

A physically-based model for low-temperature plasticity in BCC metals

**Thomas E. Buchheit, Corbett C. Battaile,
Christopher R. Weinberger, Elizabeth A. Holm**

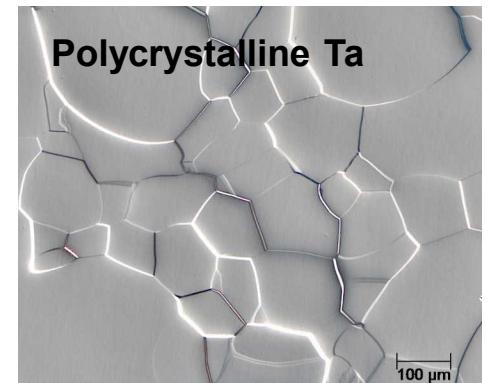
Computational Materials Science and Engineering Department,
Sandia National Laboratories, Albuquerque, NM 87185-1411 U.S.A.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

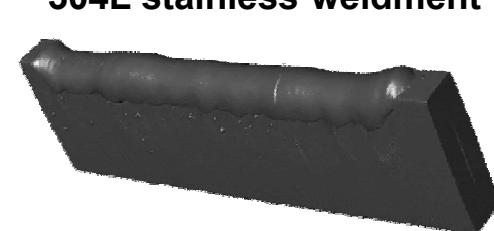
Motivation for developing low-temperature BCC deformation models

- BCC metals are scientifically interesting.
 - Technologically important.
 - *Refractories: W, Mo, Ta*
 - *Steel*
 - Underrepresented in computational materials science studies.
 - *Complex response, compared to FCC*
 - *Most models are phenomenological*
 - Favorable properties for experimental studies.
 - *Can prepare microstructures ranging from single crystal to nanocrystalline.*
 - *Favorable properties for microscopy and EBSD analysis.*

Single-crystal Ta

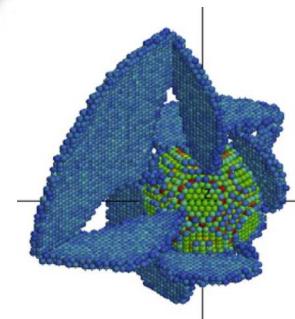
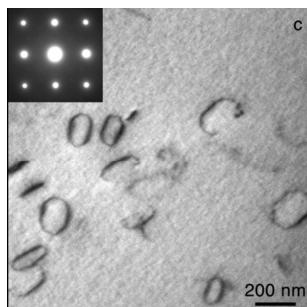


Polycrystalline Ta



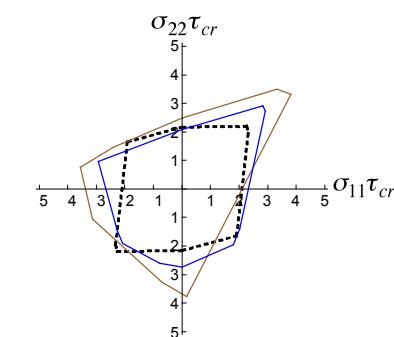
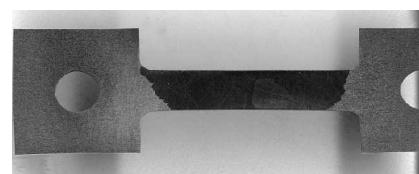
304L stainless weldment

Including microstructure in design and analysis



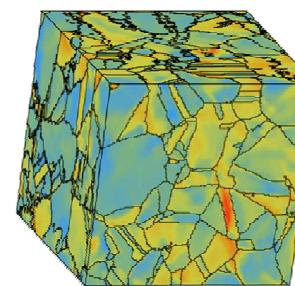
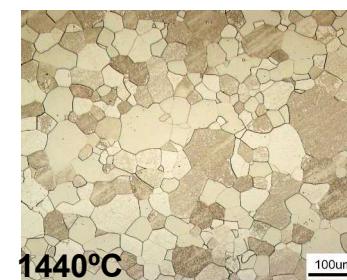
Atomic scale
phenomena

10^{-9} m
 10^{-9} s



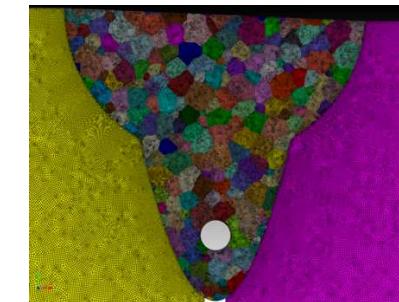
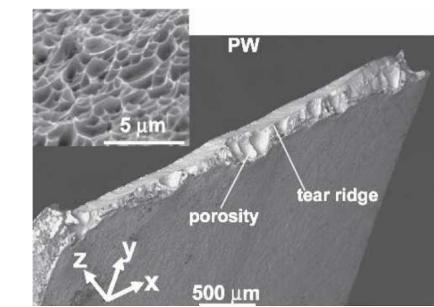
Single crystal
behavior

10^{-6} m
 10^0 s



Microstructural
effects

10^{-3} m
 10^3 s



Material
performance

10^0 m
 10^6 s

How BCC and FCC crystal plasticity differ

- In BCC metals at low temperatures, slip occurs via the motion of screw dislocations along $\langle 111 \rangle$ directions on (110) planes.

The plastic strain rate is given by:

$$D = \sum_s \dot{\gamma}^{(s)} \mathbf{m}^{(s)}$$

Schmid factor

$$\dot{\gamma}^{(s)} = G \left(\frac{\mathbf{m}^{(s)} : \boldsymbol{\sigma}}{\tau^{(s)}} \right)$$

Note:

FCC slip system: $\langle 110 \rangle \{111\}$

BCC slip system: $\langle 111 \rangle \{110\}$

$\therefore \mathbf{m}$ is the same for BCC and FCC

The lattice resistance on slip system s is:

$$\tau^{(s)} = \tau(T, \sigma) = \tau_{\text{obs}} + \tau_{\text{fric}}(T, \sigma) \rightarrow \text{Peierls stress}$$

τ_{obs} \rightarrow Obstacle stress

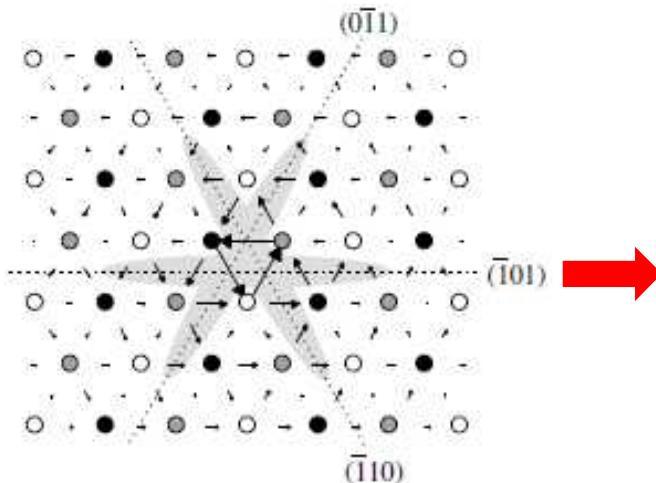
In FCC metals, $\tau_{\text{obs}} \gg \tau_{\text{fric}}$ $\tau_{\text{fric}} \approx 0$

In BCC metals, $\tau_{\text{fric}} \gg \tau_{\text{obs}}$ $\tau_{\text{obs}} \approx 0$

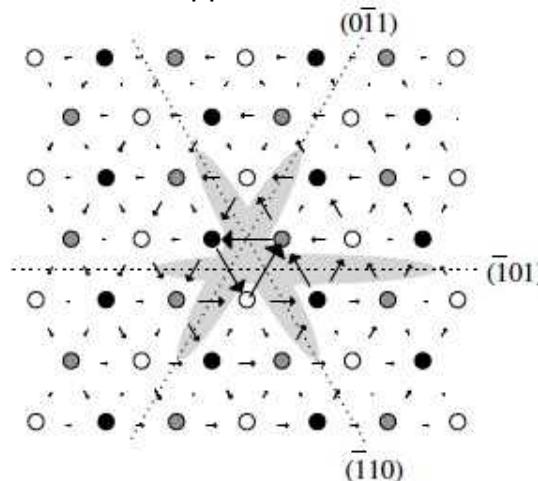
Atomic Scale: Physical model for dislocation motion in BCC metals

- Atomic scale simulations show dislocation core spreading onto adjacent (110) planes in BCC metals.
 - Core spreading creates a significant Peierls barrier to dislocation motion.
 - Because the dislocation spreads onto three planes, motion can be affected by stress components outside the preferred slip plane, i.e. non-Schmid stresses.

[111] zone depiction of a relaxed screw dislocation core in Mo



Distortion of the dislocation core under an applied shear stress



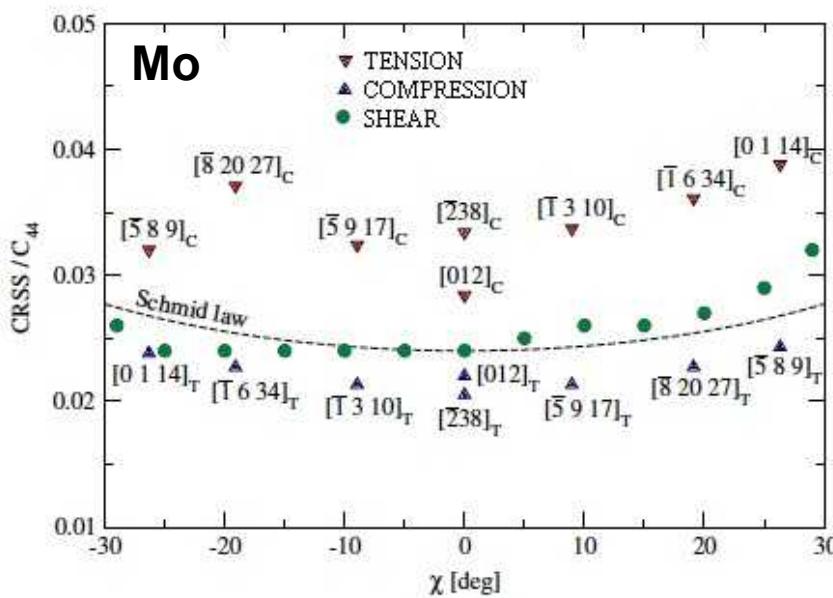
Groger, Vitek et al. *Acta Mat.* **56** (2008) 5412

Implications of non-Schmid deformation

- The non-Schmid stress components arise from two causes:
 - Asymmetry within the slip plane (twinning/anti-twinning) is a minor effect.
 - Contributions by stress components outside the slip plane are significant.

“...glide of the 1/2[111] screw dislocation [on the (-101) plane] depends on shear stresses both parallel and perpendicular to the Burgers vector that act not only in the slip plane but also in other {110} planes of the [111] zone.”

-Groger, Vitek et al. *Acta Mat.* **56** (2008) 5412.



The non-Schmid stress components cause the widely observed tension-compression asymmetry in BCC metals

Single crystal behavior: BCC crystal plasticity model

The atomic results can be fit to a yield criterion given by:

$$\sigma_{cr}^{app} \left[a_0 \mathbf{m}^{(s)} \mathbf{n}^{(s)} + a_1 \mathbf{m}^{(s)} \mathbf{n}^{(s')} + a_2 \left(\mathbf{n}^{(s)} \times \mathbf{m}^{(s)} \right) \mathbf{n}^{(s)} + a_3 \left(\mathbf{n}^{(s)} \times \mathbf{m}^{(s)} \right) \mathbf{n}^{(s')} \right] = \tau_{cr}$$

↓
↓
↓

applied stress
stress projection tensor, $\mathbf{P}_\sigma^{(s)}$
yield stress

We use this form to derive the generalized stress state on a slip system:

$$\tau^{(s)} = \mathbf{P}_\sigma^{(s)} : \boldsymbol{\sigma}^{app}$$

Which leads to a single-crystal constitutive law:

$$\dot{\gamma}^{(s)} = \frac{\tau^{(s)}}{\tau_{cr}} \left| \frac{\tau^{(s)}}{\tau_{cr}} \right|^{\frac{1}{m}-1}$$

Which gives the plastic strain rate:

$$\mathbf{D} = \sum \dot{\gamma}^{(s)} \mathbf{m}^{(s)}$$

Material-specific constitutive parameters

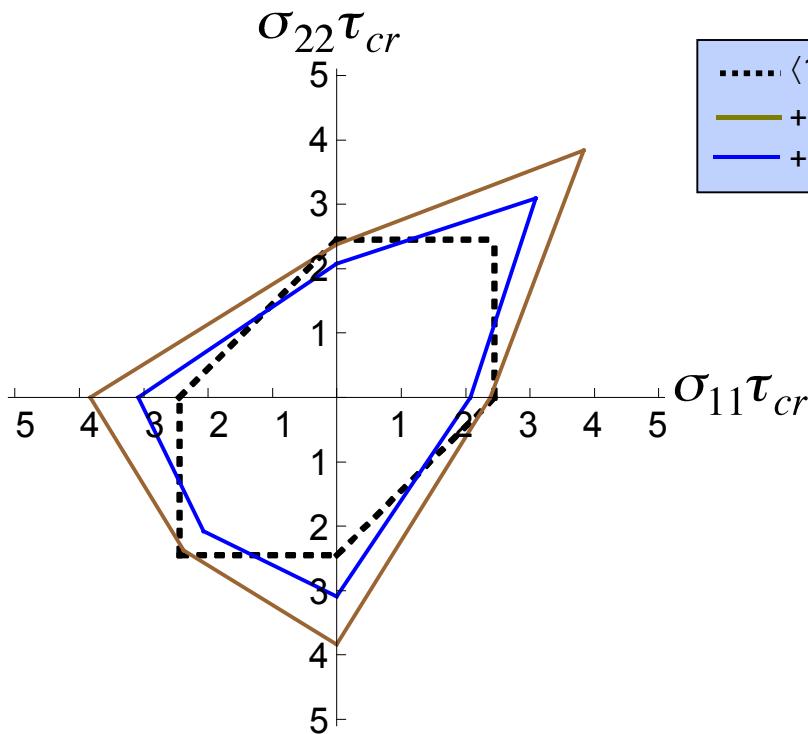
- The parameters a_0 , a_1 , a_2 and a_3 are determined from bond order potential atomistic simulations.

Parameter	FCC	W	Mo	
a_0	1	1	1	Schmid stress
a_1	0	0	0.24	twinning/anti-twinning
a_2	0	0.56	0	out-of-plane effects
a_3	0	0.75	0.35	out-of-plane effects
τ_{cr}	1	1.36	1.26	

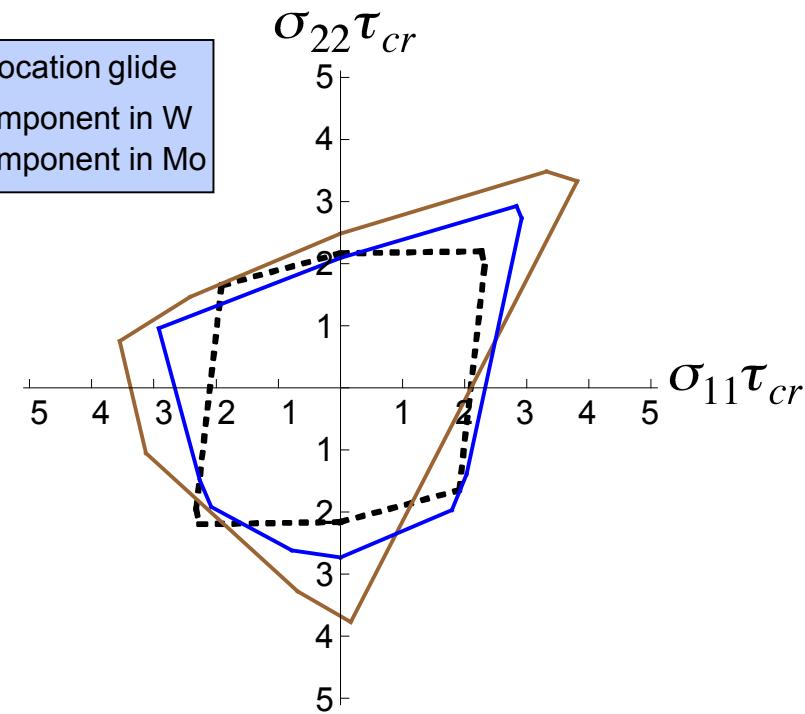
- Parameters are normalized such that $\tau_{CRSS} = 1$.

Gap: To develop similar models for other BCC metals, such as Ta and Fe, we need valid interatomic potential functions.

Single Crystal Results: BCC single crystal yield surfaces



$\langle 100 \rangle(010)$ orientation
highly symmetric

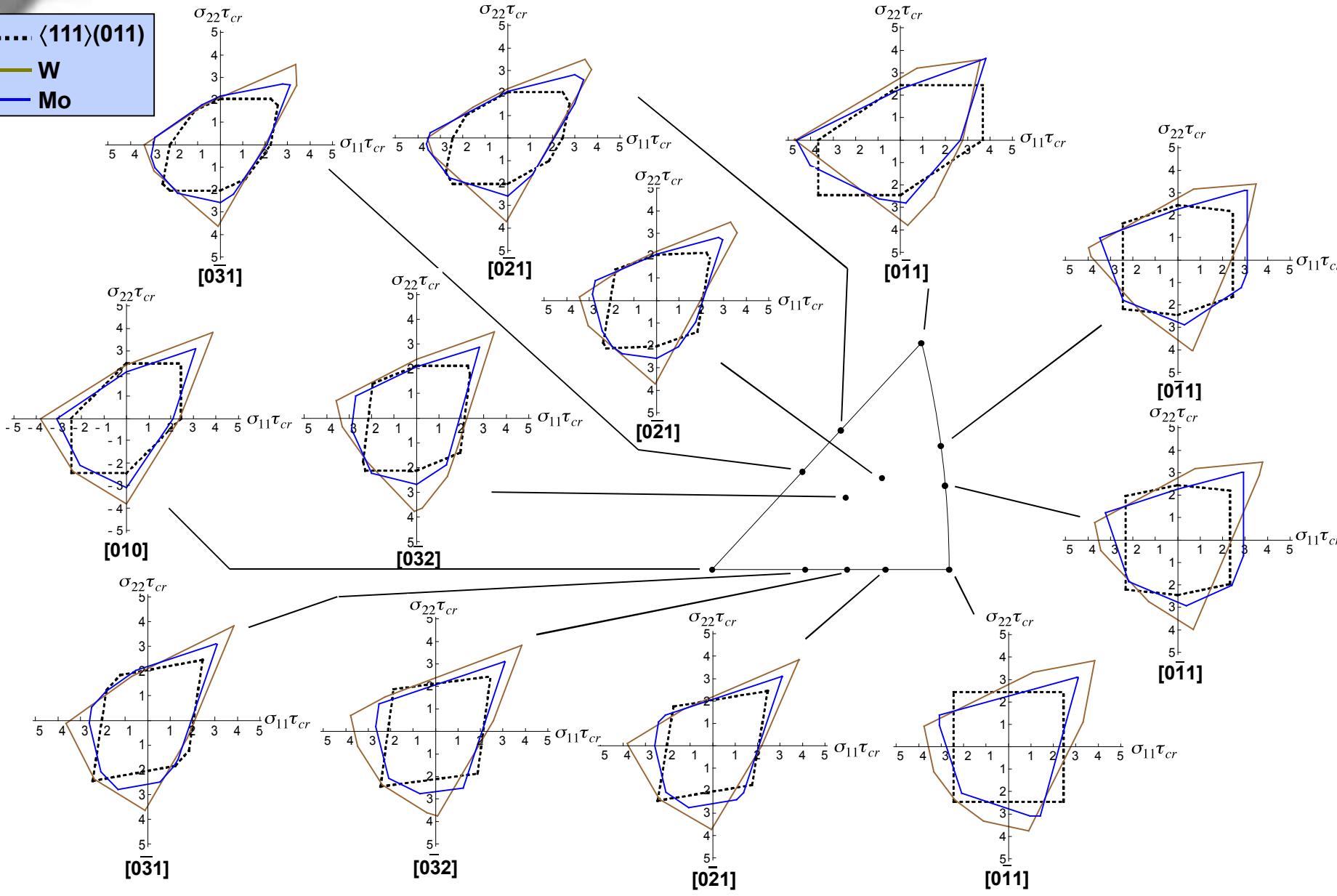


$\langle -0.180, 0.575, 0.798 \rangle, (0, -0.811, 0.585)$ orientation
asymmetric

- BCC yield surfaces are considerably different from FCC yield surfaces.
- The yield surfaces of W and Mo are quite distinct.
- Tension/compression asymmetry is apparent.

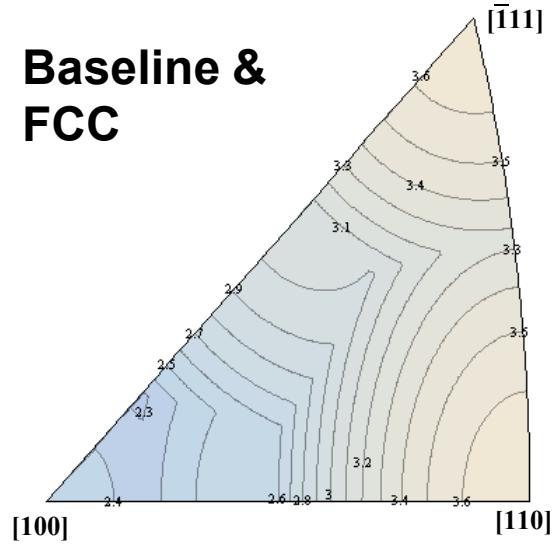
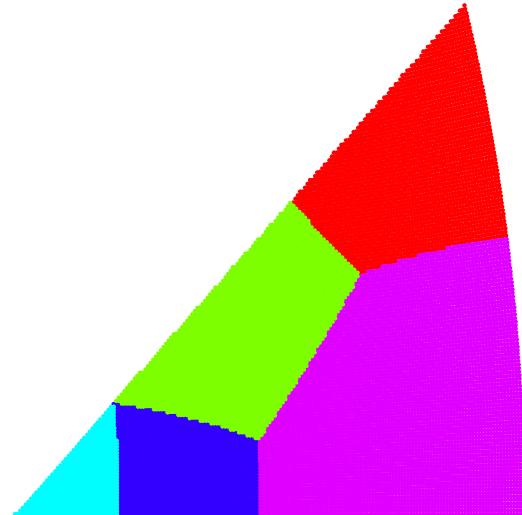
There is significant biaxial tension-compression asymmetry in BCC yield surfaces

----- $\langle 111 \rangle \langle 011 \rangle$
— W
— Mo

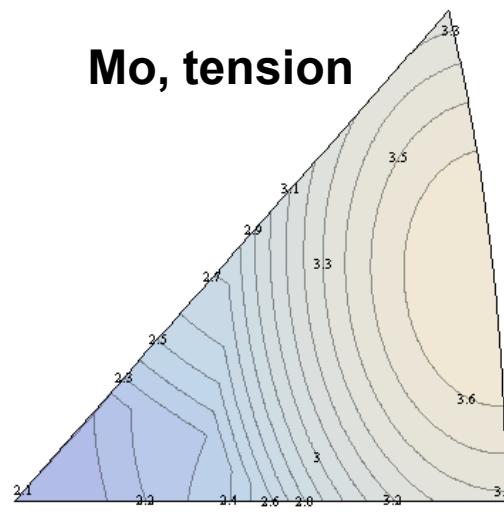
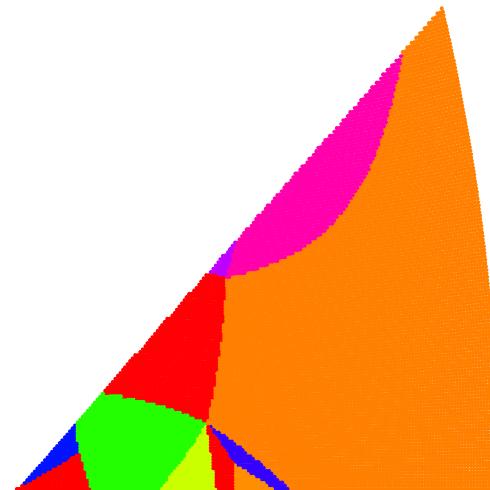


Non-Schmid stresses significantly alter the Taylor factor landscape in BCC metals

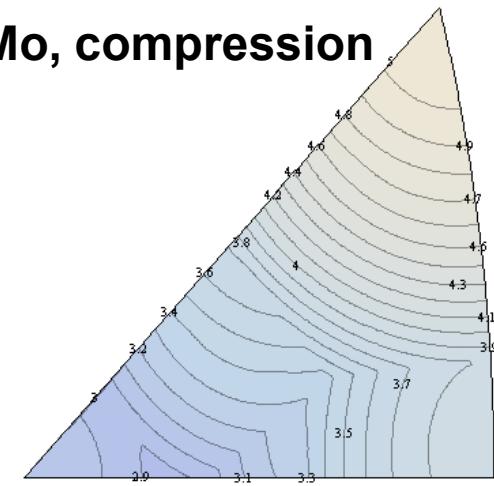
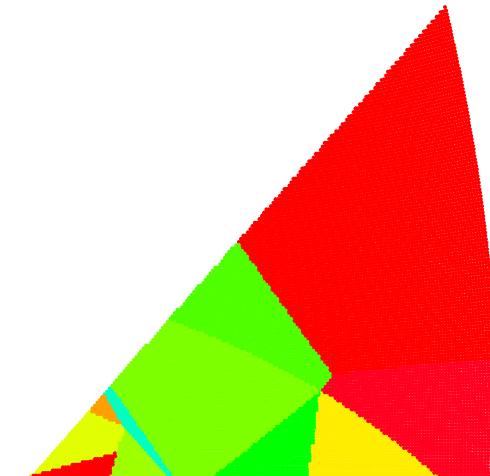
Baseline &
FCC



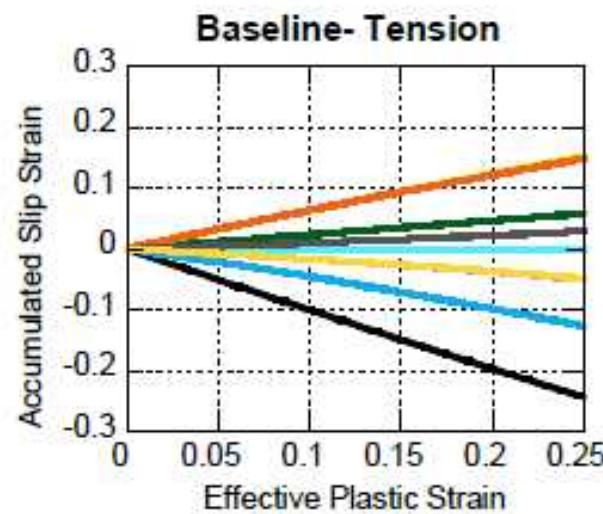
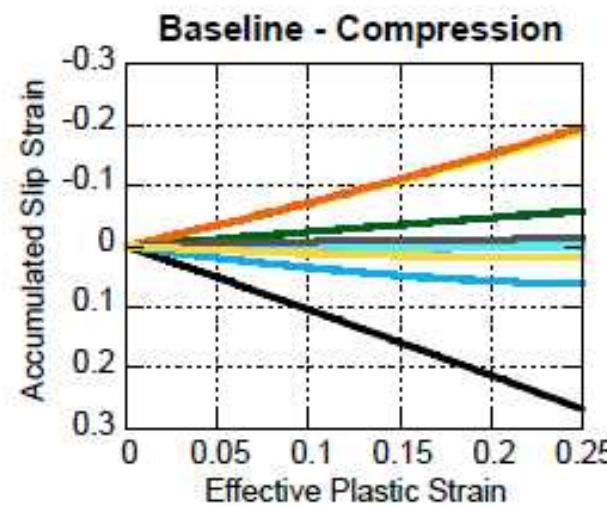
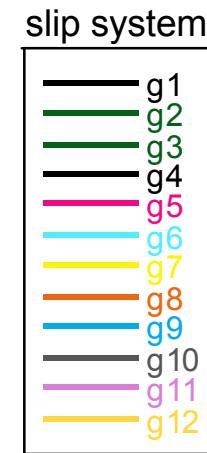
Mo, tension



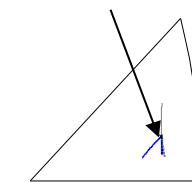
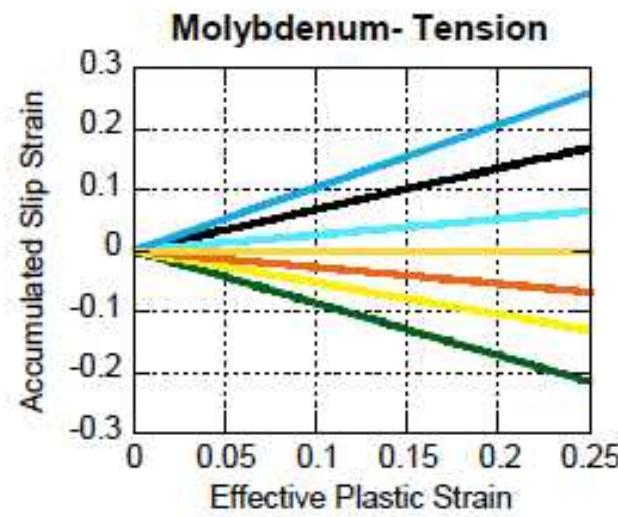
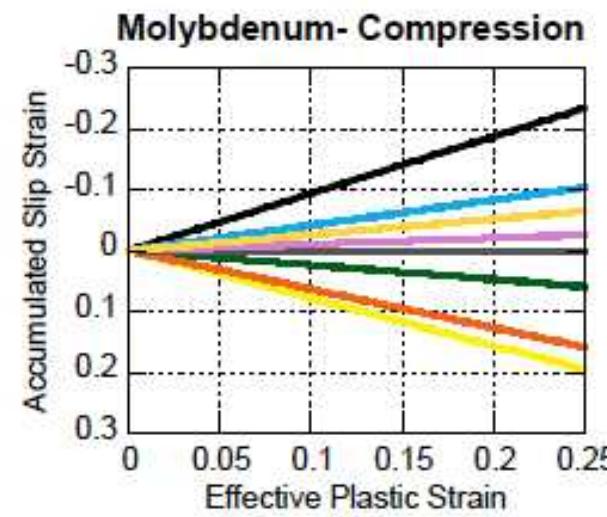
Mo, compression



Non-Schmid stresses significantly alter slip system activity in BCC metals



crystal orientation:
[-.180, 0.575, 0.798]



- Baseline is the same in tension and compression.
- Mo differs in tension and compression.
- Mo differs from baseline in tension and compression.

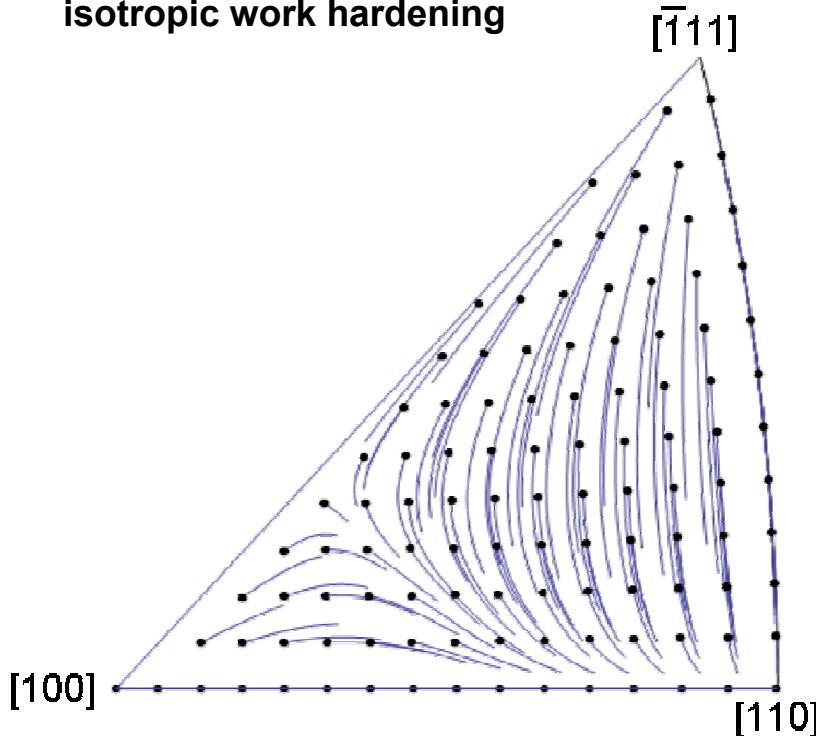
Sandia
National
Laboratories

Non-Schmid stresses significantly alter crystal rotations in BCC metals

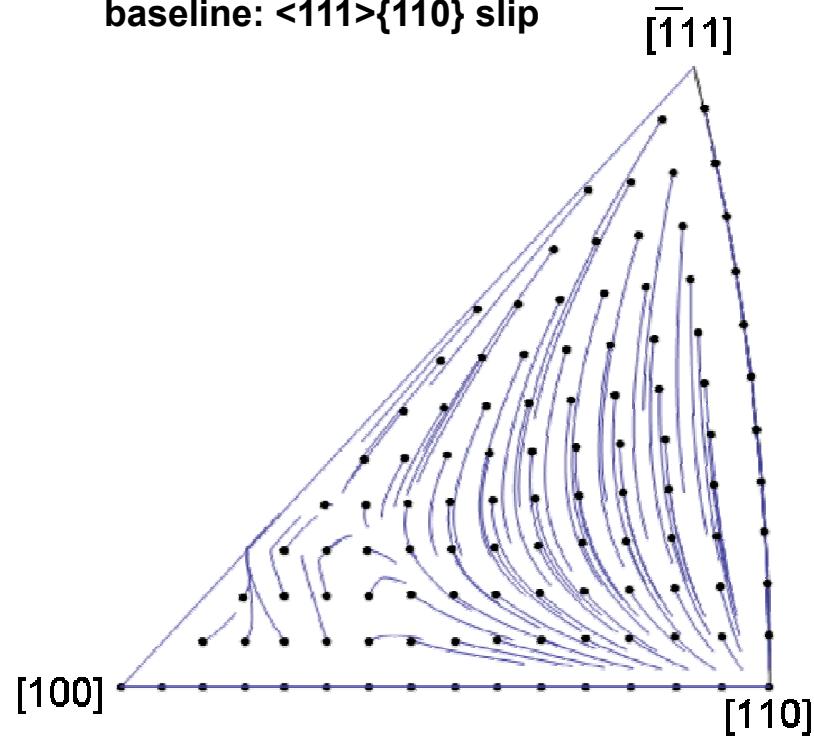
Isochoric Deformation to 50% strain:

$$\dot{\varepsilon} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1/2 \end{pmatrix} dt$$

FCC crystal plasticity model with isotropic work hardening



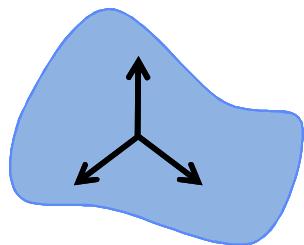
BCC crystal plasticity baseline: <111>{110} slip



Extending single crystal behavior to capture microstructural effects

- Polycrystal plasticity models reveal how individual grains take part in polycrystalline deformation

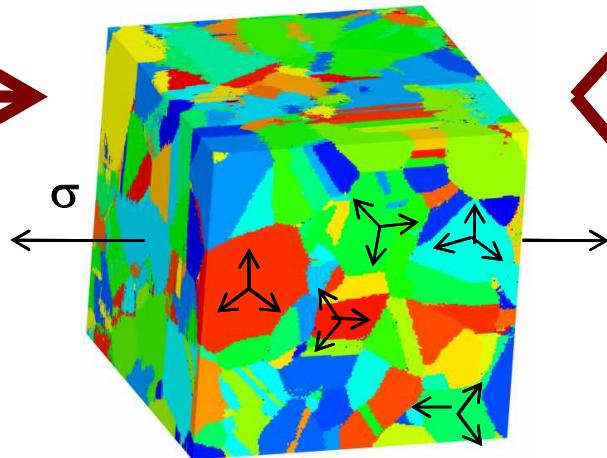
Single crystal plasticity



Constitutive law

$$\dot{\gamma}^{(s)} = \frac{\tau^{(s)}}{\tau_{cr}} \left| \frac{\tau^{(s)}}{\tau_{cr}} \right|^{m-1}$$

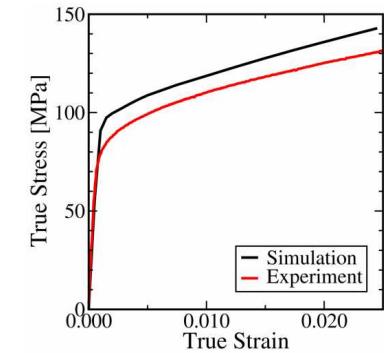
Polycrystal plasticity



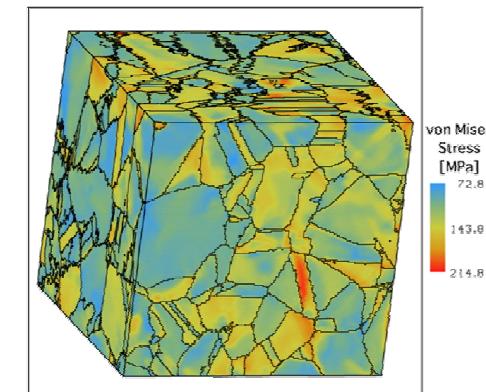
Each grain responds via the orientation-dependent constitutive law

Results

Overall mechanical response

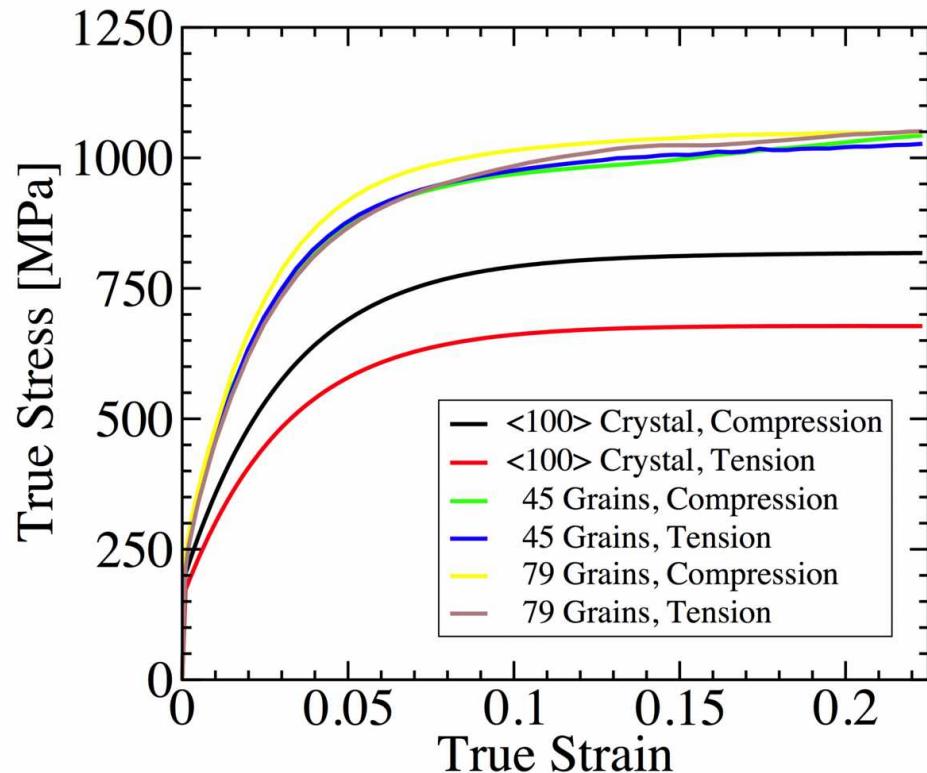


Individual grain response
(rotation, stress, etc.)



Microstructural Results: Continuum response of BCC polycrystals

- In plasticity simulations of single- and polycrystalline Mo:
 - *Single crystal and polycrystal response differ considerably.*
 - *Single crystals show considerable tension/compression asymmetry.*
 - *Polycrystals do not exhibit tension/compression asymmetry.*
 - *There is no grain size dependence in this model.*

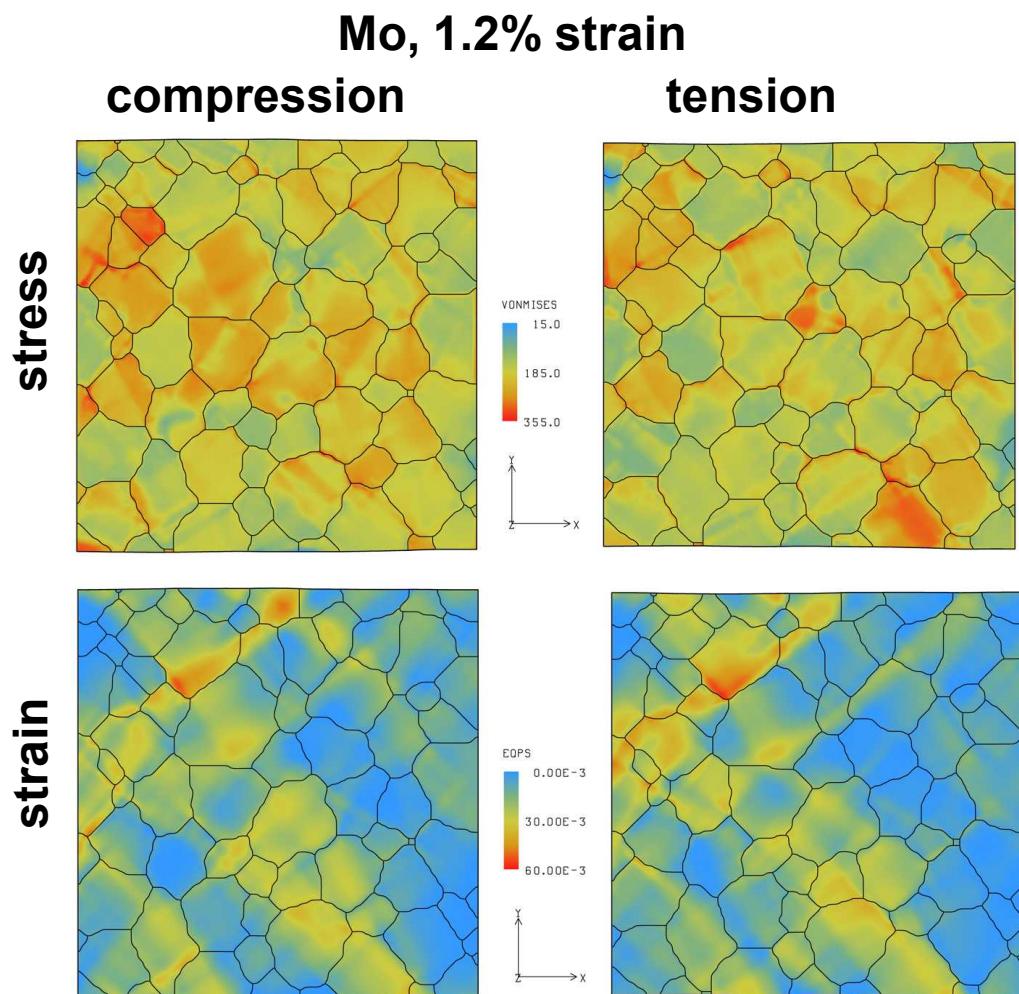


Microstructural Results: Grain scale stress and strain partitioning

- At the grain scale, tension/compression asymmetry affects local stress distribution.
- Grain structure influences the distribution of local strains, but tension/compression asymmetry does not.
- Local strains are partitioned to accommodate global deformation.

➤ Grain-scale stresses adjust to produce the required local strain.

Polycrystal plasticity reveals the complex interdependence of local stress and strain in BCC metals.



Summary and Conclusions

- BCC plasticity differs fundamentally from FCC plasticity
- A physically-based model captures key elements of BCC plasticity
 - *Tension/compression asymmetry and yield surfaces*
 - *Differences in Taylor factor, slip system activity, crystal rotation*
- Polycrystal plasticity reveals how single-crystal properties interact in realistic grain structures
 - *Tension/compression asymmetry is maintained*
 - *Significant stress concentrations occur*

Supplementary Slides

Polycrystal plasticity model

Cauchy stress resolved on each slip system:

$$\tau = \sigma : (\mathbf{s} \otimes \mathbf{m})$$

Cauchy stress
from FE solver

Slip rate on each system:

$$\dot{\gamma} = \dot{\gamma}_o \left| \frac{\tau}{\tau_{CRSS}} \right|^{\frac{1}{m}} \text{sign}(\tau)$$

Plastic velocity gradient:

$$\hat{\mathbf{L}}_p = \dot{\gamma} (\hat{\mathbf{s}} \otimes \hat{\mathbf{m}})$$

Plastic deformation gradient:
(Cayley-Hamilton theorem¹)

$$\dot{\mathbf{F}}_p = \hat{\mathbf{L}}_p \bullet \mathbf{F}_p \Rightarrow \begin{cases} \mathbf{F}_p = \exp(\hat{\mathbf{L}}_p \Delta t) \mathbf{F}_p \\ \exp(\hat{\mathbf{L}}_p \Delta t) = I + \frac{\sin \phi}{\phi} \hat{\mathbf{L}}_p \Delta t + \frac{1 - \cos \phi}{\phi^2} (\hat{\mathbf{L}}_p \bullet \hat{\mathbf{L}}_p) \Delta t^2 \\ \phi = \Delta t \sqrt{\frac{1}{2} (\hat{\mathbf{L}}_p : \hat{\mathbf{L}}_p)} \end{cases}$$

Elastic deformation gradient and strain:

$$\mathbf{F}_e = \mathbf{F} \bullet (\mathbf{F}_p)^{-1} \Rightarrow \hat{\mathbf{E}}_e = \frac{1}{2} [(\mathbf{F}_e)^T \bullet \mathbf{F}_e - \mathbf{I}]$$

2nd Piola-Kirchhoff stress (hyper-elasticity):

$$\hat{\sigma}_{PK2} = \mathbf{C} : \hat{\mathbf{E}}_e$$

Updated Cauchy stress:

$$\sigma = \frac{1}{J^{\mathbf{F}_e}} [\mathbf{F}_e \bullet \hat{\sigma}_{PK2} \bullet (\mathbf{F}_e)^T]$$

Cauchy stress
to FE solver

Updated crystallographic orientation:

$$\mathbf{F}_e = \mathbf{U}_e \bullet \mathbf{R}_e \Rightarrow \mathbf{R}_{lattice} = \mathbf{R}_e \bullet \mathbf{R}_h$$

Effective plastic strain:

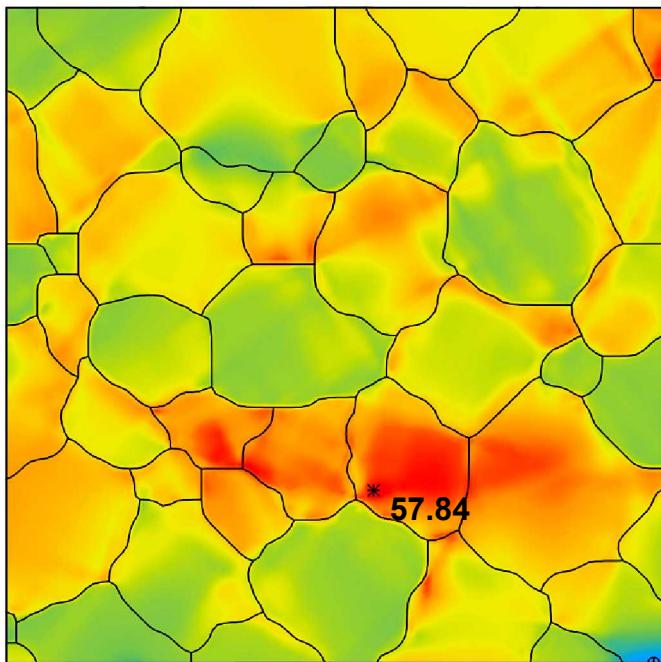
$$\bar{\varepsilon}_p = \sqrt{\frac{2}{3} \mathbf{E}_p : \mathbf{E}_p}$$

Updated “hardness” (CRSS):

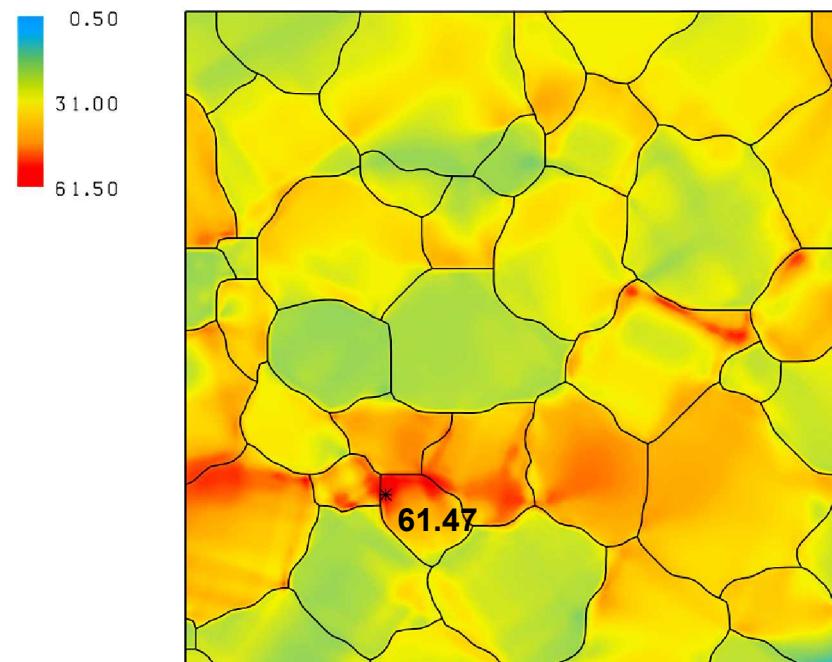
$$\tau_{CRSS} = \tau_o + A \exp\left(-\frac{n}{A} \bar{\varepsilon}_p\right)$$

Local stress concentrations are more severe prior to yielding

Von-Mises Stress Distribution in Mo (0.1% Strain)



Tension



Compression