SAND2011-9099C

System Implications of Memory Reliability in
Exascale Computing

Sheng Li*, Ke Chen't Ming-Yu Hsieh¥, Naveen Muralimanohar *
Chad D. Kersey!, Jay B. Brockman', Arun F. Rodrigues¥, Norman P. Jouppi*
‘Hewlett-Packard Labs, fUniversity of Notre Dame,
fSandia National Labs, IGeorgia Institute of Technology
Ysheng.li4, kec, Naveen.Muralimanohar, norm.jouppi}@hp.com
{kchen2, job}@nd.edu, {myhsieh, afrodri}@sandia.gov cdkersey@gatech.edu

ABSTRACT

Resiliency will be one of the toughest challenges in future
exascale systems. Memory errors contribute more than 40%
of the total hardware-related failures and are projected to
increase in future exascale systems. The use of error cor-
rection codes (ECC) and checkpointing are two effective ap-
proaches to fault tolerance. While there are numerous stud-
ies on ECC or checkpointing in isolation, this is the first
paper to investigate the combined effect of both on overall
system performance and power. Specifically, we study the
impact of various ECC schemes (SECDED, BCH, and chip-
kill) in conjunction with checkpointing on future exascale
systems. Our simulation results show that while chipkill is
13% better for computation-intensive applications, BCH has
a 28% advantage in system energy-delay product (EDP) for
memory-intensive applications. We also propose to use BCH
in tagged memory systems with commodity DRAMs where
chipkill is impractical. Our proposed architecture achieves
2.3% better system EDP than state-of-the-art tagged mem-
ory systems.

Categories and Subject Descriptors
C.0 [Computer Systems Organizations|: GENERAL

General Terms

Design, Performance

Keywords

Exascale computing, memory system, reliability, DRAM,
ECC, chipkill, BCH, checkpointing, tagged memory

This material is based upon work supported by the Department of
Energy under Award Number DE - SC0005026. The disclaimer can
be found at http://www.hpl.hp.com/DoE-Disclaimer.html

Ke Chen and Jay Brockman are partially supported by the C2S2 Fo-
cus Center, one of six research centers funded under the Focus Center
Research Program (FCRP), a Semiconductor Research Corporation
entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC11, November 12-18, 2011, Seattle, Washington, USA

(c) 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

1. INTRODUCTION

Among the obstacles on the road to exascale computing,
system resiliency will be one of the toughest. In all hard-
ware components, main memory is one of the most vulner-
able components in the system. In existing terascale sys-
tems, hardware errors account for up to 60% of the total
failures [5]. Of this, 40% of the hardware failures are mem-
ory related [30]. Its contribution will further increase in
future systems not only because of the explosive increase
in memory capacity for future exascale systems [5,40]), but
also because of the adoption of new technologies such as
3D stacking [36], greater device density, and lower supply
voltage [39].

Error correction codes (ECCs) and checkpointing are two
effective ways to protect a system from memory induced
failures. By detecting and correcting memory errors on
the fly, ECCs can significantly increase the reliability of
the memory subsystem and thus increase the overall sys-
tem resiliency. While ECCs protect systems from memory
errors before they cause system failures, checkpointing re-
covers systems from failures not averted by the ECCs. Al-
though warehouse data centers may allow individual nodes
to be off-line when machines fail, exascale supercomputing
leverages checkpointing to handle system failures since nodes
are usually working together to solve large scale problems.
In the presence of a failure, computation will restart from
the last checkpoint, which wastes previous work on all the
unaffected nodes.

While using different methodologies to maintain system
resiliency, ECCs and checkpointing are tightly interrelated.
Different ECC mechanisms can provide different memory
reliability levels, meanwhile incurring different performance
and power overhead. On the other hand, their reliability
levels determine the checkpointing and rollback frequencies
that in turn affect system’s overall performance and power.
For exascale computing systems running over a long time
period (typically weeks or months), frequent checkpointing
and rollback cause significant performance and energy over-
head [15]. Thus, the increasing trend of memory error rates
will affect exascale computing much more profoundly than
it does in current petascale systems.

Memory reliability is even trickier for systems with tagged
memory. Tagged memory adds an extension bit or bits
to each memory word to describe its state. Systems with
tagged memory have been proven especially effective for
graph-oriented problems [4, 6] that involve intensive com-

munication and synchronization between data items as well
as irregular thread and memory behaviors. Tagged memory
subsystems have been used in several important high per-
formance computing systems, including HEP [42], Tera [10],
lightweight chip multithreading (LCMT) [26-28], and more
recently, the XMT [16]. However, supporting extension bits
in commodity DRAM requires compromising the strength
of ECC [16]. Continuing to support tagged memories in ex-
ascale systems without severely impacting performance or
power demands exploring new coding scheme.

Since future exascale systems impose very tight power
budgets while requiring a 1000-fold improvement in perfor-
mance, understanding system implications of memory relia-
bility and choosing an appropriate memory ECC mechanism
for future exascale systems is critical. It requires a detailed
analysis on overall trade-offs of performance and energy at
the system level. In this paper we holistically assess the sys-
tem implications of memory reliability for exascale systems
with and without tagged memory. Our key contributions
and findings are:

e We comprehensively study overall performance, en-
ergy, and efficiency implications of exascale systems,
considering both pre-protection of memory systems us-
ing ECC and post-protection using checkpointing. We
perform in-depth investigations not only on trade-offs
between the achievable resiliency and the overhead of
different ECC mechanisms but also the implications
of checkpointing on overall system performance and
energy when the ECC fails to prevent memory from
failures.

e We identify the transition points where ECCs need to
be upgraded to achieve better system resiliency on the
road to exascale computing. Our results show that
the current standard Simple Single Error Correction
Double Error Detection (SECDED) will be insufficient
for future exascale systems.

e We propose to use a Bose Chaudhuri-Hocquenghem
(BCH) code as an alternative ECC mechanism for ex-
ascale systems to alleviate the high overhead of chip-
kill and to enable the use of commodity DIMMs in
tagged memory systems without losing memory sys-
tem reliability. Simulations show that for conventional
non-tagged memory systems while chipkill is better for
computation intensive applications, BCH can achieve
28% improvement of system energy-delay-product for
memory intensive applications. For systems with tagged
main memory our BCH proposal can achieve more
than a 2.3 X improvement on overall system EDP, com-
pared to the current industry-standard implementa-
tion.

The remainder of this paper is organized as follows. After
reviewing related work in Section 2, we describe the system
implications of memory reliability in Section 3. In Section
4 we introduce BCH supported tagged memory. Section 5
describes the modeling framework we designed. In Section 6,
we evaluate the performance, energy and EDP of exascale
system with different ECCs. We conclude in Section 7 after
discussing the evaluation results.

2. RELATED WORK

Main memory ECC has been intensively studied. IBM
first proposed the concept of chipkill [13], and AMD in-
vented an implementation [3] with the same chipkill-level
protection while reducing required memory ranks by half.
Ahn et al. [2] studied memory reliability under the context of
bank-subsetting. Udipi et al. [45] proposed ECC and chipkill
implementations for disruptive but efficient future memory
devices. More recently, Yoon et al. [48] looked at using BCH
ECC to protect non-volatile memory from wear-out errors.
Wilkerson et al. [46] investigated using BCH ECC to pro-
tect the last level cache of processors to reduce the refresh
frequency and thus to save power.

There also have been many proposals [11,15,49] on system
checkpointing, focusing on improving coverage and reducing
overhead in massively parallel processing (MPP) systems.
Daly [11] proposed an analytical model to determine the
best checkpointing interval, while [15] extended the model
to further analyzed checkpointing overhead and proposed a
two-level checkpoint scheme with non-volatile memory.

The Cray XMT machine [16] was the first to support
tagged main memory while leveraging commodity DRAM
DIMMs. However, their approach of increasing SECDED
protection granularity from 64 bits to 128 bits imposes a
significant system reliability loss for exascale systems.

Previous work looked at either system checkpointing or
ECCs in isolation to protect systems from failures induced
by memory errors. Our work is the first to consider ECCs
and checkpointing in combination. We believe our work is
also the first to consider BCH coding for systems with and
without tagged main memory subsystems.

3. SYSTEM IMPLICATIONS OF MEMORY
RELIABILITY

As the total memory capacity and the number of mem-
ory devices in a cluster increase, it is critical to keep the
mean time to failure (MTTF) of individual devices high to
avoid frequent failures. Unfortunately, soft errors in DRAM
are expected to continue to increase with shrinking feature
sizes [8]. Also, without significant improvements in fabri-
cation processes or changes to DRAM organization, hard
errors will be difficult to overcome. To the extent that the
DRAM market is severely constrained by the cost per bit,
major changes to memory are less likely, and hard errors due
to failed row/column or stuck-at faults will continue to be
an issue in future memories. Moreover, techniques such as
3D stacking, which will likely be adopted for DRAM [36] to
meet the capacity demand, employ more silicon real estate
and increase the probability of errors.

An effective way to alleviate the device reliability problem
is improving the error detection and recovery in memory
systems. In this section, we explore various root causes of
failures in memory and evaluate the techniques to recover
from them.

3.1 Memory Errors

Errors in memory manifest in different ways, from single
bit errors to the failure of an entire DRAM chip. Table 1 lists
the memory failure rate in FIT/Mbit (FIT = failures per
billion hours) collected from major DRAM memory vendors
for different technologies from 130 nm to 90 nm [9,41]. The

Error Type Error Rate (FIT/Mbit)

1000-5000 [44]
0.5¢7% - 5¢73 [9)

Single-bit soft error
Logic soft chip error

Chip hard error 13.7 [41]
Single-cell hard error 12.6 [41]
Row hard error 6.3 [41]
Column hard error 4.1 [41]
Row-Column hard error 4.2 [29]

Table 1: DRAM error mechanisms and error rates

memory cell soft error rate (SER) is in the range of 1e® —5e?
FIT/Mbit [44], while the soft error rate in peripheral logic
is an order of magnitude lower, and varies between 0.5¢ > —
5e~3 FIT/Mbit [9,12]. The occurrences of soft errors follow
the exponential probability distribution 1—e~**, where A}
is the mean time between failures. A is tightly coupled to
the transistor density. A single event induced by a cosmic
ray or alpha article can cause multiple bit flips as the feature
size goes down, although multiple errors may not present in
the same memory word because of the interleaving of data
bits in modern DRAM designs.

Hard error rate (HER) is two orders of magnitude lower
than soft error rate (SER), reported to be 37 FIT/Mbit [41].
However unlike soft errors, they persist in memory and cause
recurring errors. Depending upon the number of cells af-
fected, more robust error correcting codes are required to
tolerate hard errors. An extreme example of hard errors is
a complete chip failure, also referred to as chipkill. The rate
of chipkill errors was reported to be 13.7 FIT/Mbit [41].

As the failure rate values listed in Table 1 were reported
in 2004, we scale them for future process technology to find
the reliability requirements. Borkar et al. [8] suggests that
the soft error rate doubles every technology generation. The
lower signal-to-noise ratio for scaled technology will increase
the vulnerability of stored data. Further, as density in-
creases, a single alpha or neutron strike can cause multiple
upsets. Thus, as technology advances from 45nm (petas-
cale) to 11nm (exascale), the soft error rate may increase by
16x. On the other hand, the hard error rate in FIT/Mbit
remains almost constant over time as claimed in [19]. Thus,
we conservatively assume that with technology scaling, the
total hard error rate is only proportional to the chip memory
capacity and device counts, regardless of technology.

The net MTTF of a system due to memory related failures
is proportional to memory capacity and node counts, and is
given by Equation 1.

MTTF = 10° /(FailureRatex
MemoryCapacityper Node x Numberof Nodes) (1)

External factors such as memory utilization (i.e. number
of memory accesses) and aging are also major contributors
to memory error rates of DRAM [38]. For ease of measure-
ment, memory utilization can be decomposed into indirect
indicators such as CPU utilization and memory allocation.
As a result, for each of the error mechanisms listed in Ta-
ble 1, the error rate is actually a dynamic function of the
three variables in Equation 2, where Pe,roro is the original
error rate, U stands for CPU utilization, M stands for the
memory allocation, and A is age. CPU utilization is the
percentage of used CPU cycles out of available CPU cycles
measured during runtime. Memory allocation is the total
amount of memory the OS accesses for a workload. In our

Data TECC

Quick-ECC Slow-ECC Full-ECC
(1EC6ED) (3EC6ED) (6EC7ED)
N N N
Exception:
Y v Y uncorrectable
errors

No error or 1 error corrected 3 or fewer error corrected

v v v

Up to 6 error corrected

Figure 1: Flowchart of Staged BCH ECC in the
memory controller

analysis, we collect the value for these two variables over
our benchmark workloads, and assign system nodes with
different workloads. Also, we assume the DRAM DIMMSs in
the system have a uniform aging distribution with the mean
value of 3 years, and mark system nodes with specific ages.

Perror = F(U7 M7 A) = Perr'or'OXfl(U) XfQ(M)XfS(A) (2)

fiU) = 0.991 x logio(U/Up) + 1
f2(M) = 1.066 x logio(M/Mo) + 1 3)
f3(A) = 2.489 x logio(A/Ao) + 1

The dynamic function of error rates has a logarithmic de-
pendence on U, M, and A as extracted from the dataset
collected in [38], and is shown in Equation 3. Here Uy, Mo
are average CPU utilization and memory allocation across
workloads, and Ao is the average DRAM DIMM lifetime
from DRAM vendors. Applying the three variable values in
Equation 3, we get the factors for the DRAM failure rates,
which are then fed into Equation 2 to calculate the error
rate of each system node.

3.2 Protecting Memory from Failures

Hardware ECCs are an effective way to protect memory
from failures. SECDED has already become standard in
all modern servers. High end servers employ more robust
chipkill-ECC memories, which can detect two and recover
from one memory chip failure in a DIMM. In addition, dou-
ble chipkill or Double Device Data Correction (DDDC) may
be explored for future servers.

While error tolerance addresses the reliability challenge,
chipkill or DDDC incurs high power and memory bandwidth
overhead. Unfortunately, memory power and bandwidth are
already a bottleneck in exascale machines [5]. Chipkill also
places restrictions on DIMM configurations that can be used
for servers. A straightforward way to implement chipkill
is through bit steering: interleaving SECDED ECC words
across multiple ranks [13] so that a failed DRAM chip will
distribute its error bits into different ECC words. In this
case, four SECDED codes of 72 bits interleaved across 288-
bits are required to recover from a complete failure of a
x4 DRAM chip. While conceptually simple, this solution
requires fetching pages from four ranks for every cacheline
access. With diminishing locality in access stream, such
overfetching is wasteful and dramatically increases DRAM
energy [45]. A more sophisticated chipkill implementation
employs symbol error correcting codes, as found in AMD
Opteron processors [3]. Despite being a significant improve-
ment, this approach still requires activating two x4 ranks

for each memory operation. This not only increases energy
per access, it also hurts processor performance. This over-
head will be even higher with future DRAM technologies
that utilize a longer burst length.

3.3 Using BCH ECC as an Alternative

While replacing ECC with chipkill or DDDC provides high
error coverage, chipkill is not mandatory in high perfor-
mance clusters. Most modern supercomputers already have
checkpointing and rollback mechanisms in place that can re-
cover from system failures. Since frequent rollbacks are ex-
pensive, it is not desirable to leave the memory weakly pro-
tected. At the same time, memory protection codes should
be fast and efficient for the majority of fault free accesses.
Hence, by striking the right balance between memory pro-
tection and checkpointing, we can improve the overall energy
efficiency of large systems.

Instead of updating ECC from SECDED to chipkill, we
explore BCH code as an alternative. BCH codes are linear
block codes defined over a finite Galois Field GF(2™) with
a generator polynomial, where 2™ represents the maximum
number of code word bits. To correct t-bit errors in k-bit in-
put data, BCH code typically requires r = t x ceil(log2k) + 1
check bits [34]. Therefore, it is not practical to implement
BCH ECC for every 64 bit word. Fortunately, the size of an
ECC code relative to that of the data word diminishes as the
size of the data word grows. We thus choose the ECC word
size as the size of the last level cache block, which is 64B for
most current processors. Current DIMMs provide 1/8“1 of
the capacity for storing ECC check bits, thus a 64B memory
block already has 64 bits reserved for ECC. A six error cor-
rection, seven error detection (GEC7ED) BCH requires 61
bits to protect a 64B memory block. Thus 6ECTED BCH
code can achieve high reliability similar to chipkill ECC.
However, the main design issue with a strong BCH code
is its complex error recovery procedure. To address this,
we leverage the error detecting/correcting ideas presented
in Free-p [48] and Hi-ECC [46] and implement three ECC
logic paths to provide low ECC latency and high error cov-
erage as shown in Figure 1: quick-ECC, slow-ECC and full-
ECC. Quick-ECC processes the 6ECTED BCH, detects up
to seven errors, but corrects only one error without extra la-
tency penalty. If quick-ECC identifies more than one error,
it invokes slow ECC for correction. Slow-ECC can correct
up to three bit errors. If slow-ECC detects more than three
bit errors, it invokes full-ECC, which can correct up to 6 bit
errors. Section 5 provides detail analysis on area, latency,
and power for SECDED, chipkill, and BCH ECC.

3.4 Effect of Memory Failures on
System Performance

Main memory errors contribute to 25% of total system
failures [5,30,37]. Different ECC codes can provide various
protection abilities for a system and result in different sys-
tem failure rates, or MTTF. To recover from failures not
corrected by ECC, a checkpoint/rollback scheme is used.
The stronger the ECC, the fewer the failures, hence leading
to less rollbacks. On the other hand, ECC hardware itself
incurs overhead even in fault free operations, especially for
chipkill.

We evaluate the impact of trade-offs between the achiev-
able resiliency and the overhead of three ECC mechanisms

Tiotal Total execution time including all the overhead

Ts Native execution time of a workload

PL Percentage of local checkpoints

j el 1 - pr , the percentage of global checkpoints

T Interval between two local checkpoints

oL Local checkpoint overhead (dumping time)

el Global checkpoint overhead (dumping time)

Oeq Equivalent checkpoint overhead in general

Ry, Local checkpoint recovery time

Ra Global checkpoint recovery time

Req Equivalent checkpoint recovery time in general

qrL Percentage of failure covered by local checkpoints

qc 1 - qr ,the percentage of failure that has to be
covered by global checkpoints

MTTF | System mean time to failure

Ps Native execution power of a workload

Perpt Power during checkpointing in general

Pr Power during recovery

Peipt,r. | Local checkpoint power overhead

Table 2: Timing and power related parameters for two-
level (local/global) checkpointing scheme

(SECDED, BCH, and chipkill) on the performance and power
of future exascale systems. We model state-of-the-art highly
scalable two level checkpointing [15], where periodic syn-
chronous snapshots are made in both local nodes and neigh-
boring nodes. Unless a node has failed completely, local
rollbacks are sufficient to recover from failures. In rare
cases where network or power failures prevent local roll-
backs, global checkpoints can be used to start a new node
and resume execution. Tiotq:;, the execution time of such
a system, consists of four parts: the original computation
time for a workload, the time spent on generating check-
points, the time spent on recovering from a system failure,
and finally the extra cost for a global checkpoint failure.
Thus the total execution time comes to:

TS 1 Ttotal

Tiotar =Ts + == (0eq) + (5(7 +0eq) + Rea) 37
PLQG Ttotal
e OV TTE)

where the parameters are detailed in Table 2.

Similar to the timing model, we derive a energy model
based on the bandwidth and the power of all hardware com-
ponents, as well as the checkpointing/recovery distribution
over two levels. The total execution energy consumption is

T
Eiotar = PsTs+ (Pckptéeq)TS

1 To al
+(§(PST + Pckpt(;eq) + PRReq)ﬁ
Ttotal

Prqc
MTTF (5)

+2p—G(PST + Pckpt,L(;L)

4. RELIABILITY OF EXASCALE SYSTEMS
WITH TAGGED MAIN MEMORY

When making changes to ECC codes in DRAM, it is
worth considering their effect on tagged main memory -
a requirement that caters to graph-oriented applications.
These applications can achieve significant improvements in
performance (1.5x in average) [26-28] when executed on
systems with tagged memory. In a 64-bit tagged mem-

ory sub-system, the fundamental storage unit is called ez-
tended double word or Xdword. It consists of a 64-bit double
word (dword) together with an extra bit called extension
bit (Xbit). By using the extension bit in tandem with mode
fields within the dword, a set of memory states for the dword
can be defined. This supports synchronization at the mem-
ory word level by allowing memory operations to execute
conditionally, depending upon the state of the memory that
they are attempting to access. When a memory operation
cannot execute because the location being accessed is not in
the correct state, the thread responsible for that operation
gets blocked. Once the memory state is restored, the thread
will continue its execution.

It is relatively easy to implement tagged memory sup-
port in mainstream processors [27], however, the extra bit
required for each word in DRAM requires custom DRAM
dies. One way to address this problem is by leveraging a
portion of the storage for ECC to store the extension bit.
The CRAY XMT supports tagged main memory in com-
modity DIMMs through this technique. The XMT machine
enlarges the ECC protection granularity from 64 bits to 128
bits, resulting in savings of three bits for every 64-bit mem-
ory word. The memory controller is then modified to treat
the saved bits in the ECC chip as extension bits. Unfor-
tunately, increasing the ECC word from 64 bits to 128 bits
results in 2.25x decrease in the memory system reliability
based on our Monte Carlo simulation. With resiliency being
a first order design constraint for exascale systems, providing
error coverage lower than traditional ECC is not attractive
for future systems.

To solve this problem, we propose to use BCH as the ECC
on the systems with tagged memory. We choose the ECC
word size as the size of last level cache block, i.e. 64B for
most current processors. A 5EC6ED BCH code requires
only 51 ECC bits to protect every 64 byte data block and
the associated 8 extension bits. Therefore, 13 bits in the
ECC section can be saved for each cache line sized data
by using a BCH code. Error detection and correction is
performed on both the data bits and extension bits. We
compare the system resiliency, performance, and energy of
the XMT implementation and our proposal in Section 6.

5. MODELING METHODOLOGY

To evaluate the effect of different levels of memory protec-
tion on the performance and power of an exascale system,
we use a modeling framework shown in Figure 2. The frame-
work consists of four major parts: 1) a Monte Carlo simula-
tor to study the interplay between different types of mem-
ory errors; 2) an extended McPAT framework for studying
the energy, latency, and area of future manycore processors
with different ECC techniques; 3) performance simulators to
evaluate both conventional non-tagged memory systems and
tagged memory systems; and 4) a performance and power
analyzer for exascale systems with different ECC mecha-
nisms.

The Monte Carlo simulation is used to generate system
failure rates under different error types and ECC techniques.
This is important since multiple types of errors can occur at
the same time and different ECC types react differently to
these errors. The simulator injects different types of errors
into the memory based on the failure rates given in Table 1.
The error injection follows an exponential distribution. Also,

I Error types, I
Error Rates
| System Config I

I____,

Socket Config I
— —r —

2. McPAT-ECC

1. Monte Carlo Simulator

New Models:
ECC implementations
SECDED, Chipkill, BCH
Near-threshold Vdd

Error Injection Model
Memory Access Model
Repair Model

Energyl

Socket Reliabilty
access

A
3. Performance Simulators
New Models:
Memory Error Injection
ECCs Overhead -

Accelerated Error Simulation _———
4—[Socket Conﬁgl

—_—— —
Runtime Performance a
Power Impact

Y
4. Exascale System

Performance and power Models —_—— —
| Checkpointing and native | <—lSystem Conﬂd

execution analyzer ———

< Tecs T
— —

Y

Whole System|
MTTF

\

Exascale System performance,
energy, and EDP

Figure 2: Simulation framework for evaluation of
system performance, energy, and EDP from memory
errors and ECC types.

the scaling trends in Section 3 combined with external factor
dynamic functions as in Equations 3 and 2 are used to ob-
tain the error rates with given technology nodes, workloads,
and memory system configurations. We then scan through
DRAM chips across a DIMM, and collect the errors in each
memory word. We also differentiate recurring hard errors
and intermittent soft errors when calculating total errors
per cacheline access in burst transfers. The simulator knows
exactly the number and types of the errors injected during
simulation and the error detection and correction abilities
of a particular ECC scheme. If the total error bits exceed
the detection capability (silent error) or correction capabil-
ity (uncorrectable error) of the ECC scheme, then it is con-
sidered as an error to cause a system failure. Finally, the
failure rates (or MTTFs) of different ECC types are ob-
tained from the number of uncorrectable failures out of the
total memory accesses during the average lifetime of modern
DIMMs (3 years) [38] with a memory utilization percentage
of 31% [15].

McPAT is an integrated power, area, and timing model-
ing framework for multicore and manycore processors [23,
24]. We extend McPAT to model power, area, and tim-
ing of future manycore processors equipped with different
ECCs (SECDED, chipkill, and BCH) for exascale comput-
ing. When modeling ECC hardware in memory controllers,
we decompose it into gate level circuit blocks and use Mc-
PAT’s circuit models estimate area, latency, and energy per
access of each type of ECC hardware. Of the various ECC

Corrector

[Datain(kbits) |

n/2

Encoder inputs

~

77777777777777777777777777777777 Ve

ni2
inputs

Syndrome
Calculation

[Storeddata (n =k +rbits) | .~
=

Decoder ﬂ =

Error
. . 2tm
Classification inputs

—S=D

—

m|
/
/
/

Finding Error-

Location tm

inputs

m t-input t m t-bit
OR multipliers XOR trees

Polynomial

Findingl error n | nm-input t m t-bit
location inputs | XOR multipliers XOR trees

numbers —

Figure 3: BCH ECC circuit with gate level breakdown

schemes modeled, BCH is the most complex code and re-
quires more gates. To evaluate the feasibility of using BCH
in memory controllers, we accurately evaluate the overhead
of the encoder, decoder, and corrector logic for BCH. The
decoding process itself has three steps: 1. syndrome calcula-
tion (and error classification), 2. calculating the coefficients
of the error-location polynomial, and 3. finding error lo-
cations by solving the roots of the polynomial. We model
a pipelined BCH architecture [43] and size the devices to
reduce latency.

Figure 3 shows the gate level model for various stages
in BCH hardware, where we assume ¢ bit correction for n
bit information code, and m = log2(n). According to [43],
the total number of logic gates in a BCH code decoder and
correction logic is dominated by XOR gates in the error cor-
rection step, and thus scales with mt?n. The area overhead
of these stages can be calculated using Equation 6, where F’
is the process feature size.

ABCH = (AzorXNzor+AandXNand"'AorXNo'r))XF2 (6)

The latency of the decoder is dominated by the finding error-
location step and scales with tm. This is because the ¢ it-
erations cannot be fully parallelized. The total latency is
derived by finding the latency of the critical path. The en-
ergy per BCH operation is calculated based on the number
of active gates in each step. Table 5 shows the power and
timing results for SECDED and BCH, with a detailed ex-
planation in Section 6 .

Once we find the error rate and the overhead for correct-
ing them, the next step is to analyze their effect on a large
system. Since simulating an exascale system is not feasible,
we first simulate the performance and power of an individual
node/socket with different ECC schemes. For the systems
with conventional non-tagged memory subsystems, we use
McSim [1], a Pin [31] based simulator. McSim is event driven
and cycle accurate. It models in-order cores, caches, direc-

| 1petaFLOPs lexaFLOPs

FLOPS 10" 10'®

Year 2008 2018
Technology node 45 nm 11 nm
Number of nodes 20,000 100, 000
Memory per node 4GB 640GB
Memory bandwidth/node | 10 GB/s 4 TB/s
Node performance 50 GF 10 TF
Network bandwidth/node | 3.5GB/s 4TB/s
Memory induced MTTF 1.3 days 1.1 hour

Table 3: Specifications of the projected exascale system
and a current petascale system.

tories, on-chip networks, memory controllers, and DRAM
banks. To model systems with tagged main memory, we
use the Structural Simulation Toolkit (SST) [18,35]. SST
is an open, modular, and parallel simulation framework. It
includes a number of processor, memory, and network com-
ponents. For this study, we develop a chip multiprocessor
(CMP) component linked with the DRAMSim2 [32] com-
ponent to model a core cluster (Figure 4) connected to a
memory system. The CMP component can run benchmarks
using full/empty bits by translating atomic memory oper-
ations into equivalent full/empty bit operations. The ex-
tended McPAT framework provides power, area, and tim-
ing information of the simulated processors for both simu-
lators. The error injection model (as in the Monte Carlo
simulation) is integrated into both simulators to enable our
research on ECC hardware runtime overhead. The perfor-
mance and power values of individual sockets along with the
MTTF of memory calculated through Monte Carlo simula-
tion are then used in the performance and power analyzer
as shown in Figure 2 along with Equation 4 and 5 to find
the exascale system performance.

6. EVALUATION

Table 3 shows the specifications for a current petaflop sys-
tem and a projected exascale system. The projections and
scaling assumptions are based on ITRS [39] and (more ag-
gressive) exascale computing studies [5,8,40]. An exascale
system will likely have 100,000 nodes, with each node pro-
viding 10 teraFLOPS of processing capability. The memory
capacity for each node will be 640GB, a 160x increase com-
pared to current petaFLOP systems. Memory bandwidth
requirement will be 4 TB/s, a 400x increase from current
systems. The inter-node network bandwidth is projected
to be in a range of 200GB/s [15] to 4TB/s [40] based on
whether an optical network will be aggressively used. Using
the Monte Carlo simulation discussed in Section 5, we com-
pute the memory failure rate to be around 400 per billion
hours per GB for a system that supports 64-bit SECDED
ECC. This is consistent with the data measured in actual
systems [29,30]. Thus, taking into account the total num-
ber of computation nodes, the memory induced MTTF for
a petascale system is 31 hours (1.3 days). For an exascale
system, the memory induced MTTF is around 1.1 hour *.
Both MTTFs are well aligned with the expectations in [40].

IPetascale system uses SECDED, while we assume the ex-
ascale system uses chipkill since checkpointing overhead un-
der SECDED is too high for exascale systems, as we show
in Section 6.

Memory DIMM

Memory DIMM

Memory DIMM

’ . Other
Sockets
Core
Cluster N o 8
Sl 3|
—T" Qf.
Chip =K
Substrate Z 0|
@ o
sl |
Many-cor¢ \ = g)
Chip \\ I
Core /
| Memory DIMM | Cluster

Figure 4: Conceptual view of the exascale system archi-

tecture.
Core
Technology (nm) 11
L1 Cache 32KB, 16way, 64B block
L2 Cache 512KB, 16way, 64B block
Clock rate (GHz) 2
Peak Perf. w. SIMD (GFLOPs) | 8
Power (near-threshold op) (W) 0.62
Area (mm?) 1.5
Cluster
Core count 32
Memory Controllers 3 dual-channel
Memory type DDRA4-4266
Cluster Power (W) 21
Total threads 256
Peak Perf. w. SIMD (GFLOPs) | 256
FLOPs / Mem BW (ops/B) 2.5
Memory DIMMSs DRAM / PCRAM
Energy including I/O (pJ/bit) 7.1/9.2
Leakage Power/DIMM (mW) 129 / 36

Table 4: Parameters of the simulated core cluster.

Figure 4 shows the block diagram of an exascale system.
It consists of multiple nodes connected using fast system in-
terconnects. Each node consists of one or more manycore
processors. We model a clustered manycore processor simi-

lar to Koka et al [21].

6.1 Experiment Setup and Modeling Results

In order to keep the simulation time reasonable, we first
find the performance of an individual socket by simulating
a cluster of cores (as shown in Figure 4). We choose a dual
pipelined core similar to Niagara-2 and augment each core
with a 4-way SIMD unit. To meet the performance target
without breaking the power envelope, processors in exascale
systems will likely be working at near-threshold supply volt-
age. We use McPAT [23,24] to estimate the power, area, and
clock rate of these cores when operating at near-threshold

SECDED Encoder Decoder Corrector
Gate number 288/1088 552/1744

EPA (pJ) 0.014/0.053 0.017/0.059
Latency (ns) 0.055/0.065 0.065/0.075 0.020/0.023
BCH Encoder Decoder Corrector
Gate number 25k /21k 26k /22k 201k /168k
EPA (pJ) 1.2/1.0 1.3/1.1 9.3/7.7
Latency (ns) 0.081/0.081 0.10/0.10 1.2/1.0
BCH corrector t=6/5 t=3 t=1
EPA (pJ) 9.3/7.7 4.9 2.1
Latency (ns) 1.2/1.0 0.65 0.28
Cycles 7/6 4 2

Table 5: Energy per access (EPA), gate count, and tim-
ing of the SECDED hardware (top), the BCH decoder
(middle), and the staged BCH corrector (bottom) at
1lnm. Values in left/right pairs are 64-bit/128-bit for
SECDED and 6EC7TED/5EC6ED for BCH, respectively.
The 128-bit SECDED and 5EC6ED are used for tagged
memory only. ¢ in staged BCH (bottom) denotes the
correcting ability of BCH corrector. Cycles are for the
4GHz DDR4-4266 channel.

supply voltages. Table 4 lists the architecture parameters
and the results obtained from McPAT for processor cores at
an 11lnm technology. Since each core achieves 8 GFLOPs,
a 10 TFLOPs node listed in Table 3 requires around 1280
cores. Assuming that each node has eight sockets, a socket
will have 160 cores in a die (of size 240 mm?). If a core
cluster contains 32 cores, such a socket can have five clusters
built on the chip substrate. According to the system specifi-
cations in Table 3, each core cluster needs 205 GB/s of mem-
ory bandwidth. Based on the JEDEC roadmap [20] and the
clock rate of cores, DDR4-4266 equivalent memory can be
used. Thus, the core cluster needs 3 dual-channel memory
controllers with each memory channel containing a single
rank DDR4-4266 DIMM. The memory controller is mod-
eled to support a combination of open-page and close-page
policies. A DRAM page gets closed during a precharge com-
mand unless there are more pending requests to the same
pages in the memory controller queue. Chipkill is modeled
according to the optimized design in AMD Opteron proces-
sors [3]. When chipkill is not used, cachelines are interleaved
across all memory channels. However, when chipkill is used,
fetching a single cacheline needs to invoke two memory chan-
nels to finish the chipkill operation. Hence, without enough
locality, all the extra bits fetched into the row buffers in
all the active DIMMs will go waste. Further, this approach
blocks parallel accesses to various DIMMs, increasing the
queuing delay. The modeled memory controller supports a
DRAM power down mode during which DRAM chips con-
sume 1/5“1 of normal static power and need two cycles to
enter and exit the state [2].

As mentioned in Section 3, checkpointing can be used to
recover the system state in the event of an uncorrectable er-
ror. We model an advanced two-level checkpointing scheme
and store checkpoints both locally within a node and glob-
ally in neighboring nodes [15]. Both local and global check-
pointing are assumed to be stored in emerging non-volatile
PCRAM since hard disk drives (HDD) have been proved to
be too slow for exascale checkpointing [15].

We run CACTI [25] and PCRAMSim [14] to compute the

SPLASH-2 SPEC CPU2006

Application Dataset Application Dataset Set Applications

Barnes 16K particles Cholesky tk17.0 CINT

FFT 1024K points Radiosity room high 429.mcf, 462.libquantum, 471.omnetpp, 473.astar
FMM 16K particles Raytrace car med 403.gcc, 445.gobmk, 464.h264ref, 483.xalancbmk
LU 512x512 matrix Volrend head low 400.perlbench, 401.bzip2, 456.hmmer, 458.sjeng
Ocean 258 %258 grids CFP

Radix 8M integers high 433.milc, 450.soplex, 459.GemsFDTD, 470.1bm
Water-Sp 4K molecules med 410.bwaves, 434.zeusmp, 437.leslie3d, 481.wrf

low 436.cactusADM, 447.dealll, 454.calculix, 482.sphinx3

Table 6: SPLASH-2 datasets and SPEC CPU 2006 application mixes for high, med, and low memory bandwidth.

. mMem standby IMem dynamic IPC
-
=3
E; 15 1 H
Q - —
210 2
o M r 059
o g i N B e E
§,lem Ol [[U0 5
s O o [o0 ol 3
() Z |0 Z| Q0 Z|Q Z |0 Z | QO Z|Q zZ|Q PNe] Z|Q Z|Q Z |0 Z| Q0 Z| Q0 e} E
= QX Q| X QX QX Q= QX [SREPN [SREPN QX QX QX QX Q= Q= o
c Py S S P Py Py Py Py Sy x Py FS P Py E
b -
‘E“ CHOLESKY‘ FFT ‘ RADIX ‘ OCEAN ‘RAYTRACE‘ VOLREND ‘ WATER Average ‘ CFP.high ‘ CINT.high Average ‘ canneal ‘fluidanimate ‘Average 2
SPLASH2 ‘ SPEC2006 ‘ PARSEC
(a) Memory power and IPC (IPC higher is better) of the simulated 32-core cluster
25 MChip power [—Memory Power -<Normalized EDP 200%
. b
_ o
£ / 7] a
) H - 150% W
215 §
t 100% N
10 |] 'S
2 £
35 HiIEIEIEIE
8 o
3 BN =
0 - 0%
P4 Q
9 ~
CHOLESKY‘ FFT ‘ RADIX ‘ OCEAN ‘RAYTRACE ‘ VOLREND ‘ WATER ‘ Average ‘ CFP.high ‘ CINT.high ‘ Average ‘ canneal ‘fluidanimate ‘Average

(b) Power and EDP (lower is better for power and EDP) of the simulated 32-core cluster

Figure 5: Power and performance of applications on systems with and without chipkill-level reliability. In both figures

CK means with chipkill, and NCK means without chipkill.

energy per access of the main memory DRAM DIMMs and
checkpointing PCRAM DIMMs. Based on current high-
speed link energy consumption (8 pJ/bit at 40nm) in [22]
and scaling trends shown in [33], we conservatively assume
that the I/O energy consumption of a memory channel is
2pJ/bit. The results of this analysis are listed in Table 4
and are used in our core-cluster simulations later in this sec-
tion.

Our modified McPAT is used to compute the area, en-
ergy, and timing of the manycore processors with the over-
head of different ECC schemes. As shown in Table 5, the
BCH code incurs significant area and energy overhead com-
pared to SECDED. However, the dynamic power at 11nm
of the delay-optimized BCH for each channel is only 28mW,
which is negligible when compared with the processor power.
When there is no error, the SECDED and BCH have the
same 1 cycle latency for the 4GHz memory channel. Al-
though BCH takes 7 cycles of latency to perform the full
6ECT7ED, this overhead is greatly reduced by applying staged
BCH ECC as described in Section 3. As shown in Table 5
(bottom), the single bit correction incurs only 1 extra cycle
of latency compared to SECDED.

SPLASH-2 [47], PARSEC [7], and SPEC CPU2006 [17]
benchmark suites were used to evaluate the performance
and power of a single node. We used all SPLASH-2 ap-

plications and five of the PARSEC applications (canneal,
streamcluster, blackscholes, fluidanimate, and swaptions).
We used the simlarge dataset for PARSEC applications, and
the datasets used for SPLASH-2 applications are summa-
rized in Table 6. We used the SPEC CPU2006 benchmark
suite to measure the system performance on consolidated
workloads. We picked 12 applications from both CINT (inte-
ger benchmarks) and CFP (floating point benchmarks), and
made 3 groups each, 4 applications per group, based on their
main-memory bandwidth demand [17] as shown in Table 6.
To evaluate the performance and reliability of systems with
tagged main memory, we used SPLASH-2, PARSEC, and
the Multi-Threaded Graph Library (MTGL) [6] benchmark
suite. MTGL is a group of graph-oriented applications de-
signed to run on shared-memory platforms. We selected four
applications from the MTGL: breadth-first search (BFS),
connected component (CC), PageRank, and RMAT genera-
tion. Note that the RMAT generation was written from the
ground up to use full/empty bits. We skipped the initializa-
tion phases of each workload and simulated 2 billion instruc-
tions or until the program finishes, whichever comes first.

6.2 Single Socket Results

Figure 5 presents the simulation results of the 32-core clus-
ter in a socket as listed in Table 4. As shown in prior anal-

ysis, the latency and power overhead caused by pure ECC
hardware is negligible even for BCH ECC. Our simulation re-
sults confirm that even with 20x accelerated error injection,
BCH and SECDED exhibit very similar performance and en-
ergy consumption, with BCH causeing less than 1% degra-
dations in performance and power compared to SECDED.
Thus, we group the ECC techniques of 64b SECDED, 128b
SECDED, and BCH as a non-chipkill category and compare
it with chipkill. Figure 5 shows the comparisons between the
non-chipkill system and the chipkill system, with both sys-
tems having non-tagged memory. For computation-intensive
benchmarks such as WATER and fluidanimate, the differ-
ence between systems with chipkill and without chipkill is
very small. This is because memory is seldom used, and
therefore the high overhead of chipkill does not cause a sig-
nificant change in the system performance and power. How-
ever, for memory-intensive benchmarks such as CFP.high
and RADIX, chipkill incurs up to a 38% performance over-
head and a 35% increase in memory power as shown in Fig-
ure 5(a). This is because for every cacheline needed, chipkill
reads twice the data, wasting power and bandwidth. In par-
ticular, activating twice the number of DIMMs to access
a single cacheline can block subsequent reads to different
memory locations. This also wastes power since programs
with low row buffer hit rates will end up wasting all excess
cache lines fetched to the DRAM row buffers. As shown in
Figure 5(b), for memory-intensive benchmarks, the system
with chipkill demonstrates an EDP degradation of up to 60%
(e.g. CFP.high), compared to systems without chipkill.

6.3 From Single Socket to Exascale System

The overall goal of this work is to find the reliability tech-
nique with optimal energy delay product, which is done
in two steps. First, we investigate checkpointing overhead

caused purely by reliability levels provided by different ECCs.

If an ECC cannot provides enough reliability, the memory
induced failures cause the system to spend an unacceptable
portion of its time checkpointing and rolling back. Thus,
we can find where, on the roadmap to exascale computing,
the system needs to upgrade to a stronger ECC scheme to
keep the checkpointing overhead tolerable. Once the ECC
schemes that can be used for exascale computing are iden-
tified, the second step is to factor in ECC overhead on na-
tive fault-free execution so that the best ECC technique can
be selected from the still available ones. When studying
system-level performance, we scale the socket level simu-
lations to the exascale system level for this analysis and
consider the system-level communication overhead based on
projections from Kogge et al [5]. We also factor in the paral-
lel efficiency when scaling from a single socket to the entire
exascale system.

Figure 6 shows the energy, performance, and energy-delay
product of checkpointing overhead on systems with different
scales and ECCs. The overhead grows superlinearly from 64
petaFLOPs to exaFLOPs, caused by rapid increase of the
failure rate and the resulting higher frequency of checkpoint-
ing and recovery. Although 64-bit SECDED is still possible
at exascale, it wastes lots of machine time and power since
the EDP overhead for checkpointing is more than 130% of
the native execution. The 128-bit SECDED for tagged mem-
ory is even worse for exascale computing because of its asso-
ciated 347% checkpointing overhead on EDP over the native

Energy Overhead Timing Overhead

EDP Overhead

‘ I 645 SECDED [Chipkill [N 6EC7ED BCH [128b SECDED [|5EC6ED BCH‘
80% T T T T T

26%

o
=]
B

IS

N}

2
T
.

20%

I_IHH []

512 PF 1024PF
(a) Checkpointing Timing Overhead

[
J

80%

60% -

40%

ST L.L il

20%
64 PF 128 PF 256 PF 512 PF 1024PF
(b) Checkpointing Energy Overhead

] 34%

133% 347%

80%
60% - b

40% - J

“L Lab L Lab K1

64 PF 128 PF 256 PF 512 PF 1024PF
(c) Checkpointing EDP Overhead
Figure 6: Checkpoint (and rollback) overhead of

systems with different ECC schemes scaling from 64
petaFLOPs to 1 exaFLOPs for timing, energy, and EDP
(lower is better). The two level non-volatile DIMM
based checkpointing mechanism [15] is used. Checkpoint
size is assumed to be 30% of total memory capacity as
indicated in [15]. All numbers are normalized against
that of native execution without checkpointing. Num-
bers greater than 100% indicate that the system spends
more time/energy on checkpointing than on the native
execution (the real work).

execution. As a result, chipkill and BCH are the good op-
tions for future exascale computing.

Figure 7 shows a complete view of overall system perfor-
mance, energy and EDP at exascale, including both native
execution and checkpointing operations. As shown in Figure
7(a), for both computation-intensive and memory-intensive
workloads running on systems with conventional non-tagged
main memory, chipkill and 6EC7TED BCH have significantly
less total EDP than 64-bit SECDED. For computationally-
intensive workloads, although chipkill requires more energy
than BCH for native execution, its higher MTTF results in
higher reliability and lower checkpointing overhead, which
leads to a 13% lower EDP than that of BCH. However, for
memory-intensive workloads, BCH is much better in power
and performance of native execution, which leads to 28%
advantage on EDP over chipkill even when the larger check-
pointing overhead of BCH is considered. For systems with
tagged main memory, because the system needs to pack the
extension bits in the ECC section, traditional chipkill im-
plementation is impractical, and only the 128-bit SECDED
and 5EC6ED ECC schemes can be used. The 5EC6ED
BCH gives 2.3x better EDP than the 128-bit SECDED does.
Thus, with BCH ECC, the system with tagged main memory
can leverage commodity DIMMs while maintaining accept-
able system resiliency and checkpointing overhead.

25 e : a 5 —

& — O Checkpointing M Execution - o) O Checkpointing

w T 4 M Execution

° 2 T

s ©

> 5

& 15 ©

s S

G 14 » 2]

o £

E 1 E 1

E 05 5

5 -

T 0 - g o -

N -_—

= =|x =|x == =|x == =|xz T

] =20 =20 =0 =20 =20 X0 € prr 5 e 5 2 5

£ 2| @ 2| @ 2| @ 2| @ 2| @ =l 5 “ | o | @ » | @

5 clo clo clo clo £lo clo S - -4y 2|0

3 O |w O|lw O|w O|lw O|w O |w w2 ® |32 0 | 3
) © © © © © N4 Q| Q=

— i -

Timing Energy EDP Timing

CPU Intensive Apps

Mem Intensive Aobs
(a) Systems with conventional non-tagged memory.

Energy EDP

Timing ‘ Energy ‘ EDP

(b) Systems with tagged memory

Figure 7: Complete view of overall system timing, energy, EDP (lower is better) at exaFLOPs for systems with
conventional non-tagged main memory and tagged memory. All numbers are normalized against native execution
of SECDEDs (64 bit and 128 bit). SECDEDs are still included since it is possible for exascale computing although
they are not practical because of the high checkpointing overhead. For systems with tagged memory, since chipkill
is impractical, the difference between computation-intensive and memory-intensive workloads is negligible and is not

shown.

Figure 7 shows that memory bandwidth utilization has
a big impact on the overall system performance of chipkill
and BCH, which is within expectations since benchmarks
with high memory bandwidth demand and utilization place
higher pressure on memory systems with chipkill than on
systems without chipkill. Figure 8 gives the system time,
energy and EDP ratio between chipkill and 6EC7TED BCH
ECC as we sweep system-level effective memory bandwidth
utilization. System-level effective memory utilization is ac-
tually the product of the memory utilization of a node or
socket (simulated) and the system level parallel efficiency
beyond a single node. Because of the huge design space of
this study, Figure 8 is obtained by curve fitting our simu-
lated results together with network/communication projec-
tions from [5]. An analytical model may be possible but
is beyond the scope of this paper. Besides confirming that
chipkill is better for cpu-intensive benchmarks while BCH is
better for memory-intensive benchmarks, Figure 8 further
reveals the crossover points at memory utilization of 59%,
27% and 55% for time, energy, and EDP, respectively.

7. CONCLUSIONS

Both memory ECCs and checkpointing will be important
tools providing reliability and availability in future exascale
systems. However, while providing different levels of mem-
ory reliability, different memory ECCs incur different perfor-
mance and power overhead. Moreover, they impact check-
pointing behavior that in turn affect system performance
and power. This paper is the first to assess the implications
of memory reliability at exscale system level, considering
both pre-protection (ECC) and post-protection (checkpoint-
ing) mechanisms rather than looking at either in isolation.

With this work, we have identified the key relationships
between pre-protection (ECCs) and post-protection (check-
pointing) to provide a reliable system, and proposed BCH
as an alternative memory ECC to improve system level per-
formance and energy efficiency at exascale computing where
SECDED will incur significant overhead. The proposed BCH
ECC also enables the smooth adoption of tagged memory in
future exscale systems for solving important graph-oriented
problems. Using our evaluation framework, we found that

180% .
-@-Time

RADIX
170%| 'V Energy

|
©-EDP CNT.high |

160%1
150%1
140%1

130%r
fluidanimate

120%r CHOLESKY '

110%1

Normalized to 6EC7ED BCH

100%

Time, Energy, and EDP of Chipkill

800/ Il 1 1 1
0% 20% 40% 60% 80%
System-Level Effective Memory Utilization

100%

Figure 8: Normalized overall system performance, en-
ergy and EDP (lower is better) of chipkill over 6EC7TED
BCH (including both native execution and checkpointing
operation). The figure is based on curve-fitting the sim-
ulated data, with representative simulation data points.
The portions of the curves with less than 10% or more
than 80% of the system-level effective memory band-
width utilization are backward and forward projections,
respectively.

careful system level considerations are necessary to achieve
the best system resiliency. Our results show that for sys-
tems with conventional non-tagged main memory subsys-
tems, while chipkill is 13% better for computation-intensive
applications, BCH can achieve a 28% improvement of sys-
tem EDP for memory-intensive applications. For systems
with tagged main memory, BCH is 2.3x better compared to
the state-of-the-art 128-bit SECDED implementation while
still leveraging commodity DIMMs.

8.
1]

2]

8]

[4]

[5]

(6]

[7]

8]

[9]

(16]

REFERENCES

“McSim: A Manycore Simulation Infrastructure,”
http://scale.snu.ac.kr/mcsim.

J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich,
and R. S. Schreiber, “Future Scaling of
Processor-Memory Interfaces,” in Supercomputing
Conference, 2009.

AMD, “BIOS and Kernel Developer’s Guide for AMD
NPT Family OFh Processors, Technical Report,” Nov.
2009.

D. A. Bader, G. Cong, and J. Feo, “On the
architectural requirements for efficient execution of
graph algorithms,” in ICPP ’05: Proceedings of the
2005 International Conference on Parallel Processing,
2005, pp. 547-556.

K. Bergman, et al., “ExaScale Computing Study:
Technology Challenges in Achieving Exascale
Systems.” 2008, DARPA IPTO sponsored report.

J. Berry, B. Hendrickson, S. Kahan, and P. Konecny,
“Software and Algorithms for Graph Queries on
Multithreaded Architectures,” in 2007 IEEE
International Parallel and Distributed Processing
Symposium, 2007, p. 495.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC Benchmark Suite: Characterization and
Architectural Implications,” in PACT, 2008.

S. Borkar, “The Exascale Challenge,” in Asia
Academic Forum, Nov 2010.

L. Borucki, G. Schindlbeck, and C. Slayman,
“Comparison of Accelerated DRAM Soft Error Rates
Measured at Component and System Level,” in
Proceedings of 46th Annual International Reliability
Physics Symposium, 2008.

Cray Corporation, “Cray MTA-2 System.”

J. T. Daly, “A Higher Order Estimate Of The
Optimum Checkpoint Interval For Restart Dumps,”
Future Gener. Comput. Syst., vol. 22, pp. 303-312,
February 2006.

T. J. Dell, “System RAS Implications of DRAM Soft
Errors,” IBM Journal of Research and Development,
vol. 52, no. 3, pp. 307-314, 2008.

T. Dell, “A White Paper On The Benefits Of
Chipkill-Correct ECC for PC Server Main Memory,”
IBM Microelectronics Division,” Technical Report,
Nov. 1997.

X. Dong, N. P. Jouppi, and Y. Xie, “PCRAMsim:
System-Level Performance, Energy, and Area
Modeling for Phase-Change RAM,” in Proceedings of
the 2009 International Conference on Computer-Aided
Design, ser. ICCAD ’09. New York, NY, USA: ACM,
2009, pp. 269-275. [Online]. Available:
http://doi.acm.org/10.1145/1687399.1687449

X. Dong, N. Muralimanohar, N. Jouppi,

R. Kaufmann, and Y. Xie, “Leveraging 3D PCRAM
Technologies to Reduce Checkpoint Overhead for
Future Exascale Systems,” in Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

J. Feo, D. Harper, S. Kahan, and P. Konecny,
“ELDORADO,” in Proceedings of the 2nd conference
on Computing frontiers, Ischia, Italy, 2005, pp. 28-34.

(17]

(18]

25]

(26]

27]

28]

29]

(30]

(31]

(32]

J. L. Henning, “Performance Counters and
Development of SPEC CPU2006,” Computer
Architecture News, vol. 35, no. 1, 2007.

M.-y. Hsieh, A. Rodrigues, R. Riesen, K. Thompson,
and W. Song, “A Framework for Architecture-Level
Power, Area, And Thermal Simulation and Its
Application to Network-on-Chip Design Exploration,”
SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 63-68,
March 2011. [Online]. Available:
http://doi.acm.org/10.1145/1964218.1964229

B. Jacob, S. Ng, and D. Wang, Memory Systems:
Cache, DRAM, Disk. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007.

JEDEC, “http://www.jedec.org/.”

P. Koka, et al., “Silicon-Photonic Network
Architectures For Scalable, Power-Efficient Multi-Chip
Systems,” ISCA 2010, vol. 38, pp. 117-128, June 2010.
H. Lee, et al., “A 16Gb/s/link, 64GB/s Bidirectional
Asymmetric Memory Interface,” JSSC, vol. 44, no. 4,
2009.

S. Li, J. Ahn, J. B. Brockman, and N. P. Jouppi,
“McPAT 1.0: An Integrated Power, Area, and Timing
Modeling Framework for Multicore Architectures,” HP
Labs, Tech. Rep. HPL-2009-206, 2009.

S. Li, et al., “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and
Manycore Architectures,” in MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009, pp. 469-480.
S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “CACTI-P: Architecture-Level Modeling for
SRAM-based Structures with Advanced Leakage
Reduction Techniques,” in ICCAD, 2011.

S. Li, et al., “A Heterogeneous Lightweight
Multithreaded Architecture,” in International Parallel
and Distributed Computing Computing Symposium
(IPDPS), MTAAP workshop, 2007.

S. Li, S. Kuntz, J. Brockman, and P. Kogge,
“Lightweight Chip Multi-Threading (LCMT):
Maximizing Fine-Grained Parallelism On-Chip,” IEEE
Transactions on Parallel and Distributed Systems,

vol. 22, no. 7, July, 2011.

S. Li, S. Kuntz, P. Kogge, and J. Brockman, “Memory
Model Effects on Application Performance for a
Lightweight Multithreaded Architecture,” in
International Parallel and Distributed Computing
Computing Symposium (IPDPS), MTAAP workshop,
2008.

X. Li, M. C. Huang, and K. Shen, “A Realistic
Evaluation of Memory Hardware Errors and Software
System Susceptibility,” in Proceedings of the 2010
USENIX conference on USENIX annual technical
conference, ser. USENIXATC’10, 2010, pp. 6-6.

Los Alamos National Laboratory, Reliability Data
Sets. [Online]. Available:
{http://institutes.lanl.gov/data/fdata/}

C.-K. Luk, et al., “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in
PLDI; Jun 2005.

P. Rosenfeld et al, “DRAMSim2,”
http://www.ece.umd.edu/dramsim/.

33]

34]

(35]

(36]

37]

(38]

(39]

(47]

(48]

(49]

R. Palmer, et al., “A 14mW 6.25Gb/s Transceiver in
90nm CMOS for Serial Chip-to-Chip
Communications,” in ISSCC’07, 2007, pp. 440-614.
T. Rao and E. Fujiwara, Error-Control Coding for
Computer Systems. Prentice Hall, 1989.

A. F. Rodrigues, et al., “The Structural Simulation
Toolkit,” SIGMETRICS Perform. Fval. Rev., vol. 38,
pp. 37-42, March 2011.

Samsung Electronics Corporation, “Samsung
Electronics Develops World’s First Eight-Die
Multi-Chip Package for Multimedia Cell Phones,”
2005, (Press release from http://www.samsung.com).
B. Schroeder and G. A. Gibson, “A Large-scale Study
of Failures in High Performance Computing Systems,”
in Proceedings of DSN, 2006.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM
Errors in The Wild: A Large-Scale Field Study,”
Commun. ACM, vol. 54, no. 2, pp. 100-107, 2011.
Semiconductor Industries Association , “International
Technology Roadmap for Semiconductors./ Model for
Assessment of CMOS Technologies and Roadmaps
(MASTAR) http://www.itrs.net/.”

H. Simon, “Exascale Challenges for the Computational
Science Community,” Lawrence Berkeley National
Laboratory and UC Berkeley, Tech. Rep., Oct. 2010.
C. Slayman, M. Ma, and S. Lindley, “Impact of Error
Correction Code and Dynamic Memory
Reconfiguration on High-Reliability /Low-Cost Server
Memory,” in Proceedings of the IEEE Integrated
Reliability Workshop, 2006, pp. 190-193.

B. J. Smith, “A Pipelined, Shared Resource MIMD
Computer,” in Proceedings of the International
Conference on Parallel Processing, 1978, pp. 6-8.

D. Strukov, “The Area And Latency Tradeoffs Of
Binary Bit-Parallelbch Decoders For Prospective
Nanoelectronicmemories,” in Proceedings of 2006
Asilomar Conference on Signals Systems and
Computers, Oct. 2006, pp. 1183-1187.

Tezzaron Semiconductor, “Soft Errors in Electronic
Memory—A White Paper,” Tezzaron Semiconductor,”
Technical Report, 2004.

A. N. Udipi et al., “Rethinking DRAM Design and
Organization for Energy-Constrained Multi-Cores,” in
Proceedings of ISCA, 2010.

C. Wilkerson, et al., “Reducing Cache Power With
Low-Cost, Multi-Bit Error-Correcting Codes,” in
International Symposium on Computer Architecture,
2010, pp. 83-93.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and

A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,”
in ISCA, 1995.

D. H. Yoon, et al., “FREE-p: Protecting Non-Volatile
Memory against both Hard and Soft Errors,” in Proc.
the Int’l Symp. High-Performance Computer
Architecture (HPCA), February 2011.

J. W. Young, “A First Order Approximation To The
Optimum Checkpoint Interval,” Commun. ACM,

vol. 17, pp. 530-531, September 1974.

