
Coarse-Grain Simulation of Networks-on-Chip
using SST/Macro

Gilbert Hendry
Sandia National Laboratories

Livermore, CA
ghendry@sandia.gov

Simon Hammond
Sandia National Laboratories

Albuquerque, NM
sdhammo@sandia.gov

Abstract—Simulation is the foundation of current network-
on-chip research methods, which enables researchers to use
established knowledge of computer networks in the context of a
future single many-core chip. However, current NoC simulation
methods can either lack in accurate traffic characterization in
the case of synthetic drivers, or be cumbersome to develop
and run in the case of microarchitectural simulation. Coarse-
grain simulation offers key benefits which can augment current
simulation efforts by providing extremely efficient execution of
real applications while retaining the ability to investigate key NoC
features such as topology and routing. In addition, execution-
driven simulation of skeleton applications provides accurate and
efficient characterizations of important codes which can be easily
ported across simulators. SST/Macro is introduced as a useful
tool for a variety of demonstrated simulation scenarios which
extend across the spectrum of NoC research.

I. INTRODUCTION

Since the birth of the concept of the network-on-chip (NoC),
simulation has played a large role in understanding design
tradeoffs for hypothetical implementations, mainly because
real instances of NoCs are relatively rare. In general, few
widely-used or general-purpose chips today exhibit what most
researchers in the NoC community would consider a real
network connecting many cores together. One good example
of the NoC is the Tilera TILE series, which has a network
connecting many simple cores consisting of 5 independent
specialized regularly-tiled meshes [1]. However, this chip, like
many other system-on-a-chip (SoC) or embedded processors
which have a real network-on-chip, are not used in general
or high-performance computing, and have specialized imple-
mentations for which generic NoC research does not readily
apply.

The absence of the abundance of the true NoC is in part
due to the persistence (and importance) of the large base of
shared-memory code which relies on low-latency coherence
protocols, and core counts not yet exceeding the capabilities
(per area and power) of bus-based, point-to-point, or crossbar
implementations. However, future scaling predicts that a full
network-on-chip is the likely solution to performance, power,
area, manufacturability, and resilience challanges for many-
core chips. For this reason, simulation is the major tool of
NoC research today.

Most NoC research efforts which use simulation to focus
on performance and power employ one of two methodolo-
gies to model a single many-core processor: a cycle-accurate

router model driven by synthetic or traced traffic (shown
in Figure 1a), or a cycle-accurate router model driven by
microarchitectural simulation (shown in Figure 1b). Both of
these approaches have advantages and disadvantages in regard
to the proposed enhancements and the conclusions drawn from
the experiments.

For many research efforts, synthetic traffic is generated
which is meant to be characteristic of real application traf-
fic, or possibly many applications. Common patterns include
Random, Neighbor, Tornado (neighbors that are 2 hops away),
and Hotspot (all-to-one). Though it is convenient and quick to
use these patterns to test network architectural features, they
are not enough to be confident about the performance of real
applications. Indeed, designers of real commercial processors
and the interconnects that go on them resort to large, com-
plex simulations which run real industry benchmarks to test
performance before they can make design and implementation
decisions.

While industry simulators are almost never available to the
public in the interest of maintaining competitive advantage,
there are micro-architectural simulators which can be used
for NoC research such as Garnet [2]. Using these detailed
models enables the simulation of full application codes, often
including the operating system, with fully-accurate processor
and memory models. However, these simulations can be
cumbersome to develop and maintain, take a long time to run,
and may not necessarily be characteristic of real commercial
hardware anyway.

One additional tool which could augment the current state of
NoC simulation research is using execution-driven application
models without resorting to microarchitectural simulation. As
we will see in Section II, this can be achieved with the careful
management of lightweight threads. This method allows us
to fully model the characteristics of an application, including
computation, control, and communication by writing or modi-
fying codes in the same language and in the same way as real
application codes are written. This also allows us to model key
software libraries, such as MPI, in an efficient way to capture
the way they operate but retaining fast, efficient simulation. In
general, we refer to models which are more abstract than cycle-
accurate but still describe the specific behavior of discrete
software or hardware components as coarse-grain models.

Figure 1c shows an illustration of coarse-grain modeling to

SAND2011-9146C

(a) Basic (b) Microarchitectural

(c) Coarse-Grain (d) Macro-scale

Figure 1: Simulations of networks-on-chip with varying degrees of accuracy, and the pros and cons of each.

compare to the previous methods. Modeling of memory and
even disk is still fully possible, but in a more abstract way
which can vary in degree. Coarse-grain modeling also enables
the investigation of networks-on-chip in the context of large
machines, such as supercomputers or datacenters, which is
shown in Figure 1d.

This work is aimed at introducing coarse-grain simulation
to NoC research as an efficient and effective tool by demon-
strating various uses of SST/Macro, a simulator capable of
running a large number of application threads which can
closely approximate system performance and power. Coarse-
grain simulation offers key benefits to NoC research which
synergistically augment conventional cycle-accurate simula-
tion research, including the use of real application codes,
relatively accurate software and hardware models, and fast
simulation times. Section II describes more about SST/Macro,
and Sections III and IV perform some basic NoC experiments
which are meant to demonstrate its various possible uses.

II. THE SST SIMULATION FRAMEWORK

The Structural Simulation Toolkit (SST) is a framework for
building simulations by incorporating a variety of existing
packages including processor, memory, disk, network, and
software models [3]. SST/Macro is one branch of the SST

project which is aimed exclusively at coarse-grain, macro-
scale, and efficient simulations, and has previously been
described and used in high performance computing-related
studies [4], [5]. This section describes some of the more
important parts of SST/Macro, including proxy applications,
software models, hardware models, and validation.

A. Managing State with Lightweight Threads

One of the most novel implementation features of SST/-
Macro is its use of lightweight threads to save the state of an
executing thread while it blocks so that simulation time can ad-
vance. This process is illustrated in Figure 2. The main discrete
event simulation (DES) thread which processes general events
initializes and starts application threads. These lightweight
threads then can execute as normal code, but don’t advance
simulated time until they make calls into libraries, such as
MPI. Libraries can register events and perform actions through
a well-defined interface which accesses the hardware models
and DES. Eventually, the library or application thread will
block to let the DES process events and advance simulation
time. When the library receives an event back from the DES,
it decides when to unblock the application thread attached to
it to continue execution.

Figure 2: Lightweight thread execution in SST/Macro.

B. SST/Macro Software Model

SST/Macro 2.1, the latest version, has a full software stack
model, shown in Figure 3, which contains a full coarse-grain
model of an implementation of MPI. An MPI strategy layer
allows us to experiment with different implementatons of
collections, such as the barrier experiment performed later
in Section IV. Each application thread has its own MPI
queue where source and tag matching occur. These MPI
queues feed to a single MPI server which muxes and demuxes
incoming and outgoing MPI messages, and allows for intra-
node communication via shared memory. For this paper, only
one application thread is instantiated per core.

Figure 3: SST/macro software stack.

The MPI server, and other classes inherting from Library,
have access to a limited set of operating system functions
that allow executing specific operations through the hardware
model. Services, such as application launchers, have more
direct access to the operating system for accessing hardware
addresses and thread management. An abstract machine inter-
face (AMI) separates the software stack from the hardware
models that implement the required functions: send, compute,

etc. This allows us to easily port the software stack to other
simulators or simulator backends. Currently, the SST/Macro
software stack can run in its native backend, the SST/core
backend [3], OMNeT++ [6], and SystemC.

C. Proxy Applications

Proxy applications are pieces of code which are meant to
represent the characteristics of specific full applications, but
are smaller, likely simpler, and easier (faster) to run than their
parent codes. Using proxy applications is gaining support in
high-performance computing as a way to make the base of
extremely large and complex scientific codes which are of
interest in chemistry, physics, astronomy, combustion, climate,
and other domains accessible to simulation research in a timely
fashion.

SST/Macro is meant to run skeleton applications, or appli-
cations that retain the communication and control information
of the original code but abstract away any computation that
is used to produce a real numerical result. This allows us
to model an entire application at scale while looking at the
features we are interested in, namely communication and its
dynamic run-time behavior, without requiring massive com-
puting resources to do so.

To illustrate a concrete example of the skeletonization
process, Figure 4 shows a typical simple implementation of a
distributed matrix multiplication using MPI which distributes
one matrix and broadcasts the other among the processes,
and collects the result. Figure 5 shows the same algorithm
converted to a skeleton application to be run in SST/Macro.
Note that the same control and communication structure is
preserved, while the real work (multiplying the matrix) is taken
out to speed up the simulation. In its place is inserted a call
to a compute library, which models the computation as a few
bulk processor and memory events. While in this example it
might be reasonable in terms of computational power required
to run the simulation to keep the real computation part of the
code, extrapolating to larger, more complex problems it can
be seen that removing the actual computation can potentially
make the simulation extremely efficient without sacrificing too
much accuracy. Note that the calls to MPI are specific to
SST/Macro’s MPI implementation, though future work will
provide an interface identical to the real thing, facilitating the
conversion of existing codes to skeletons.

For our experiments in Sections III, we are considering
a number of scientific codes included in the SST/Macro
distribution which have been reduced to skeletons. These mini
applications all use MPI, the relative standard for existing
distributed scientific codes. While MPI may not be the ultimate
solution for inter-node communication in the far future, it is
likely to persist in some form for many years. Knowing this,
giving each core the ability to act as an MPI peer is not at all
unreasonable. Regardless, the applications that we explore in
this paper are listed below:
• miniMD: MiniMD is a molecular dynamics micro-

application from the Mantevo project [7]. MiniMD, which
is under 3000 lines of code, was created to investigate

i n t getRowCount (i n t rowsTo ta l , i n t mpiRank , i n t mpiSize) {
re turn (r o w s T o t a l / mpiS ize) +

(r o w s T o t a l % mpiSize > mpiRank) ;
}

i n t main (i n t argc , char ∗a rgv []) {
i n t n = 0 , n ubound , n l o c a l , n sq , i ;
i n t mpiRank = 0 , mpiS ize = 1 ;
double ∗A, ∗B , ∗C , t ;
i n t s i z e S e n t , t o B e S e n t ;

M P I I n i t (& argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &mpiRank) ;
MPI Comm size (MPI COMM WORLD, &mpiSize) ;

/∗ Get n and b r o a d c a s t i t t o a l l p r o c e s s e s ∗ /
i f (! mpiRank) n = a t o i (a rgv [1]) ;

MPI Bcast (&n , 1 , MPI INT , 0 , MPI COMM WORLD) ;

n l o c a l = getRowCount (n , mpiRank , mpiS ize) ;
n ubound = n ∗ n l o c a l ;
n sq = n ∗ n ;

A = (double ∗) m a l lo c (s i z e o f (double)
∗ (mpiRank ? n ubound : n sq)) ;

B = (double ∗) m a l lo c (s i z e o f (double)
∗ n sq) ;

C = (double ∗) m a l lo c (s i z e o f (double)
∗ (mpiRank ? n ubound : n sq)) ;

i f (! mpiRank) { / / I n i t i a l i z e A and B
f o r (i =0 ; i<n sq ; i ++) { A[i] = 1 . 0 ; B[i] = 1 . 0 ;
}

}

i f (! mpiRank) { / / Send A by s p l i t t i n g i t row−wise
s i z e S e n t = n ubound ;
f o r (i =1 ; i<mpiSize ; i ++) {

t o B e Se n t = n ∗ getRowCount (n , i , mpiS ize) ;
MPI Send (A + s i z e S e n t , toBeSent , MPI DOUBLE,

i , TAG INIT , MPI COMM WORLD) ;
s i z e S e n t += t o B e Se n t ;

}
}
e l s e { / / R e c e i v e p a r t s o f A

MPI Recv (A, n ubound , MPI DOUBLE, 0 , TAG INIT ,
MPI COMM WORLD, MPI STATUS IGNORE) ;

}

MPI Bcast (B , n∗n , MPI DOUBLE, 0 , MPI COMM WORLD) ;

f o r (i =0 ; i<n ubound ; i ++) { / / i n i t i a l i z e C t o z e r o
C[i] = 0 . 0 ;

}

f o r (i n t i =0 ; i<n l o c a l ; i ++) {
f o r (i n t j =0 ; j<n ; j ++) {

f o r (i n t k =0; k<n ; k ++) {
C[i∗n + j] += A[i∗n + k] ∗ B[k∗n + j] ;

}
}

}

i f (! mpiRank) { / / R e c e i v e p a r t i a l r e s u l t s from each s l a v e
s i z e S e n t = n ubound ;
f o r (i =1 ; i<mpiSize ; i ++) {

t o B e S en t = n ∗ getRowCount (n , i , mpiS ize) ;
MPI Recv (C + s i z e S e n t , toBeSent , MPI DOUBLE, i ,

TAG RESULT, MPI COMM WORLD, MPI STATUS IGNORE) ;
s i z e S e n t += t o B e Se n t ;

}
}
e l s e { / / Send p a r t i a l r e s u l t s t o m as t e r

MPI Send (C , n ubound , MPI DOUBLE, 0 , TAG RESULT,
MPI COMM WORLD) ;

}

M P I F i n a l i z e () ;
re turn 0 ;

}

Figure 4: Original matrix multiply code

i n t getRowCount (i n t rowsTo ta l , i n t mpiRank , i n t mpiSize) {
re turn (r o w s T o t a l / mpiS ize) +

(r o w s T o t a l % mpiSize > mpiRank) ;
}

i n t s k e l e t o n m a i n (i n t argc , char ∗a rgv []) {
long n ubound , n l o c a l , n sq , i ;
double t ;
i n t s i z e S e n t , s i z e T o B e S e n t ;

mpi()−> i n i t () ;
s s tm ac : : sw : : mpicomm world = mpi()−>comm world () ;
long mpiRank = wor ld . r ank () . i d ;
long mpiSize = wor ld . s i z e () . i d ;

mpi()−> b c a s t (1 , mpi type : : mpi in t , mpi id (0) , wor ld) ;

n l o c a l = getRowCount (m a t r i x o r d e r , mpiRank , mpiS ize) ;
n ubound = m a t r i x o r d e r ∗ n l o c a l ;
n sq = m a t r i x o r d e r ∗ m a t r i x o r d e r ;

mpi t ag i t a g (TAG INIT) ;
i f (! mpiRank) {

s i z e S e n t = n ubound ;
f o r (i = 1 ; i < mpiSize ; i ++) {

s i z e T o B e S e n t = m a t r i x o r d e r
∗ getRowCount (m a t r i x o r d e r , i , mpiS ize) ;

mpi()−>send (s izeToBeSen t , mpi type : : mpi double ,
mpi id (i) , i t a g , wor ld) ;

s i z e S e n t += s i z e T o B e S e n t ;
}

}
e l s e { / / R e c e i v e p a r t s o f A

mpi()−> r e c v (n ubound , mpi type : : mpi double ,
mpi id (0) , i t a g , world , m p i r e q u e s t t ()) ;

}

mpi()−> b c a s t (m a t r i x o r d e r ∗ m a t r i x o r d e r ,
mpi type : : mpi double , mpi id (0) , wor ld) ;

comp lib −>double mxm (n l o c a l , 1 , m a t r i x o r d e r , 1) ;

mpi t ag r t a g (TAG RESULT) ;
i f (! mpiRank) {

s i z e S e n t = n ubound ;
f o r (i = 1 ; i < mpiSize ; i ++) {

s i z e T o B e S e n t = m a t r i x o r d e r
∗ getRowCount (m a t r i x o r d e r , i , mpiS ize) ;

mpi()−> r e c v (s i zeToBeSen t , mpi type : : mpi double ,
mpi id (i) , r t a g , world , c o n s t m p i s t a t u s t ()) ;
s i z e S e n t += s i z e T o B e S e n t ;

}
}

e l s e { / / Send p a r t i a l r e s u l t s t o ma s t e r
mpi()−>send (n ubound , mpi type : : mpi double ,

mpi id (0) , r t a g , wor ld) ;
}

mpi()−> f i n a l i z e () ;
}

Figure 5: Matrix multiply as a skeleton

improving spatial-decomposition particle simulations as a
simpler, but more accessible and easily built and executed
version of LAMMPS [8], which is over 130k lines of
code. Parameters to miniMD include problem size, atom
density, temperature, timestep size, number of timesteps,
and particle interaction cutoff distance.

• mpi3d: mpi3D represents a general class of ap-
plications by modeling the interactions between the
faces, edges, and corners of spatially-decomposed 3-
dimensional blocks each assigned to a process. The
skeleton runs multiple iterations consisting of a send
phase, receive phase, and compute phase. Non-blocking

sends and receives are used to pipeline communication
with computation.

• LU: LU [9] is an application-level benchmarking code
supplied as part of the NAS Parallel Benchmark suite
(NPB). Now in its third incarnation, LU has been adapted
and rewritten in successive releases of the NPB to uti-
lize parallel programming technologies such as OpenMP,
HPF, MPI and Java. The algorithm solves a synthetic
system of non-linear PDEs using a symmetric successive
over-relaxation (SSOR) kernel employing a two-phase
wavefront sweep through the 3-dimensional data domain.
The reference implementation provides problem ‘classes’
which range from a small serial implementation through
to multiple distributed nodes requiring multiple Tera-
bytes of system memory. This paper focuses on the class
B problem size in order to remain within acceptable
runtime limits.

• sweep3D: Sweep3D [10] is a particle transport bench-
mark which was designed to be a compact and simpli-
fied representation of algorithms employed by the Los
Alamos National Laboratory and other Department of
Energy (DoE) HPC sites. For this reason, the benchmark
version of the code has featured in recent large-scale DoE
programme purchases including the most recent Sequoia
and Ceilo machine procurements. The code employs
a commmunication-optimized wavefront design pattern
to solve a fixed 12-iteration multi-angle, multi-group
Boltzmann transport problem.

D. SST/Macro Hardware Models

SST/Macro contains hardware models of whole processors,
whole compute nodes, even whole networks which are aimed
at large-scale high performance computing simulations. In this
work, we will be using the simplecore model, which is an
approximation of a single core of a many-core processor.
It contains a instruction-processing unit, scratchpad memory
for both instructions and data, a DMA engine for accessing
external memory, and a point-to-point engine for directly
sending to other cores.

E. SST Validation

Validation against real hardware is difficult given the lack
of real chips which have the NoC architecture of the fu-
ture commonly envisioned by the NoC research community.
However, preliminary results aimed at validating SST/Macro’s
software stack model look promising by comparing a re-
played MPI trace to the real execution. Figure 6 shows
simulated execution time versus real execution time for a test
application running on a large cluster. Note that while scaling
up, SST/Macro stays within 5% error. While not validating
NoC-like characteristics, it does show that the communication
and computation primitives which are used as a part of the
core model reflect real hardware operation. Future work will
include cross-validation against micro-architectural simulators.

Figure 6: SST/macro validation running AMG.

Table I: Default Simulation Network Parameters

Parameter Value
Clock Freq. 1 GHz
Input Buffer 8 kB
Ouput Buffer 16 kB
MTU 256 B
Virtual Channels 2
Arbitration Lat. 3 ns
X-Bar Lat. 2 ns
X-Bar BW 2 Gbps
Link BW 1 Gbps

III. EXPERIMENT 1: A NOC NETWORK STUDY

To demonstrate a baseline of simulator functionality in
regard to NoC research, in this experiment we will look
at performing some of the more classical hardware-design
tradeoff NoC studies with SST/Macro using it’s packet-level
router model (Coarse-Grain from Figure 1c). Table I lists the
baseline parameters which are the default unless otherwise
mentioned.

A. Scaling and Topology

Strong scaling, or scaling the number of processing units
while keeping the amount of total work to be done fixed, is
often employed as one way of characterizing the behavior of
an application. In terms of hardware, it can also be viewed as a
way of characterizing how the network responds to a growing
number of endpoints in terms of power and area. The main
characteristic of a NoC we will explore here is topology in
the presence of a strongly-scaled application, measuring both
power and performance.

The question of topology is a relatively straight-forward
matter: what interconnection of routers yields the best per-
formance for the lowest area and power cost. Router radix is
a major factor in this, which affects the amount of buffering
required and the degree of the crossbars. Often, a simple mesh
is considered the baseline because of its attractive regularity,

reducing cost in design, layout, and test. In this study, we
will compare the mesh to the Spidergon [11] and Flattened
Butterfly [12] topologies.

(a) % Improvement in runtime over mesh

(b) Power

Figure 7: Results from experiment 1-A: effects of scaling and
topology on power and application performance.

Figure 7a shows the improvement in application runtime of
the two networks in question over the baseline mesh topology.
As network size grows, the Flattened Butterfly shows signif-
icant improvement for miniMD and mpi3D because of the
two-hop latency between any points in the network, whereas
the Spidergon suffers significantly even with more buffering,
probably because of the grid-like nature of the data layout
in the applications and the lack of north-south connections in
the network topology. For LU and sweep3D, the Flattened
Butterfly does not show significant improvement over the
mesh. Looking at power in Figure 7b, any performance gained
with Flattened Butterfly comes at the price of significantly
more power due to the buffering, crossbar, and link scaling
required with the higher-radix routers even though it was given
smaller buffers. Spidergon, given more buffering to mitigate

the severe contention caused by low-radix switches and limited
connectivity exhibits slightly more power than the baseline
mesh topology.

B. Dispersive Routing

Dispersive routing is a dynamic routing technique which
refers to packets of the same message headed for the same
destination taking separate routes through the network to
spread, and ideally balance, the load. In this experiment, we
will test both packet-level and message-level dispersive routing
in a mesh topology.

Figure 8: % Improvement of dispersive routing.

Figure 8 shows the improvement over standard X-Y routing
for different size networks running different applications. We
see that for small networks, the routing policy does not
have a significant effect on performance. For most cases,
dispersive routing has a slightly negative impact, possibly
creating head-of-line blocking in buffers under already light
loads. In a few cases dispersive routing is slightly better,
possibly caused by the nature of the application’s map onto
the network. Interestingly, LU and sweep3D are not affected
at all due to the nearest-neighbor and straight-line nature of
their communication patterns, which takes routing path out of
the performance.

IV. EXPERIMENT 2: PROGRAMMING A SINGLE NODE

One of the strongest features of SST/Macro is its modeling
of the software stack, including the complete implementation
of the key components of the MPI library. In this experiment,
we will investigate changes to the software stack which is
uniquely easy and accessible in SST/Macro.

A. Programming Models

With the end of frequency scaling and increasing parallelism
in general-purpose and embedded chips alike, researchers are
looking to new programming and execution models which will
help domain scientists exploit algorithm concurrency. In this
study, we will compare a matrix multiplication implemented
three different ways: a simple MPI implementation, a MPI

systolic array implementation, and an actor model implemen-
tation.
• Simple MPI

As the baseline, we will consider the matrix multiplica-
tion from Figure 5 implemented by distributing the rows
of one matrix among the MPI ranks, broadcasting the
entire second matrix, and collecting the results back to a
root core. This represents a naive solution, because the
broadcast of one of the matrices is relatively undesirable
due to a large amount of replication of the second matrix.

• MPI Systolic Array
Our systolic matrix multiply skeleton application is based
on Cannon’s 2D algorithm as described by Golub and Van
Loan [13], and Gupta and Kumar [14]. An MPI gather
is performed after the computation is done to collect to
a single core.

• Actor Model
The actor model implementation in SST/macro is a
framework for creating dynamic applications which as-
sign work to computor threads asynchronously. Though
not suited for every problem, and not necessarily optimal
for an application running on a system, actor model
applications can be good at adapting to run-time vari-
ances, such as a degraded clock frequency, because of
the asynchronous nature of the computation. Our matrix
multiply implementation assigns blocks of the matrix to
physical cores and shares them with peers as needed.
Once a computor is done, it can notify neighboring cores
that it is able to accept work to balance the load.

Figure 10 shows the results of running the parallel matrix
multiply implementations with different sized matrices on
an 8×8 mesh topology. The systolic array implementation
does consistently better than the simple broadcast method, as
expected. Interestingly, the actor model consistently performs
better than the MPI solutions but only if data prefetching is
turned off, which is aimed at pipelining computation with
communication but presumably creates network congestion
affecting the main flow of traffic.

B. MPI Collective Implementation
Often, different implementations of MPI collectives will

be better suited to different systems based on factors like
application indexing and network topology. In this study, we
will look at different implementations of an MPI barrier on
different topologies. Barriers are often used to separate logical
computation phases of an application, and can be important
depending on the size of the application. We will look at three
implementations:
• Linear

The naive implementation where all cores send a message
to one root core, who then broadcasts a response when it
receives every core’s notification. This requires 2×(P−1)
messages, where P is the number of processes.

• Ring
A token is passed to sequentially-numbered processes
(cores) starting at 0 until it is received back, where it

Figure 9: Comparison of matrix multiply implementations.

is passed back to release processes from the barrier. This
requires 2 × P messages, but may reduce network con-
tention by using mostly nearest-neighbor communication.

• Hensgen
This implementation is based on the work in [15], which
uses Log2(P) steps (and messages). In step k, process i
sends to process (i+2k) % P and receives from process
(i− 2k + P) % P .

Figure 11 shows the different barrier implementations run-
ning on different sized topologies, executing 100 barriers
consecutively. Though topology plays a small part, the Hens-
gen implementation clearly scales the best with network size
because of the more efficient synchronization strategy.

Figure 10: Comparison of MPI barrier implementations on
different topologies.

V. CONCLUSION

Coarse-grain modeling was introduced as a means of
quickly investigating design tradeoffs in both hardware and

software for running real applications on future network-on-
chip architectures. Proxy applications, or simplified represen-
tations of large complex codes, were transformed into skeleton
applications which only retain the communication and control
parts of the code, while abstracting and modeling the computa-
tion parts. Using these skeletons, we were able to demonstrate
the use of SST/Macro by investigating network topology and
routing, as well as software implementation features such
as barrier algorithm and programming implementation. All
simulations presented completed in under 5 minutes, demon-
strating the quick experimental turn-around of the simulation
method. Though the details of the simulations performed are
not themselves important, introducing SST/Macro to the NoC
community is pivotal in forming a common ground though a
scientific application and benchmarking base.

ACKNOWLEDGMENT

Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal, “On-chip intercon-
nection architecture of the tile processor,” Micro, IEEE, vol. 27, no. 5,
pp. 15 –31, sept.-oct. 2007.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, “Garnet: A detailed
on-chip network model inside a full-system simulator,” in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Interna-
tional Symposium on, april 2009, pp. 33 –42.

[3] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob, “The structural simulation toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, pp. 37–42, March 2011.

[4] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures.” IJDST, vol. 1, no. 2, pp. 57–73, 2010.

[5] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny, “Using simulation to
design extremescale applications and architectures: programming model
exploration,” SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 4–8, March
2011.

[6] A. Varga, “The omnet++ discrete event simulation system,” Proceedings
of the European Simulation Multiconference (ESM’2001), June 2001.

[7] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia National Labs, Tech. Rep. SAND2009-5574, September 2009.
[Online]. Available: https://software.sandia.gov/mantevo

[8] “LAMMPS molecular dynamics simulator,” 2009. [Online]. Available:
http://lammps.sandia.gov/index.html

[9] M. Yarrow and R. D. Wijngaart, “Communication improvement for the
lu nas parallel benchmark: A model for efficient parallel relaxation
schemes.” NASA Ames Research Center, Tech. Rep. NAS- 97-032,
November 1997.

[10] A. Hoisie, H. Lubeck, and H. Wasserman, “Performance and scalability
analysis of teraflop-scale parellel architectures using multidimentional
wavefront applications,” Int. Journal of High Performance Computing
Applications, vol. 14, no. 4, p. 330346, 2000.

[11] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: a novel on-chip communication network,” in System-on-
Chip, 2004. Proceedings. 2004 International Symposium on, nov. 2004,
p. 15.

[12] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-
chip networks,” in Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO 40. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 172–182.

[13] G. Golub and C. Loan, Matrix computations, ser. Johns Hopkins studies
in the mathematical sciences. Johns Hopkins University Press, 1996.

[14] A. Gupta and V. Kumar, “Scalability of parallel algorithms for matrix
multiplication,” in in Proc. of Int. Conf. on Parallel Processing, 1991,
pp. 115–123.

[15] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier
synchronization,” Int. J. Parallel Program., vol. 17, pp. 1–17, February
1988.

