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The Kepler mission multi-planet transiting systems

Kepler’s First Rocky Planet: Kepler-10b

Kepler is giving us new knowledge about the
frequency of near Earth-size planets.

Period (days)

Fabricky and Kepler Team (2011)



Products

Graduate student 1: Richard Kraus (finished PhD in May 2013)
Graduate student 2: Li Zeng (will finish in 20147?)

Paper I: Shock Thermodynamics of Iron and Impact Vaporization of
Planetesimal Cores by Richard G. Kraus, Seth Root, Raymond W. Lemke,
Sarah T. Stewart, Stein B. Jacobsen, and Thomas R. Mattsson (submitted to
Nature)

Paper 11: The effect of temperature evolution on the interior structure of solid
planets by Li Zeng and Dimitar Sasselov (in preparation)

Web-based tool for planet structure (Li Zeng)

Poster at 2012 fall AGU: Shock-Induced Melting and Vaporization of MgO by
Multi-Mbar Shock and Release Experiments by Richard G. Kraus, Seth Root,
Raymond W. Lemke, Daniel H. Dolan, Christopher T. Seagle, Marcus D.
Knudson, Luke Shulenburger, Michael P. Desjarlais, Sarah T. Stewartl, Stein
B. Jacobsen, Dawn G. Flicker, and Thomas R. Mattsson.

Papers on Fe, MgO and thermodynamic calculations of planetary chemistry
during Galactic evolution will be coming within the next year.



Formation and Interior Structure of Earth-like Planets

. ' « Mass — radius plot is the only
Onion shell model information to constrain the

e« Chemical differentiation structure and composition of
model exoplanets.

« Collisional stripping model - How well can we use the data to
answer the ‘composition’

question?
* Precise EOS (w/Z) for: - What is causing the extensive
B : : ) chemical equilibration in
MgO, SIO,, MgSIO,, Fe, Fe large planets?
alloy
 For P-T conditions up 10 - How can we understand late
Earth-mass planets veneers that make planets

habitable?



Chemical Evolution of Earth-like Planets in our Galaxy

xmperature. K

Chnopyroxene

Wollastonite

Left panel: 50% condensation temperatures of the elements Mg, Al, Si, Ca and Ti
during the evolution of our Galaxy. Time 0 is the Big Bang and 9.1 Gy is the time of
formation of our solar system. Right panel: Mineralogy of the refractory component
(CAIs) during the evolution of our Galaxy. The temperature of each assemblage is 1
K above the condensation temperature of metal or olivine whichever condenses first.




Web-based Interactive Tool for Planet Structure
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This schematic diagram illustrates the
internal radii of the three layers
(Fe,MgSiO3,H20) of the model planet
defined by the Locator {M,R} and Slider
{p0}.
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Z. Experimental Setup

Induced Shorting Cap
B-field
Current flow (J)

ONOXOXO:

e

SASES)

AK Gap

Cathode Anode (Flyers)

« Current pulse loops through shorting cap
inducing a B - field.

* Resulting J x B force accelerates anodes
(flyers) outward up to 40 km/s

« Asymmetric AK Gaps result in two
different flyer velocities (two Hugoniot
points per experiment

Void for stagnation experiments

Al 6061
Flyer Plate

MgO
Samples

Opaque
samples

* Multiple samples per experiment
* VISAR used to measure flyer velocity

« Pyrometry for temperature measurements



Z: Experiments

We have performed 5 dedicated experiments so far at Z with
2 ride alongs

The impact velocity range has been from 14 to 26 km/s.

Each experiment has two target panels, so you can think of 5
dedicated experiments as really 10 different impact
experiments, where 3 of those have been on iron and 7 have
been on MgO.

To date, the role of shock-induced vaporization of iron cores
during planet formation has not been assessed, which is
likely a result of the poorly constrained thermal equation of
state of iron and the high value estimated for the shock
pressure required to initiate vaporization upon
decompression, 887 GPa.

Here we present a new determination of the entropy on the
iron Hugoniot and thereby the shock pressure required to
vaporize iron.




Motivation 1: The Formation of Earth

Giant impact

/
. . Earth

Time (millions of years) —>

The first new solid grains formed from the gas and dust in the Solar Nebula some
4567 million years ago. Within 100,000 years, the first embryos of the terrestrial

planets had formed by planetesimal accretion. Understanding the behavior of the
iron metal cores and silicate mantles during this process is extremely important

for interpreting the record of this process found in meteorites and terrestrial planet
materials.



Motivation 1: The Formation of Earth

Fully Equilibrative Accretion:

Disruption Deposition Mixing

000

Metal Segregation

Core-penetrative Accretion:

Accretional Hot Disk Moon O
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Magma Ocean

Merged Cores

Merged Mantles Merged Object

Tthe degree of mixing and
chemical equilibration
between the iron cores of
planetesimals and the mantle
of the growing Earth strongly
affects our understanding of
the timing of Earth’s core
formation and the origin of
the unexpectedly large
concentration of highly
siderophile elements (HSES)
in Earth’s mantle.



Motivation I1: Early Atmosphere and Late Veneer (Noble
Gas Evidence)
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("late veneer”). Late veneers make planets habitable so testing

this model is extremely important?



Fe experimental results
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Entropy on the iron Hugoniot. Comparison of the SESAME 2150 EOS
for iron, the ANEQOS EOS for iron, and our data point for the entropy on
the iron Hugoniot. Also shown is the entropy at the 1-bar boiling point.
We find that the shock pressure to vaporize iron is 507(+65,-85) GPa,
which is significantly lower than the previous theoretical estimate and
readily achieved during the high velocity impacts at the end stages of
accretion.
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Iron VVaporization during Planet Formation
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A. Vaporization fraction of iron cores as
a function of impact velocity for 300 K
initial temperature with 1 confidence
interval. For an initial temperature of
1500 K, the core begins to vaporize at 13
km/s.

B. Histogram of impact velocities onto
Earth-mass planets from N-body
simulations of planet formation. Most
Impactors onto the Earth and Moon
achieve partial vaporization of their
cores. At each impact velocity, bodies
larger than the estimated maximum
Impactor diameter may penetrate through
Earth’s mantle to the core. Partial
vaporization aids the dispersal of the
cores of impactors smaller than this size
limit.



Implications of Iron Vaporization during Planet
Formation

 Vaporization of planetesimal cores by an impact—generated shock
will increase dispersal of accreting core material over the surface of
the growing Earth, substantially enhancing chemical equilibration
between the accreting cores and the Earth’s mantle.

 Vaporization of planetesimal cores will also decrease the accretion
efficiency of HSE’s onto the Moon relative to the Earth, providing
an explanation for the comparatively low concentration of HSE’s in
the lunar mantle.



