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Take Away Message

 Improving and updating the electrical grid is 
interesting, challenging, & important

 There are a number of specific problems 
associated with this topic.  I will give you 
just a few examples.

 These problems are excellent drivers for the 
development of tools and methods for 
solving stochastic MIPs & combinatorial 
problems.



The Grid History

 1882: First power system Pearl Street Station, NY 
(Edison)

 1884: Introduction of AC transformer 
(Westinghouse)

 1890’s: Edison and Westinghouse compete and 
AC becomes the norm (not DC) 

Ability to increase and decrease voltages

Simpler, lower cost motors and generators

Standardization of frequency & voltage levels

 1950’s: HVDC 

 Since the 1950’s, there have been few changes

 Today & Future: Addition of computers, 
communications, distributed generation to form a 
smart (or smarter) grid

 Incorporation of renewable energy

Pearl Street Power Station, NY



The Grid Make-Up

 Components 

Generation (mostly centralized) 

Transmission/distribution network: lines, transformers, 
regulators, switches, etc. 

Utilization (loads) 

Storage (little)

 Other physical components 

Controls systems 

Protection systems 

Measurement 

Communications

 It’s a (complicated) graph!



The US Grid

See NPR website for more details 
(http://www.npr.org/templates/story/story.php?storyId=110997398)



Improving the Grid

Desired characteristics of the grid (as stated by the US Department of 
Energy):

 Self-healing from power disturbance events

 Enabling active participation by consumers in demand response

 Operating resiliently against physical and cyber attack

 Providing power quality for 21st century needs

 Accommodating all generation and storage options

 Enabling new products, services, and markets

 Optimizing assets and operating efficiently



We are focusing on these issues…

 Analysis and reduction of system vulnerabilities

– Natural risks: earthquake, hurricane, tsunami

– Man-made: terrorism, sabotage, error

 Short term unit commitment & economic dispatch

 Long term transmission and generation (e.g. 
renewables) expansion planning

 The effects of uncertainties in and on the system



Vulnerability Analysis

 Blackout corresponds to infeasibility of power flow 
equations.

 Cascading is initiated by a significant disturbance.

 Focus is detecting initiating events and analyzing the 
network for vulnerabilities

 Bilevel MINLP or combinatorial formulation

Courtesy of: Ali Pinar, Richard Chen
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Vulnerability Analysis as 
Combinatorial Problem

 Given a graph G=(V,E) with weights on its vertices

negative for loads,

positive for generation,

 Find a partition of V into two loosely connected regions 
with a significant load/generation mismatch.

 Cut min. number of lines so that max flow is below 
specified bound.

 Shown to be NP-complete (Phillips 1991).
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Two Planning Problems

 Generation Expansion: Examine the what, where, and 
when of adding new technologies

 Transmission Expansion: Examine the how and 
reliability of the bulk transfer of energy

 Commonly expressed as stochastic mixed-integer 
programs 

 Both problems have 2-stage and n-stage forms

 (Severely) Complicating factors

• With and without security constraints

• DC versus AC power flow models

• Linear, quadratic, or higher-order line loss models



The Generation Expansion Stochastic 
Program

Two-stage stochastic (mixed-integer) programming 
formulation

Objective:

Constraints:

Jin and Ryan (2010)



Current Efforts in Generation Expansion

 Iowa State (Ryan, Industrial & Systems Eng.)

• Multi-stage generation expansion problem

• Uncertainty in future demand, fuel prices

• 10-year planning horizon, mix of nuclear, wind, coal, 
combined-cycle…

• Identify what to build, how many, and when

 North Carolina State (DeCarolis, Civil & Environmental Eng.)

• Same fundamental problem as Iowa State

• Key difference: Generators are modeled in terms of bulk power

• Identify how many MW of capacity to build, and when



Stochastic Optimization and the Grid: 
Challenges

 Challenge #1: Computation at regional and national scales

 Most domain publications deal with “toy” problems

 Few at-scale benchmarks widely available

 Challenge #2: Common definition of core operations and planning 
problems

 Unit commitment literature is notoriously inconsistent

 Makes algorithmic cross-comparison nearly impossible

 Challenge #3: Solving the real problem

 Combining, e.g., unit commitment and transmission switching

 Generation and transmission expansion

 Unit commitment + transmission constraints + security constraints



Stochastic Mixed-Integer Programming: The Algorithm 
Landscape

 The Extensive Form or Deterministic Equivalent

• Write down the full variable and constraint set for all scenarios

• Write down, either implicitly or explicitly, non-anticipativity constraints

• Attempt to solve with a commercial MIP solver

 Great if it works, but often doesn’t due to memory or time limits

 Time-stage or “vertical” decomposition

• Benders / L-shaped methods (including nested extensions)

• Pros: Well-known, exact, easy for (some) 2-stage problems, 
parallelizable

• Cons: Master problem bloating, multi-stage difficulties

 Scenario-based or “horizontal” decomposition

• Progressive hedging / Dual decomposition

• Pros: Inherently multi-stage, parallelizable, leverages specialized MIP 
solvers

• Cons: Heuristic (depending on algorithm), parameter tuning

 Important: Development of general multi-stage SMIP solvers is an open 
research area
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The Impact of Decomposition: Biofuel Infrastructure and Logistics 
Planning

Slide courtesy of Professor YueYue Fan (UC Davis)

Example of PH Impact:
• Extensive form solve time: >20K 

seconds
• PH solve time: 2K seconds



Wind Farm Network Design

 Where to site new wind farms and transmission lines in a 
geographically distributed region to satisfy projected demands at 
minimal cost?

 Formulated as a two-stage stochastic mixed-integer program

First stage decisions: Siting, generator/line counts

Second stage “decisions”: Flow balance, line loss, generator levels

 8760 scenarios representing coincident hourly wind speed, demand

 Solve with Benders: Standard and Accelerated

 Summary: A non-trivial Benders variant is required for tractable 
solution

Slide courtesy of Dr. Richard Chen (Sandia California)



“Call for Participation”

 We have generic software available for computing confidence intervals on the 
optimal objective function values for stochastic (mixed-integer) programs

Multiple replication procedure demonstrates feasibility

There are numerous extensions that should and will be pursued

 Even with a straightforward computational procedure, we have quickly obtained 
key insights to a range of important, real-world stochastic programs

Often we are using more than enough scenarios (expected case minimization)

For some, we aren’t using nearly enough (unit commitment)

For tail-oriented risk metrics, much work remains

 Software architectural challenges are identified by exposure to a broad user base

• Different domains yield different challenges

• Broader exposure yields more generic, robust implementations



What’s Next

 Study and quantify the gap between the combinatorial 
model and the nonlinear flow model

 Include vulnerability analysis as a constraint in 
decision making 

 Improve scenario sampling

 Include renewables (wind, solar, geothermal) and the 
uncertainties associated with their generation

 Uncertainty analysis:
Characterize and assess importance of: modeling & data 
uncertainties and insufficient scenario coverage
Develop approaches that span time scales

Evaluate robustness of optimal solutions with respect to 
implementation uncertainties


