all function values are stored in
cache. The external parallel paradigm is nearly identical
to that used in (Griffin and Kolda 2010b; Gray, Griffin
et al. 2008). Whenever an improved point is found with
respect to the real variables, the corresponding
population member is immediately updated. See Figure
3 for a short point-flow sketch of this process.

An ordered set of +
Function
EAGLS points are queued Trial-point Evaluation
Algorithm for evaluation Evaluator \ Processors
:
l”
\
Mel
APPS2 . /
¢
e
Function \ Worker.3
Value
\®‘ Cache \ -
- J
Trial points are returned asynchronously | O i 7
and distributed to appropriate routine
\ .

Figure 3: The EAGLS user can decide the population
size and the number of local searches in an input file.
The algorithms are run asynchronously in parallel with
the local searches periodically inserting new improved
points into the current GA population.

3. NUMERICAL RESULTS
3.1. Test Problem

To evaluate the parallelism of EAGLS we consider two
studies. In the first, we fix all the optimization
algorithm parameters and increase the number of
processors used. In the second, we fix the number of
processors to 16 and vary only the number of local
searches while all other optimization parameters are
held fixed. We use a classical mixed-integer test
problem taken from (Kocis and Grossman 1988) that
was proposed to study process synthesis applications
with the outer approximation method. While this may
seem to be simple, it is representative of the MINLPs
encountered in process design and engineering. Thus,
understanding how the parallelism and local search
components of EAGLS affect its solution will aid in our
ability to more efficiently solve similar MINLPs. The
decision variables are p = (zy, 2, Z3, X1, X,)" With
bound constraints given by

p € Q = {p IZ]J ZZ' 23 € {011}1 xl:xz € [0!10]}

We seek to minimize the objective function f(p)
where

fp) = 2x; +3x,+ 1.5z 1+ 2z, — 0.5z ?3)

subject to the following constraints,

c(p) = x242z,—-125=0
c;(p) = x35+ 152, —3.00 = 0

cs(p)=x,+2,—160 <0 4
c,(p) = 1.333x,+2,—3.00 < 0
Csp) = —Z1— 2 +23 < 0.

The constraints on both the integer and real variables
make this problem challenging. For constraint handling,
we use the ¢, and the ¢, -smoothed penalty function
where the constraint violation is incorporated with the
objective function to form a corresponding merit
function (Griffin and Kolda 2010b). Although the
problem is small dimensionally, it is non-convex and
some of the sub problems obtained by fixing the integer
variables contain a unique local minimum which is
challenging for standard MINLP solvers to avoid, as
shown in (Kocis and Grossman 1988). Thus, this
problem was ideal for testing the integer capabilities of
EAGLS (Griffin, Fowler, Gray, Hemker, and Parno)
and thereby was chosen here to study the asynchronous
parallel local search capabilities. The known solution
has a function value of 7.667 and the local minimum
has a value 7.931. To add computational expense to
each function evaluation and test the asynchronous
nature of the algorithm, we add a random pause
between one and three seconds to each function
evaluation. This approach was used to test parallel
optimization approaches in (Hough, Kolda, and Torzan
2001; Griffin and Kolda 2010b).

3.2. Algorithmic Parameters and Platform
Since the solution to the test problem is known, we stop
when the best point found is within 1% of the known
solution. We provide the other relevant optimization
parameters in Table 1. The numerical experiments were
performed on a 102 processor Beowulf blade cluster
(IBM e1350) with 3.0 Ghz Intel Xeon processors and
Myrinet Networking.

Table 1: Optimization Parameters

Parameter Value
Population size 40
Number of Generations 250
Real Crossover Probability 0.9
Real Mutation Probability 0.5
Binary Crossover Probability 9
Binary Mutation Probability 0.0125
GSS Contraction Factor 5
GSS Sufficient Decrease Factor le-9
GSS Step Tolerance le-5
Maximum Generation Evaluations 840
Maximum Function Evaluations 3000

3.3. Varying Number of Processors

Since the GA has stochastic optimization parameters
and APPS is asynchronous, EAGLS is not a
deterministic method, thus each optimization
experiment was run five times and average values are
reported. This approach has been used in numerous
studies for APPS (Griffin and Kolda 2010b). Average
run times and number of function evaluations required
for convergence are shown in Figure 4 as the number of
processors doubles from 2 to 64. For these experiments
EAGLS used 8 local searches. Since there are only
n,. = 2 real variables, for each local search APPSPACK
would not see increased speed up beyond 2n, =4
processors for a total of 32 while the additional
processors can be used to evaluate the GA population.
The figure on the left shows the speed-up one would
expect. The figure on the right is interesting in that the
number of function evaluations increases with the
number of processors. This is because as APPSPACK is
run on more processors, the algorithm may move the
stencil to a new location if a point is found with a lower
function value but older points are not deleted from the
queue if sufficient processors are allocated. So if a point
from an older stencil does return a lower function value,
the algorithm would move back to that location and
continue. Note that because significantly more
processors are being used, the computational time still
shows linear speed-up despite the increased number of
function evaluations.

2000

1500

1000

Time in seconds

500

2 4 3 16 32 54
Mumkber of processors

1000

800

500

400

200

Number of function evaluations

2 4 8 16 32 64
MNumber of processorg

Figure 4: Computational time and number of
evaluations required as the number of processors varies.
Run times are shown in the upper picture and number of
function evaluations are shown in the lower picture.

3.4. Varying Number of Local Searches

To further understand how the asynchronous nature of
APPSPACK impacts the search phase of EAGLS, we
vary the number of local searches. For these
experiments, 16 processors were used and all
optimization algorithmic parameters were fixed except
the number of local searches, which was varied from 4
to 8. We also consider the case of no local searches,
which means EAGLS is simply a genetic algorithm with
function evaluations performed in parallel. Figure 5
shows the average run times and number of function
evaluations needed for convergence.

300

Time in seconds

0 4 5 5 7 3
Mumber of local searches

2500

20001

1500 1

10007

5001

Mumber of function evaluations

0 4 5 B8 7 8
Mumber of local searches

Figure 5: Computational time and number of function
evaluations required as the number local searches
varies. Run times are shown in the upper picture and
number of function evaluations are shown in the lower
picture.

The local searches have a significant impact on the
optimization history using roughly one fifth of the
computational effort of the GA alone. As the number of
local searches increases, the number of function
evaluations increases as one would expect but it is not
significant. This is due in part to the fact that the
algorithm is terminating based on proximity to a known
solution. Future work will include exploring the
behavior on larger dimensional problems which may
show more dynamic results in terms of the optimal
number of local searches, but for this work we are
staying in the context of simulation-based MINLPs
which typically are not too large. We should further
note that this test problem does have a feasible local
minimum with a function value of roughly 7.931, and
EAGLS avoided convergence to this suboptimal point
in all trials.

4. CONCLUSIONS

These experiments are the first step in understanding an
asynchronous hybridization of a genetic algorithm with
a local search based on a generating set search method
for mixed-integer problems. This approach has
extended the APPSPACK software to handle integer

variables, improved its global search capabilities, and
added parallelism and a local search to the NSGA-II
software package. The tests done here are promising in
showing that using local searches can help accelerate
the convergence of the GA but also indicate that there is
a complex interaction among algorithm parameters. The
GA is well-known to be sensitive to parameter settings
and the addition of an asynchronous local search with
additional parameters warrants a more extensive study
to better guide users. Future work will include a
sensitivity study similar to that in (Matott, Bartlelt et al.
2006) to understand the interaction and main effects of
the optimization settings.

5. BIBLIOGRAPHY

Alba, E. (2005). Parallel Metaheuristics. John Wiley &
Sons, Inc.

Blum, C., Blesa Aquilera, M. J., Roli, A.,, & M., S.
(2008). Hybrid Metaheuristics. Springer.

Conn, A., Scheinberg, K., & Vincente, L. N. (2009).
Introduction to Derivative Free Optimization.
SIAM.

Deb, K. (2000). An efficient constraint handling method
for genetic algorithms. Computer Methods in
Applied Mechanics and Engineering.

Deb, K., & Goel, T. (2001). Controlled Elitist Non-
dominated sorting genetic algorithms for better
convergence. Proceedings of the First
International Conference on Evolutionary
Multi-Criterion Optimization {EMO} 2001.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.
(2002). A Fast and Elitist Multi-Objective
Genetic Algorithm: {NSGA-II}. {IEEE}
Transactions on Evolutionary Computation.

Dejong, K., & Spears, W. (1990). An Analysis of the
Interacting Roles of Population Size and
Crossover in Genetic Algorithms. First
Workshop Parallel Problem Solving from
Nature. Springer-Verlag, Berlin.

Dennis, J. E., & Torczon, V. (1991). Direct search
methods on parallel machines. SIAM J. Optim.

Fowler, K. e. (2008). A Comparison of Derivative-free
Optimization Methods for Water Supply and
Hydraulic Capture Community Problems. Adv.
Water Resourc., 743-757.

Fowler, K., & C.T., K. (2004). Solution of a Well-Field
Design Problem with Implicit Filtering. Opt.
Eng.

Goldberg, D. (1989). Genetic algorithms in search,
optimization, and machine learning. Addison
Wesley.

Gray, G., & Fowler, K. (2011). Traditional and Hybrid
Derivative-free Optimization Approaches for
Black-box Optimization. In Computational
Optimization and Applications in Engineering
and Industry. Springer.

Gray, G., & Griffin, J. (2008). HOPSPACK: Hybrid
optimization parallel search package.
Livermore, CA: Sandia National Labs.

Gray, G., & Kolda, T. (2006). Algorithm 856:
APPSPACK 4.0: Asynchronous Parallel

Pattern Search for Derivative-Free
Optimization. ACM TOMS.

Gray, G., Fowler, K., & Griffin, J. (2010). Hybrid
Optimization Schemes for Simulation Based
Problems. Procedia Comp. Sci., 1343-1351.

Grefenstette, J. (1986). Optimization of Control
Parameters for Genetic Algorithms. IEEE
Trans. Sys. Man Cybernetics.

Griffin, J., & Kolda, T. (2010). Asynchronous parallel
hybrid optimization combining DIRECT and
GSS. Optim. Meth. Software.

Griffin, J., & Kolda, T. (2010). Nonlinearly-constrained
optimization using heuristic penalty methods
and asynchronous parallel generating set
search. Appl. Math. Res. eXpress.

Griffin, J., Fowler, K., Gray, G., Hemker, T., & Parno,
M. (n.d.). Derivative-free Optimization via
Evolutinary Algorithms Guiding Local Search
(EAGLS) for MINLP. Pacific Journal of
Optimization.

Griffin, J., Kolda, T., & R., L. (2008). Asynchronous
Parallel Generating Set Search For Linearly-
Constrained Optimization. SIAM J. Sci. Comp.

Gropp, W., & Lusk, E. (1996). User's Guide for mpich,
a Portable Implementation of MPI.
Mathematics and Computer Science Division,
Argonne National Lab.

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996).
A high-performance, portable implementation
of the MPI message passing interface standard.
Parallel Comput.

Holland, J. (1975). Adaption in Natural and Artificial
Systems. University of Michigan Press.
Holland, J. (1975). Genetic algorithms and the optimal

allocation of trials. SIAM J. Comput.

Hough, P., T.G, K., & Torczon, V. (n.d.). Asynchronous
Parallel Pattern Search for Nonlinear
Optimization. SIAM J. Sci. Comput., 2001.

Karr, C., & Freeman, L. (1998). Industrial Applications
of Genetic Algorithms. CRC Press.

Kocis, G., & Grossman, I. (1988). Global Optimization
of Nonconvex Mixed-Integer Nonlinear
Programming (MINLP) Problems in Process
Synthesis. Ind. Eng. Chem. Res.

Kolda, T. (2004). Revisiting Asynchronous Parallel
Pattern Search. Livermore, CA: Sandia
National Labs.

Kolda, T., Lewis, R. M., & Torczon, V. (2006).
Stationarity results for generating set search for
linearly constrained optimization. SIAM J.
Optim.

Lewis, R., Shepherd, A., & Torczon, V. (2005).
Implementing generating set search methods
for linearly constrained minimization.
Williamsburg, VA: Department of Computer
Science, College of William & Mary.

Lobo, F., Lima, C., & Michalewicz, Z. (Eds.). (2007).
Parameter settings in evolutionary algorithms.
Springer.

Matott, L., Bartlelt-Hunt, S., & Rabideau, A. F. (2006).
Application of Heuristic Techniques and
Algorithm Tuning to a multilayered sorptive
barrier system. Environmental Science \&
Technology.

Mayer, A., Kelley, C., & Miller, C. (2002). Optimal
design for problems involving flow and
transport phenonmena in saturated subsurface
systems. Advances in Water Resources.

Plantega, T. (2009). HOPSPACK 2.0 User Manual (v
2.0.1). Livermore, CA: Sandia National Labs.

Raidl, G. R. (2006). A unified view on hybrid
metaheuristics. {HMO06:} Third International
Workshop on Hybrid Metaheuristics.

Reed, P., Minsker, B., & Goldberg, D. (2000).
Designing a competent simple genetic
algorithm for search and optimization. Water
Resources Research.

Talbi, E. (2004). A taxonomy of hybrid metaheurtistics.
J. Heuristics 8, 541-564.

Torczon, V. (1992). PDS:Direct Search Methods for
Unconstrained Optimization on Either
Sequential or Parallel Machines. Houston,
TX: Rice Univ.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of
Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation
Journal.

