
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

KPeeler
Hypervisor-Based Malware Unpacker

Evan G. Tobac

Ken Chiang

Kris Watts

SAND2013-5265C

Outline

 Problem

 Kpeeler Architecture

 KVM-Stalker Internals

 Unpacking Heuristics

 Results

 Closing thoughts
2

Problem

 Malware is often packed
 Malware contents are compressed, encrypted, etc.

 Result is an executable which first unpacks, then runs malware

 Malware analysis is now difficult
 Opcodes, data, signatures, behavior are obfuscated

 Hashing, clustering, filtering, comparing fails

 Horns and tail are hidden

3

Packer

Problem

 What we need is an unpacker
 Change packed executables back to their original form

4

Unpacker

Problem

 What we need is an unpacker
 Change packed executables back to their original form

5

KPeeler

Linux Kernel

Architecture

6

KVM-Stalker

KPeeler
(Qemu)

Hardware

Windows VM

Packed
Malware

 KPeeler is a modified Qemu

 Runs on top of a modified KVM

 Runs programs inside a Windows VM
 Unpacks dynamically

 Scalable
 Just run more VMs

 No global locks

Linux Kernel

Architecture – KVM-Stalker

 Foundation is a modified KVM called KVM-Stalker
 Hypervisor built into Linux Kernel

 Gives control to guest VM, regains it on exceptions, I/O, etc.

 Tracks executing instructions, system calls, and memory
writes of running programs
 Provides info to KPeeler for analysis

 Obtaining info at hypervisor more easily avoids detection
 Some malware won’t unpack if it knows it’s being debugged

7

KVM-Stalker

Hardware

Linux Kernel

Architecture – KPeeler

8

KVM-Stalker

KPeeler
(Qemu)

Hardware

 Receives info from KVM-Stalker
 Communicates via IOCTLS

 Analyzes and attempts to extract malware content
 Tracks guest’s picture of memory

 Extensible heuristics for determining if malware is unpacked

 Logs info about running malware

Linux Kernel

Architecture

9

KVM-Stalker

KPeeler
(Qemu)

Hardware

Windows VM

Packed
Malware

 KPeeler starts a Windows VM

 Windows runs a piece of packed malware
 KVM-Stalker tracks its info

 Info is passed to KPeeler for real-time analysis

KVM-Stalker Internals

 KVM-Stalker has access to all Windows VM data
 Virtual CPU data

 All Registers

 Memory

 Exceptions, interrupts, traps

 Communicates with KPeeler/Qemu with IOCTLS
 Called by KPeeler code

 Can pass data back and forth between kernel and user space

 e.g. kvm_vcpu_ioctl(envPtr, KVM_GET_SREGS, &sregs);

10

KVM-Stalker Internals

 Want to make program info available to KPeeler for analysis
 Instructions, system calls, writes to memory...

 General strategy
 Make these events cause an exception to be handled by KVM-Stalker

 Store event info in a kernel data structure

 Give control to KPeeler

 Use IOCTL to transfer event data to KPeeler for analysis/logging

 Continue program execution

11

KVM-Stalker Internals – Instr. Trace

 Executing instructions give important unpacking insight

 KVM-Stalker sets trap flag in VM’s EFLAGS
 Generates a debug exception after every instruction

 KVM-Stalker catches exception, vmexits to KPeeler

 KPeeler calls an IOCTL to get info about the instruction
 kvm_vcpu_ioctl(envPtr, KVM_STALKER_GET_INSTRUCTION_STATE, p)

 Processes and logs instruction

12

KVM-Stalker Internals – Instr. Trace

 Ignore VM kernel instructions we single step
 static int handle_exception(struct kvm_vcpu *vcpu)

{

...

if(!kvm_stalker_is_userspace(vcpu, rip)) {

return 1; //Ignore and continue on

}

...

}

13

KVM-Stalker Internals – Instr. Trace

 VM can clear trap flag, so make sure it’s on
 static int handle_exception(struct kvm_vcpu *vcpu)

{

...

if(!(vmx_get_rflags(vcpu) & X86_EFLAGS_TF)) {

vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) | X86_EFLAGS_TF));

}

...

}

14

KVM-Stalker Internals – Instr. Trace

 VM can check trap flag
 VM pushes EFLAGS onto stack with pushf

 VM then checks trap flag on stack

 We edit the stack to clear the trap bit
 if (vcpu->stalker_pushf_correction_needed)

{

...

read_guest_mem(vcpu, rsp_va, flags, 4); //Read EFLAGS from stack

*flags &= ~X86_EFLAGS_TF; //Correct the TF value

write_guest_mem(vcpu, rsp_va, flags, 4); //Write EFLAGS to stack

}

15

Stack

EFLAGS
TF

1

TF

1

KVM-Stalker Internals – Instr. Trace

 VM can check trap flag
 VM pushes EFLAGS onto stack with pushf

 VM then checks trap flag on stack

 We edit the stack to clear the trap bit
 if (vcpu->stalker_pushf_correction_needed)

{

...

read_guest_mem(vcpu, rsp_va, flags, 4); //Read EFLAGS from stack

*flags &= ~X86_EFLAGS_TF; //Correct the TF value

write_guest_mem(vcpu, rsp_va, flags, 4); //Write EFLAGS to stack

}

16

Stack

EFLAGS
TF

1

TF

0

KVM-Stalker Internals – Syscalls

 Programs make system calls to ask the kernel to perform
privileged tasks

 System calls can be used to allocate and free memory
 This is important for unpacking

 Want to create an exception for sysenter and sysexit

17

Kernel

UserSysenter

Sysexit

KVM-Stalker Internals – Syscalls

 IA32_SYSENTER_EIP is a machine specific register
 Tells what code to jump to during a sysenter

 We set this to a bogus value

 But save the real value!

 Sysenters now cause an exception handled by KVM-Stalker

 In sysenter handler
 Set eip to real IA32_SYSENTER_EIP so sysenter can complete

 Collect arguments, syscall number, etc. into syscall data structure

 Set return value to bogus value so sysexit also causes an exception

 But save the real value in the syscall data structure!

18

KVM-Stalker Internals – Syscalls

 The system call completes

 Causes an exception when we sysexit to our bogus address
 Again, exception is handled by KVM-Stalker

 In sysexit handler
 Find syscall data structure that holds the real return address

 Fix eip to correct return address

 Add the return value of system call tot syscall data structure

 Make sycall data structure available to KPeeler

 Give control back to KPeeler for analysis

19

KVM-Stalker Internals – Mem Trace

 Tracking memory changes is a big part of unpacking process

 Set pages of memory to read-only in page table

 Now VM raises exception on memory writes
 Save info about memory write in kernel data structure

 Set page back to read-write to allow write to go through
 static int page_fault(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,

bool prefault)

{

...

if (write_fault && user_fault){

vcpu->memwrite_data.write_at_RIP = kvm_rip_read(vcpu); //Save rip

vcpu->memwrite_data.address_of_write = addr; //Save addr of write

... //Save other misc.

mmu_spte_update(sptep, *sptep | PT_WRITABLE_MASK); //Make writable

}

...

}
20

KVM-Stalker Internals – Mem Trace

 On next single step exit
 Use an IOCTL to get memory write info from previous instruction

 Also inform KVM-Stalker to re-mark page as read-only

 Update KPeeler’s view of memory

 Mark memory as modified

 //Put memory write data into mw, re-mark page read-only

kvm_vcpu_ioctl(envPtr, KVM_STALKER_GET_MEMWRITE_INFO, mw);

for (i = 0; i < mw->write_size; i++) {

mem_map[mw->address_of_write + i] = mw->write_data[i]; //Record write

mod_map[mw->address_of_write + i] = true; //Record memory as modified

}

21

Unpacking Heuristic

 KPeeler gets program info from KVM-Stalker

 Every time KPeeler single steps through another instruction
 Log and process system calls

 Update view of memory if necessary

 Log and process all memory writes

 Update view of memory

 Mark written areas as modified

 Log and process instructions

 Watch for jumps

22

Unpacking Heuristic

 Watch for jumps from non-modified to modified memory
 Program might be jumping from unpacking to running malware

 Look for signs that unpacking is finished
 Windows executable magic numbers

 MZ, PE

 Intact executable header/structure

 Strings, checksum for modified block different from original program

 Other extensible tactics

 Once satisfied, extract memory into unpacked malware file

23

Results

 Pulled 50 samples from Sandia’s FARM database
 Selected samples based on low bytecode variance (< 0.4)

 KPeeler – 9/50

 TitanCore – 23/50

 RL!dePacker – 39/50

24

Ending Thoughts

 Still a young project, work in progress
 Lots of future work

 Created to be easily extensible

 Unpacking rate can scale up with more VMs
 No global locks

 Currently being incorporated into FARM as a tool

25

Thank You

 Questions?

26

