SAND2013- 5265C

Sandia

Exceptional service in the national interest @ National
Laboratories

KPeeler
Hypervisor-Based Malware Unpacker

Evan G. Tobac
Ken Chiang
Kris Watts

£ ia T AL =375
S8
‘\&g EN ERGY ///’VA D!“’g Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
s Corporatio f the U.S. D epartment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

Outline rih) ot

= Problem

= Kpeeler Architecture
= KVM-Stalker Internals
= Unpacking Heuristics
= Results

" Closing thoughts

Problem)

= Malware is often packed
= Malware contents are compressed, encrypted, etc.
= Result is an executable which first unpacks, then runs malware

= Malware analysis is now difficult
= QOpcodes, data, signatures, behavior are obfuscated
= Hashing, clustering, filtering, comparing fails
= Horns and tail are hidden

IS

Problem)

= What we need is an unpacker

= Change packed executables back to their original form

wriam

Problem)

= What we need is an unpacker

= Change packed executables back to their original form

wriam

Architecture)

= KPeeleris a modified Qemu
= Runs on top of a modified KVM

= Runs programs inside a Windows VM SRR
= Unpacks dynamically Malware
= Scalable) /
= Just run more VMs f,'[’Windows VM
= No global locks e <
KPeeler
(Qemu)
\ J
e 4 N \
Linux Kernel KVM-Stalker
g) g J
7)

Hardware

Architecture — KVM-Stalker) i,

= Foundation is a modified KVM called KVM-Stalker

= Hypervisor built into Linux Kernel
= Gives control to guest VM, regains it on exceptions, 1/0, etc.

" Tracks executing instructions, system calls, and memory
writes of running programs

= Provides info to KPeeler for analysis

= QObtaining info at hypervisor more easily avoids detection

= Some malware won’t unpack if it knows it’s being debugged

Linux Kernel { KVM-Stalker }

Y
AN

Hardware

Architecture — KPeeler) i,

= Receives info from KVM-Stalker

= Communicates via IOCTLS

= Analyzes and attempts to extract malware content

= Tracks guest’s picture of memory
= Extensible heuristics for determining if malware is unpacked
= Logs info about running malware

4 D
KPeeler
(Qemu)
\)
. , 4 .
Linux Kernel KVM-Stalker
S ~ J)
()

Hardware

Sandia

Architecture)

m KPeeler starts a Windows VM

= Windows runs a piece of packed malware

= KVM-Stalker tracks its info
= |nfo is passed to KPeeler for real-time analysis

Packed
Malware

l'[/ *’Windows VM
e ~
KPeeler
(Qemu)
\)
. b 4 .
Linux Kernel KVM-Stalker
S ~ J)
()

Hardware

KVM-Stalker Internals) i,

= KVM-Stalker has access to all Windows VM data
= Virtual CPU data
= All Registers
= Memory

= Exceptions, interrupts, traps

= Communicates with KPeeler/Qemu with IOCTLS
= Called by KPeeler code

= Can pass data back and forth between kernel and user space

" e.g.kvm vcpu ioctl (envPtr, KVM GET SREGS, &sregs)

KVM-Stalker Internals) i,

= Want to make program info available to KPeeler for analysis

Instructions, system calls, writes to memory...

= General strategy

Make these events cause an exception to be handled by KVM-Stalker
Store event info in a kernel data structure

Give control to KPeeler

Use IOCTL to transfer event data to KPeeler for analysis/logging

Continue program execution

KVM-Stalker Internals — Instr. Trace @E=.

= Executing instructions give important unpacking insight
= KVM-Stalker sets trap flag in VM’s EFLAGS

" Generates a debug exception after every instruction
= KVM-Stalker catches exception, vmexits to KPeeler

= KPeeler calls an IOCTL to get info about the instruction
" kvm vcpu ioctl(envPtr, KVM STALKER GET INSTRUCTION STATE, p)

= Processes and logs instruction

" 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Vv
Reserved (setto 0) || 1]1[&[%[R[o|}

P|F
ID — Identification Flag Q

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

R d
|:| eserve 12

o|p|L|T|s|z|,|Alg|Pl4]C
FIF|F|F|F|F|?|F|OF|"|F

roo-

KVM-Stalker Internals — Instr. Trace

= |gnore VM kernel instructions we single step
" static int handle exception(struct kvm vcpu *vcpu)

{

if ('kvm _stalker is userspace(vcpu, rip)) {

return 1; //Ignore and continue on

}

Sandia
National
Laboratories

KVM-Stalker Internals — Instr. Trace

= VM can clear trap flag, so make sure it’s on

" static int handle exception(struct kvm vcpu *vcpu)

{

if (! (vmx_get rflags(vcpu) & X86 EFLAGS TF)) {

Sandia
National
Laboratories

vmx set rflags(vcpu, (vmx get rflags(vcpu) | X86 EFLAGS TF)) ;

}

KVM-Stalker Internals — Instr. Trace

= VM can check trap flag

Sandia
National
Laboratories

= VM pushes EFLAGS onto stack with pushf

= VM then checks trap flag on stack Stack

= We edit the stack to clear the trap bit

" if (vcpu->stalker pushf correction needed)

{

read guest mem(vcpu, rsp va, flags, 4); //Read EFLAGS from stack
*flags &= ~X86 EFLAGS_TF; //Correct the TF value
write guest mem(vcpu, rsp va, flags, 4); //Write EFLAGS to stack

1

EFLAGS'

15

KVM-Stalker Internals — Instr. Trace

= VM can check trap flag

Sandia
National
Laboratories

= VM pushes EFLAGS onto stack with pushf

= VM then checks trap flag on stack Stack

= We edit the stack to clear the trap bit

" if (vcpu->stalker pushf correction needed)

{

TF

read guest mem(vcpu, rsp va, flags, 4); //Read EFLAGS from stack
*flags &= ~X86 EFLAGS_TF; //Correct the TF value
write guest mem(vcpu, rsp va, flags, 4); //Write EFLAGS to stack

1

EFLAGS'

16

KVM-Stalker Internals — Syscalls @

= Programs make system calls to ask the kernel to perform
privileged tasks

Sysexit

Kernel

= System calls can be used to allocate and free memory

= This is important for unpacking

= Want to create an exception for sysenter and sysexit

KVM-Stalker Internals — Syscalls @

= |A32 SYSENTER_EIP is a machine specific register
= Tells what code to jump to during a sysenter

= We set this to a bogus value
= But save the real value!

= Sysenters now cause an exception handled by KVM-Stalker

= |nsysenter handler
= Set eip toreal IA32_SYSENTER_EIP so sysenter can complete
= Collect arguments, syscall number, etc. into syscall data structure

= Set return value to bogus value so sysexit also causes an exception
= But save the real value in the syscall data structure!

18
-

KVM-Stalker Internals — Syscalls ii

= The system call completes

= Causes an exception when we sysexit to our bogus address
= Again, exception is handled by KVM-Stalker

= |n sysexit handler
= Find syscall data structure that holds the real return address

" Fix eip to correct return address
= Add the return value of system call tot syscall data structure

= Make sycall data structure available to KPeeler
= Give control back to KPeeler for analysis

Sandia
National
Laboratories

KVM-Stalker Internals — Mem Trace @Ez.

= Tracking memory changes is a big part of unpacking process
= Set pages of memory to read-only in page table

= Now VM raises exception on memory writes
= Save info about memory write in kernel data structure
= Set page back to read-write to allow write to go through

= static int page fault(struct kvm vcpu *vcpu, gva t addr, u32 error code,
bool prefault)

{

if (write fault && user fault) {
vcpu->memwrite data.write at RIP = kvm rip read(vcpu); //Save rip
vepu->memwrite data.address of write = addr; //Save addr of write
R //Save other misc.
mmu spte update(sptep, *sptep | PT WRITABLE MASK); //Make writable

} 20
-

KVM-Stalker Internals — Mem Trace

= On next single step exit
= Use an IOCTL to get memory write info from previous instruction

= Also inform KVM-Stalker to re-mark page as read-only

= Update KPeeler’s view of memory
= Mark memory as modified

//Put memory write data into mw, re-mark page read-only
kvm vcpu ioctl (envPtr, KVM STALKER GET MEMWRITE INFO, mw) ;

0; i < mw->write size; i++) {

for (i =
mem map [mw->address of write + 1i]

mod map [mw->address of write + 1i]

Sandia
m National
Laboratories

= mw->write data[i]; //Record write

= true; //Record memory as modified

Unpacking Heuristic) .
= KPeeler gets program info from KVM-Stalker

= Every time KPeeler single steps through another instruction
= Log and process system calls
= Update view of memory if necessary

= Log and process all memory writes
= Update view of memory
= Mark written areas as modified

= Log and process instructions

= Watch for jumps

Sandia
m National
Laboratories

Unpacking Heuristic

= Watch for jumps from non-modified to modified memory

= Program might be jumping from unpacking to running malware

= Look for signs that unpacking is finished
= Windows executable magic numbers
= MZ, PE
= |ntact executable header/structure
= Strings, checksum for modified block different from original program

= QOther extensible tactics

= Once satisfied, extract memory into unpacked malware file

Sandia

Results rih) o

= Pulled 50 samples from Sandia’s FARM database

= Selected samples based on low bytecode variance (< 0.4)

= KPeeler-9/50
= TitanCore—23/50
= RLIdePacker—-39/50

Ending Thoughts) .

= Still a young project, work in progress
= Lots of future work
= Created to be easily extensible

= Unpacking rate can scale up with more VMs
= No global locks

= Currently being incorporated into FARM as a tool

Sandia

Thank You)

= Questions?

