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Background And Motivation

 Jets-in-Crossflow have Wide Range of Applications
 Fuel injection in combustors

 Thrust vectoring and roll control jets Etc.

 Jet-fin Interactions In Roll Control Jets
 Overall moments generated can be less than moments due to jet 

thrust alone

 Induced velocity due to vortices generated by jets modify the effective 
angle of attack on fins and hence forces and moments generated by 
fins – “Counter Torque”

 Induced Velocities are a function of distance from vortex core and 
vortex strength

Accurate Predictions of Vortex Locations and Strength are 
Needed
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Background And Motivation

 Recent Approaches for Modeling Jets-in-Crossflow
 Move towards LES of these flowfields

 LES is still too expensive in the design environment

 RANS modeling:
 Has been found to be deficient for vortical flows in general

 Modifications, Corrections and Sensitization Procedures have been 
proposed for such flows

 No analysis to the best of our knowledge on the effects of these on 
vortex location and strength predictions

 Or Jet-fin interaction predictions
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Objectives

 Evaluate the performance of two-equation RANS models for 
the prediction of Jets-in-Crossflow

 Of primary interest is the Supersonic Jet in Subsonic crossflow 
experiment of Beresh et al.

 AIAA J V 43 No. 2, 2005 

 AIAA J V 43 No 11 2005

 AIAA J V 44 No. 12 2006

 Focus is on evaluating the ability to accurately predict vortex strengths 
and locations

 Detailed experimental data characterizing these quantities available

 Of Interest: Vertical AND Canted Jets
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Flow Configuration

 Simulate Experiments Conducted in the Sandia TWT Facility
 12” Square Test Section

 Long Nozzle Block Upstream of the test section 

 Large Boundary Layer relative to jet diameter

 Jet issues from 0.375” exit diameter nozzle mounted on the floor 
(ceiling) of TWT test section
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Flow Conditions

 Data Available at Wide Range of Conditions

 Current Study Focuses on Higher Mach and J Regime

 Data Also Available for Canted Nozzles
 Cant Angles 0, 15, 30, 45

 Current work uses only 15 data
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Code and Numerical Methods

 GASP Commercial Software From Aerosoft Inc.
 Solves the RANS equations

 Wide range of Turbulence Models available including algebraic, one-
equation, two-equation models and DES, SST-DES.

 Turbulence equations are solved fully coupled with primary conservation 
equations

 Steady State Solution Obtained by Time Marching

 Explicit RK schemes

 Implicit Using Gauss-Seidel/Block Jacobi Solver

 Supports Unstructured and Chimera meshes

 Only Block Structured point matched meshes used here.

 Several Flux Functions available

 Roe Scheme used here.

 Parallelization using MPI
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Simulation Procedure

 Boundary Conditions

 A full simulation of the TWT wind tunnel 
at the Mach # condition was run to 
compute the inflow boundary layer for 
the jet in cross flow simulation.

 The profile at the location corresponding 
to the inflow station of the jet in cross 
flow domain was extracted and provided 
to GASP as inflow boundary condition

 The Tunnel walls (side and top) were 
modeled as slip walls to minimize the 
number of mesh points in the tunnel 
boundary layers on the opposite and side 
walls.
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Turbulence Models

 Only Two-Equation Model Family Studied Here
 K- model with Lam-Bremhorst wall damping

 No Converged Solutions could be obtained. Dropped from analysis.

 K- models 

 Wilcox 1998, Wilcox 2006, Menster-SST

 Compressibility Corrections (Wilcox)

 All cases were run with and without compressibility corrections

 Convergence determined by monitoring wall pressures on a spanwise
line downstream of the jet.
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Results: M=0.8 J=10.2: Gross Features
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Results: M=0.8 J=10.2: Jet and Vortex Structure

 Compared against PIV at x=33.8Dj

 All Models Generally Capture Shape and Gross Behavior

 Jet Plume with Counter Rotating Vortex Pair Just Under the Plume

 Horse shoe vortex pair close to the floor

 None of the models capture the velocity deficit or vortex location correctly
 Models with Compressibility Corrections do worse

 No Solution for k- 2006 model
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Results: M=0.8 J=10.2: Mean Velocity Deficit
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Results: M=0.8 J=10.2: Mean Vertical Velocity
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Results: M=0.8 J=10.2: Turbulent Stress Profiles

16

u’2

v’2

u’v’



Results: M=0.8 J=5.6
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Results: M=0.8 J=16.7
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Analysis of Experimental Data
 PIV Data Available on two Planes

 Z=0 (Symmetry Plane)
 X=33.8Dj

 At the intersection of these Planes
 All Reynolds Stresses and Mean Velocity 

Gradients are available

 Evaluate Effective Eddy Viscosity 
 Ratio of Measured Reynolds Stresses to Model 

Form of Strain Terms
 If Model should work, these should yield same 

ratios for each Reynolds Stress Component.
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Analysis of Experimental Data
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Analysis of Experimental Data
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Conclusions

 A detailed examination of two equation turbulence models for modeling 
of jet-in-crossflow problems has been presented

 Primarily k- family of models (1998,2006 and SST variants)

 Examination also included compressibility corrections by Wilcox.

 Primary goal to examine how well they capture the CVP position and strength.

 Computational Results show that:

 All the models qualitatively capture the gross features of the flow

 None of the models quantitatively agree with measured values

 Mean velocities, turbulent stress profiles have been compared in detail

 All models over-predict mean velocity deficit in the jet

 Under-predict mixing

 All models predict vortex location to be too high

 Momentum exchange between jet and cross flow is not captured

 Performance of the model uniformly poor across jet momentum ratio and 
Mach number ranges examined.
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Conclusions

 Detailed analysis of Boussinessq Approximation using 
experimental data has been carried out
 The analysis shows that this approximation is not a good one for the 

flow considered

 Large variability in the length scales of evolution for each Reynolds 
stress component

 This class of models cannot capture all details of this flow field.

 Need models/approaches that can accommodate the large 
variations in the evolutions of the Reynolds stress 
components.
 LES studies have shows better agreement with experimental data.

 DES / Hybrid RANS-LES approaches will be examined in the future.

 Cost effective option?
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