SAND2013-5221C

Kokkos: Enabling performance portability
across manycore architectures

H. Carter Edwards and Christian R. Trott
Sandia National Laboratories
PO Box 5800 / MS 1318
Albuquerque NM, 87185

Abstract—The manycore revolution in computational hard-
ware can be characterized by increasing thread counts, decreasing
memory per thread, and architecture specific performance con-
straints for memory access patterns. High performance comput-
ing (HPC) on emerging manycore architectures requires codes to
exploit every opportunity for thread-level parallelism and satisfy
conflicting performance constraints. We developed the Kokkos
C++ library to provide scientific and engineering codes with a
user accessible manycore performance portable programming
model. The two foundational abstractions of Kokkos are (1)
dispatch work to a manycore device for parallel execution and
(2) manage multidimensional arrays with polymorphic, device
specialized layouts. The integration of these abstractions enables
users’ code to satisfy multiple architecture specific memory
access pattern performance constraints without having to mod-
ify their source code. In this paper we describe the Kokkos
abstractions, summarize its application programmer interface
(API), and present performance results for a molecular dynamics
computational kernel and finite element mini-application.

I. INTRODUCTION

The Kokkos library [1]-[3] provides scientific and en-
gineering codes with a user accessible programming model
that enables performance portability across diverse manycore
architectures. We define user accessibility by the degree to
which we can minimize (1) users’ need to have architecture
specific knowledge and (2) pollution of users’ code with
parallel directives. We define performance portability by the
amount of user code which can be compiled for diverse
manycore architectures and obtain the same, or nearly the
same, performance as an architecture specialized version of
that code. The manycore architectures currently supported by
Kokkos includes multicore CPU with NUMA, NVidia GPU,
and Intel Phi.

The vision for Kokkos has evolved from a hidden portabil-
ity layer for sparse linear algebra kernels [4] to a hierarchy
of broadly usable libraries. The current core library and
programming model provides two fundamental capabilities:
(1) thread parallel execution on manycore devices and (2)
multidimensional arrays. Planned higher level libraries in-
clude sparse linear algebra, tensor algebra, containers (e.g.,
unordered maps), and finite elements.

Kokkos’ thread parallel execution follows the parallel
dispatch pattern used by Intel Threaded Building Blocks
(TBB) [5], NVIDIA Thrust [6], C++ AMP [7], and others.
Kokkos’ multidimensional arrays serve the same role as mul-
tidimensional arrays intrinsic to many programming language
(e.g., FORTRAN and C), and are similar in concept to the

Boost.MultiArray flexible storage ordering [8]. By combining
parallel dispatch and flexible storage ordering in a single
programming model we can portably achieve the optimal
data access pattern for disparate manycore devices. This con-
cept allows Kokkos to supersede the contemporary manycore
programming dilemma of array of structures (AoS) versus
structure of arrays (SoA) by choosing the best storage ordering
for the given device without having to modify computational
kernels.

Kokkos provides a minimal overhead API that isolates
user code from specific programming models. This allows us
to choose the most performant programming model for each
manycore device and optimize our use of that programming
model without impacting user code. Current back-end pro-
gramming models are pthreads [9], OpenMP [10], and Cuda
[11]. We use the portable hardware locality (hwloc) library
[12] on CPU and Intel Xeon Phi architectures to manage thread
placement. Intel Xeon Phi accelerators are used in self hosted
mode — processes run exclusively on the accelerator as opposed
to using the offload model.

We evaluate user accessibility and performance portabil-
ity through unit-level performance tests and miniapplications.
Mantevo [13] miniFE and miniMD (finite elements and molec-
ular dynamics) miniapplications [14] have been ported to
Kokkos for comparison with architecture-specialized versions.
We have found that when using generic Kokkos kernels we
typically obtain within 90% of the performance of special-
ized implementations. Through these miniapplications porting
efforts we developed a strategy for migrating legacy codes
to Kokkos, and improved the Kokkos API to facilitate code
migration.

In this paper we describe the semantics of Kokkos’ pro-
gramming model, summarize the API, and present perfor-
mance results for the Lennard-Jones force kernel from miniMD
and scaling results for miniFE .

II. MANYCORE DEVICE

Our abstraction of a modern HPC environment is a network
of compute nodes where each compute node contains one
or more manycore devices. An HPC application executing in
this environment has two levels of parallelism: (1) distributed
memory parallelism typically supported through a Message
Passing Interface (MPI) library and (2) thread level parallelism
on the manycore device. We assume that each MPI process
uses at most one manycore device so that Kokkos does not
have to manage the interaction of multiple devices.

A. Processes and Devices

Our abstraction of a single MPI process is a master thread
that dispatches thread parallel work to its manycore device.
This work dispatch (a.k.a., asynchronous callback) abstraction
is common to numerous programming models; for example,
function objects are dispatched to C++ Standard Template Li-
brary (STL) algorithms [15], Intel Threading Building Blocks
[5], and Thrust [6]. A key element in this abstraction is that
the master thread executes in the CPU host space and worker
threads execute in the manycore device space. Note that these
spaces are the same when executing on a multicore CPU or
self-hosted manycore device.

B. Execution and Memory Spaces

Threads execute in an execution space and data resides
a memory space. Execution spaces have accessibility and
performance relationships with a memory spaces. For example,
code executing in the Cuda space can access pinned memory
in the Host space but with degraded performance compared to
accessing memory in the Cuda space.

We address memory accessibility and performance con-
cerns through (1) an explicit execution/memory space abstrac-
tion and (2) a design policy to never hide expensive memory
copy operations. Each space is defined by a type (a C++ class)
so that the execution space of a computation and the memory
space of an array are known at compile-time. This enables
Kokkos to, at compile time, prevent code executing in the host
space from accessing memory in the device space, as opposed
to generating a runtime memory fault. When manycore hard-
ware and runtime systems provide virtual unified addressing
across memory spaces (e.g., NVIDIA’s use of pinned host
memory) we can define additional memory spaces that clearly
communicate the execution-memory performance relationship.

III. MULTIDIMENSIONAL ARRAY

A Kokkos multidimensional array consists of a homoge-
neous set of values residing in a memory space, a index space
defined by the Cartesian product of integer ranges, and a layout
— a bijective map between the multi-index space and the set
of values.

Programming languages with multidimensional arrays
(e.g., FORTRAN and C) prescribe a layout. As a consequence
a computation’s memory access pattern is dictated by array
declarations and loop ordering. Thus changing a memory
access pattern requires modification of source code.

In contrast, Kokkos multidimensional array layouts are
chosen at compile-time. Thus changing the memory access
pattern does not require modification of users’ code as long
as (1) their code does not assume a particular layout and
(2) conforms to the Kokkos API. Lifting the layout from
the programming language into Kokkos defines a separation
of concerns between user defined index spaces and memory
access patterns. A similar separation of concerns is provided
by the Boost.MultiArray library.

A. Allocation and Access

Kokkos multidimensional arrays are implemented by the
C++ View template class. As shown in Figure 1 the first

template argument specifies the value type, number of dynamic
dimension denoted by the number of ’*’ tokens, and static
dimensions denoted by ’[#]" expressions. A second template
argument defines the memory space in which the values of the
array are allocated.

// This View constructor allocates an
// array in ’Device’ memory space with
// dimensions (N,M,8,3). The label "a"
// is used in runtime warning or error
// messages regarding this array.
View<doublex*[8] [3],Device> a("a",N,M);

// The parentheses operator implements
// the layout mapping.
a(i,j,k,1) = value ;

Fig. 1. Syntax for defining, allocating, and accessing members of a Kokkos
multidimensional array.

The View parentheses operator implements the integer
arithmetic of the layout and returns a reference to a member.
This operation is valid only if the memory space is accessible
to the execution space in which the operator is invoked and the
indices are within the index space. A mix of static and dynamic
dimensions is supported so that the parentheses operator can be
optimized in the presence of static dimensions. For example,
the integer arithmetic associated with a static dimension and
compile-time index can be performed at compile-time.

B. View and DeepCopy Semantics

The class name View is selected to inform and remind
users that these objects have view, or shared ownership,
semantics as shown in Figure 2. In contrast to C++ standard
container semantics, multiple View objects can reference the
same allocated array. The allocated array is deallocated when
the last view of it is destroyed or reassigned. These semantics
are analogous the C++ shared pointer semantics [16].

typedef View<doublexx[8] [3],Device> my_type ;

// parentheses operator returns ‘const double &’.
typedef View<const doublex*x[8][3],Device>
my_const_type ;

my_array_type a("a",N,M); // Allocate an array
{

// More views of the same array

my_type a2 a ;

my_const_type a3 az ;

// "a’ and ’'a2’ are cleared (set to ’"null’
// "a3’ still views the array

a = my_type();

az = my_type();

} // View "a3’ goes out of scope and its
// destructor is called. It was the last
// view so the array is deallocated.

Fig. 2.
bility.

View’s shared ownership semantics with last-view delete responsi-

In view semantics an assignment operator is a shallow copy
operation — only the memory reference and array dimensions
are copied. The deep copy operation copies member values
between two compatible arrays. The deep copy operation is
most often used to copy array values between memory spaces,
from host to device and vice-versa.

Deep copying between arrays with different layouts has
the performance penalty of remapping data and additional
penalty of allocating a temporary array when copying between
memory spaces. Since the layout chosen by default for a GPU
view and a host view are different this performance penalty
would frequently occur. We address this problem by defining
HostMirror views (Figure 3) which are in the host memory
space but have the device’s layout. Figure 3 shows how an
array in device memory space is most efficiently deep copied
to/from an array in the host memory space.

typedef View<doublexx[8][3],Device> my_array_type;
my_array_type a("a",N,M); // Allocate on Device

// 'my_array_type::HostMirror’ defines an array
// in host space with a layout mirroring
// 'my_array_type’. If the device != host then
// 'create_mirror_view’ allocates a compatible
// array, otherwise the input view is returned.
my_array_type::HostMirror

host_a = create_mirror_view(a);

// Deep copy to a mirror does not require remap.

// If a == a_host deep copy is skipped.
deep_copy(a , host_a); // Copy device <- host
deep_copy(host_a , a); // Copy host <- device

// Specify the layout and allocate an array:
typedef View< double #*x

LayoutRight ,

Device > my_multivector ;

my_multivector x("x",N,M);

// Define a View which is optimized for
// random read operations.

// Perform a shallow-copy to that view.
typedef View< const doublexx* ,

Fig. 3. Concerns when deep copying arrays between memory spaces include
insuring a compatible layout and avoiding unnecessary memory allocation and
remapping of data.

C. Advanced Performance Tuning Features

In the previous sections we described fundamental ca-
pabilities for device-aware multidimensional arrays. Kokkos
supports additional data access performance tuning features
through an optional advanced API. These features leverage
extension points in Kokkos’ software design.

Multidimensional arrays have a default layout chosen for
each type of device. A user may override this default layout
by instantiating a View template with a specified layout. In
addition an advanced user may develop and specialize their
arrays with their own layouts.

A device may provide special hardware or runtime features
to tune memory access performance. For example, NVIDIA
devices have texture cache which can improve performance
of random read access into an array. We define traits for the
functional characteristic of the memory access pattern and then
specialize the View class to use appropriate hardware / runtime
features when available.

In Figure 4 arrays are declared with both a specified layout
and a memory access trait. In this example the read_x view
has const members and RandomRead traits. If the Device
is Cuda then the implementation of read_x is specialized to
use NVIDIA texture cache to speed up random memory read
access. Otherwise the default implementation will enforce the
const condition but will not use special hardware.

IV. PARALLEL EXECUTION

Parallel execution patterns [17] are divided into two cat-
egories: (1) data parallel or single instruction multiple data
(SIMD) and (2) task parallel or multiple instruction multi-
ple data (MIMD). Kokkos currently implements data parallel

LayoutRight ,
Device ,
RandomRead > read_x = x ;
// If Device == Cuda then the access operator
// uses NVIDIA texture cache functionality.
value = read_x(i,73);
Fig. 4. A View with special memory access traits will use available device

hardware or runtime features to optimize access for that trait.

execution via parallel_for and parallel_reduce operations. We
plan to enhance Kokkos to include parallel_scan operation and
hierarchical task-data parallelism where interdependent data
parallel tasks are scheduled to execute on the manycore device.

A data parallel operation maps NWork independent units of
work onto threads for execution on the manycore device. Units
of work are completely independent if they do not depend upon
data updated by a different unit of work and do not update the
same data. For example, adding two vectors of length N can be
performed in parallel by independently adding its N members.

Units of work may update the same data via global or local
reduction operations. In Kokkos global reductions (e.g., an
inner product) are supported by the parallel_reduce operation.
Local reductions (e.g., a map reduce) are supported through
atomic updates.

A. Parallel For Functor API

In C++ a functor is an instance of a C++ class that contains
a callback function, shared parameters, and references to data
upon which the callback function operates. A parallel_for
functor has a work callback, shared input parameters, and
views to arrays that are operated on. A data parallel work
functor is called to perform NWork independent units of work
where each unit is identified by a unique work index in the
range [0.NWork). Default array layouts are chosen assuming
that the leading (left-most) index of an array is the parallel
work index.

The C++ implementation of a parallel_for functor must
conform to two simple requirements illustrated in Figure 5:
(1) identify the execution space of the functor and (2) provide
a work callback. It is recommended that the functor have the
execution space as a template parameter so that it is portable
to different execution spaces.

B. Parallel Reduce Functor API

A parallel_reduce functor has a work callback, a reduc-
tion callback, shared input parameters, views that are operated
on, and reduction parameters. Each call to a parallel_reduce
work callback generates a contribution to the reduction param-
eters that must be reduced by a commutative and mathemati-
cally associative reduction callback. The numerical implemen-

// Templating on the Device space allows the
// functor to be compiled for different devices.
template< class Type , class Device >
class AXPY Functor {
public:
// The execution space of this functor
// is defined by ’device_type’ .
typedef Device device_type ;

// The work callback is defined by an
// "void operator() (integer_type iw) const’
// where ’iw’ is the work index.
// KOKKOS_INLINE_FUNCTION is a #define macro
// for compiler directives such as
// ’'inline __device__ ' for Cuda.
KOKKOS_INLINE_FUNCTION
void operator () (int iw) const

{ y(iw) = alpha * x(iw) + y(iw) ; }

View< Typex,Device> const y ;
View<const Typex*,Device> const x ;
Type alpha ;

}i

// Call the functor NWork times on up to NWork
// worker threads. Each call is passed a unique
// work index in the range [0..NWork) .
parallel_for (NWork ,

AXPY_Functor<double,Cuda>(a , X , Y));

Fig. 5. Interface requirements for parallel_for functors is illustrated through
an example AXPY functor that performs the “Y = aX + Y basic linear
algebra operation.

tation of a reduction callback could be non-associative due to
numerical round-off in floating point operations.

The parallel_reduce functor API is designed so that Kokkos
can provide scalable and deterministic global reductions. For
large thread counts the global reduction follows a traditional
log,(NT) fan-in algorithm (N7 = number of threads). The
fan-in algorithm requires thread-local copies of the reduction
parameters which are reduced to a single global value through
an ordered sequence of concurrent pair-wise reductions. This
ordered sequence is derived from the number of threads
NT and number of work items NWork, and guarantees a
deterministic result given the same N7 and NWork.

Requirements for a reduction callback API are given by
example in Figure 6. First, the reduction parameters must be
defined through a C++ type satisfying the plain old data type
conditions; e.g., a bit-wise copy of values will yield the correct
result. This type is typically a simple intrinsic value such
as ’double’. Second, the reduction callback is actually two
functions with special interface requirements to insure correct
inter-thread communication. These requirements are defined
by example in Figure 6.

C. Local Parallel Reductions via Atomics

Kokkos supports local parallel reductions through atomic
reduction operations; e.g., atomic addition. An atomic op-
eration serializes concurrent updates to a values but does
not guarantee the ordering of these updates among threads.
Thus a non-associative reduction operation (e.g., floating point
addition) can yield non-deterministic results for local parallel
reductions.

Atomic operations’ serialization can introduce scalability
bottlenecks. Typically atomic operations should only be used
when the number of atomic updates to a particular variable

template< class Scalar , class Device >
class CentroidFunctor {
public:

typedef Device device_type ;

// Reduction parameters are a plain-old-data
// type defined via a ’'value_type’ declaration.
struct value_type { Scalar point[3], mass ; };

View<Scalarx, Device> mass ;
View<Scalar*[3],Device> point ;

// A work callback contributes to the reduction
// result via the ’update’ argument.
KOKKOS_INLINE_FUNCTION
void operator() (int iw ,
value_type & update) const

{

update.mass += mass (iw);

update.point [0..2] += point(iw,0..2) % mass(iw);
}

// A reduction callback joins an input value
// to the update value from a different thread.
// These arguments are ’‘volatile’ to force
// communication of values among threads.
KOKKOS_INLINE_FUNCTION
static void join(volatile value_type & update ,
const volatile value_type & input)

{

update.mass += input.mass ;

update.point [0..2] += input.point[0..2];
}

// Initialized thread-local contributions
// to the reduction parameters.
KOKKOS_INLINE_FUNCTION
static void init (value_type & update)
{
update.mass = 0 ;
update.point [0..2] = 0 ;
}
}i

// Reduction parameter is output in ’result’.
parallel_reduce(NWork,
CentroidFunctor<double, Cuda> (mass,point), result);

Fig. 6. Interface requirements for parallel_reduce functors are illustrated
through an example centroid computation functor that sums the mass and
mass-weighted coordinates of arrays of points and masses. The example code
is abbreviated by omitting the constructor and implying a loop with 0..2.

is much smaller than the number of work items. Otherwise
functors with reductions should be implemented with atomic-
free algorithms where feasible, such as using parallel_reduce.

V. PERFORMANCE EVALUATION

We use the Lennard Jones force calculation (LJ-kernel)
extracted from our molecular dynamics mini-application
MiniMD and the finite element proxy code miniFE as two
performance evaluation test for Kokkos. All tests are carried
out on our Compton and Shannon testbed clusters, with details
of their respective configurations given in Table I. Compton is
used for CPU and MIC tests and Shannon is used for GPU
tests.

A. Molecular Dynamics Force Kernel

The LJ-kernel shown in Figure 7 loops over atoms and
calculates the forces between neighboring pairs of atoms with
a distance d;; being smaller than a cutoff r.,;. To that end a
list of neighbors j for each atom ¢ is precomputed and then
used in the kernel.

TABLE 1. CONFIGURATIONS OF TESTBED CLUSTERS.

Name Compton node Shannon node

CPU 2x Intel E5-2670 HT-on 2x Intel E5-2670 HT-off
Accelerator 2x Intel Xeon Phi 57¢ 1.1GHz 2x K20x

Memory 64 GB 128 GB

oS RedHat 6.1 RedHat 6.2

Compiler ICC 13.1.2 GCC 4.4.6 + CUDA 5.5 RC
MPI IMPI 4.1.1.036 MVAPICH2 1.9

// Parallel iteration of all atoms in the system
for (i=0;i<natoms;i++) {
double x_1i[3], f_1i[3];
x_1[0..2] = x(1,0..2);
£f_i[0..2] = 0;
// Iterating the precomputed list of neighbors
for (jj=0; jj<num_neighbors (i) ; jj++) {
int j = neighbors (i, jj);
double d_ij[3] , d ;
d_ij[0..2] = x_i[0..2] - x(3,0..2);
d = norm(d_1ij);
if (d<r_cut) {
const double sr2 = 1.0 / (dxd);

const double sr6 = sr2 x sr2 * sr2;
const double force = 48.0 % sr6 = (sr6 — 0.5) % sr2;
f i[0..2] += force * d_1j[0..2];

}
}
£(i,0..2) = £_i[0..2];

Fig. 7. Pseudo code for the thread safe Lennard Jones molecular dynamics
kernel (LJ-kernel) in MiniMD.

For our test case there are on average 77 neighbors of
which 55 pass the distance check. This results in an average
of 1408 Flops and 311 memory accesses per atom . In
the computation neighbors (i, jj) has a regular memory
access pattern and x (j, 0-2) has a random memory access
pattern. Even so, when atoms are ordered in memory according
to spatial location, it is possible to achieve a very high cache
reuse for x (j, 0-2). This reuse drastically limits the actual
number of loads from main memory.

The importance of layouts in Kokkos is highlighted in the
load of the neighbor index j = neighbors (i, jj). On
CPUs (and MIC) this should be a LayoutRight (row major
ordering) so that the loaded cache line contains the values for
the next iteration step of the inner loop over jj. On a GPU
LayoutLeft (column major ordering) should be used so that
the load is contiguous for threads working on different atoms
1. Furthermore on GPUs it is important to use texture fetches
(via RandomRead attribute) for x (j, 0—2) random accesses.

Figure 8 shows performance in GFlop/s for the kernel on
our Compton and Shannon testbeds using a single node for the
default miniMD problem for both the optimal code and when
using the wrong memory layout on each hardware. The latter
causes a performance drop of 1.9x, 3.4x and 6.6x on the CPU,
MIC, and GPU testbeds. Also, using the correct layout but not
using texture fetches results in a 3.6x slowdown for the GPU.

We achieve similar fractions of theoretical peak floprate
on both CPU (14%) and GPU (17%) testbeds; however, on
the MIC we achieve only 5% of peak. This small percentage
of peak on the MIC is obtained even with a well optimized
OpenMP-based version of this test case.

200 :
& I (BB Optimal settings b
a i Texture fetch disabled (GPU only)]
2 150+ ‘Wrong data layout _
e - il
O -]
g L]
8]00_— N
=]
é r 4
S B]
g 0]
(&)
0_ il
SB MIC GPU
Fig. 8. LJ-kernel performance in miniMD on CPU (dual Intel Sandy

Bridge), MIC (Intel Phi 57 cores), and GPU (NVIDIA K20x) architectures for
the miniMD default test problem with 864,000 atoms. The solid bars show
performance with optimal access patterns, the striped bars show performance
with the wrong data layout for the neighbors array, and the checkerboard
bar shows performance on the GPU with the correct layout but without using
texture cache.

B. MiniFE

MiniFE is a hybrid parallel (MPI+X) finite element mini-
application that constructs a linear system of equations for
a 3D heat diffusion problem and performs 200 iterations of
a conjugate gradient (CG) solver on that linear system. It
is designed to capture a number of important characteristics
of generic parallel finite element codes. MiniFE has been
implemented in various programming models some of which
are available at mantevo.org.

We compare the performance of miniFE-Kokkos (portable
variant) with miniFE-OpenMP running on the CPU and MIC,
and with miniFE-Cuda running on the GPU. The miniFE-
Kokkos back-end for CPU and MIC is OpenMP and the back-
end for GPU is Cuda. The miniFE-Cuda variant is based
upon miniFE-Kokkos where all linear algebra subprogram
functions are replaced with calls to cuBLAS and cuSparse
functions. The majority of miniFE optimization efforts have
concentrated on the CG-solver so we focus on this phase of
miniFE performance.

Our miniFE test case is a weak scaling problem with
8M elements per compute node requiring 3.3GB of main
memory per node. Tests are run with a single MPI process
per device, except for CPU tests with miniFE-OpenMP which
run with one MPI process per NUMA region. We make this
exception because when miniFE-OpenMP is run with one MPI
process per node the execution time more than doubles. This
slowdown is due to the problem construction phase performing
an implicit NUMA first touch that is incompatible with the
access pattern of the CG-solve phase. Consequently threads
regularly access memory in the wrong NUMA domain with
the associated bandwidth penalty. Kokkos handles this NUMA
issue by transparently by running a parallel_for first touch
initialization of each new data allocation that is compatible
with typical data parallel kernels. For GPU tests we use the
MVAPICH2 1.9 [18] implementation of MPI to enable GPU-
Direct capabilities; i.e., MPI can directly access GPU memory.

Thus no explicit data copies are necessary between device and
host during the CG-solve.

In Fig. 9 timings for the CG-solve phase are shown from
a weak-scaling study on our CPU, MIC, and GPU testbeds
(Table I). Overall, Kokkos delivers similar performance as the
native implementations. It is faster than miniFE-Cuda in GPU
tests by roughly 13%, it is marginally slower than miniFE-
OpenMP in CPU tests, and it is about 10% slower than
miniFE-OpenMP on MIC. Both on CPU and GPU excellent
scaling is observed, with miniFE-Kokkos having about 95%
parallel efficiency with 32 MPI ranks. MiniFE-OpenMP shows
slightly worse scaling efficiency, which is likely due to using
twice as many MPI ranks. The scaling issue on MIC can be
attributed to the poor MPI performance on our MIC testbed.
Peak bandwidth between two MIC cards is as low as 300 MB/s
if at least one of the cards sits in a socket without an Infiniband
adapter. In comparison the CPU and GPU runs peak MPI
bandwidth is about 3.5 GB/s. This MIC-MPI issue is expected
to be solved soon with a new runtime software stack, so that
MIC based systems should see similar scaling behavior as the
GPU based system.

13— T T T T T
12+ -
11+ -
» 10~ -
E [- Kokkos]
o 9+ - @ -® CPU - OpenMP —
g | e B8 MIC - Kokkos i
gl =77 = & MIC - OpenMP]

GPU - Kokkos
= GPU - Cuda 7
T -
6 i
5 [I 1 I I L
1 2 4 8 16 32
of Nodes/Devices
Fig. 9. Time for 200 iterations of a CG-solve with miniFE variants on

different testbeds. The problem size is weak scaled, with 8M elements per
node or device. The solid lines represent runs using miniFE-Kokkos, while
the dashed lines show results with peer variants.

VI. CONCLUSION

The Kokkos C++ library implements our strategy for many-
core performance portable HPC applications and libraries. Two
foundational abstractions are implemented: (1) dispatching
parallel functors to a manycore device and (2) managing the
layout of multidimensional arrays so that those functors have
device optimal memory access patterns. We have described
these abstractions in detail, summarized the API, and presented
performance portability results for a molecular dynamics com-
putational kernels and finite element mini-application. Our test
cases achieve at least 90% of the performance of architecture
specific, optimized variants of those test cases.

Kokkos will update existing, or adopt new, back-end imple-
mentations as manycore architectures and their programming
models evolve. In this way HPC applications and libraries
using Kokkos can immediately benefit from new manycore

capabilities. Furthermore, our ongoing analysis of manycore
architectures’ performance drives continued optimization of
back-end implementations.

Kokkos is under active research and development to in-
corporate new manycore capabilities, array layouts, aggre-
gate “scalar” data types, parallel operations, and higher level
libraries of data structures and kernels. For example, tiled
layouts can be transparently introduced into dense matrices
without modification of user code. Similarly, automatic differ-
entiation or stochastic variable types are transparently incor-
porated into array layouts. Plans for new parallel operations
include parallel_scan and hierarchical task-data parallelism.
Finally, development has begun for higher level libraries such
as sparse linear algebra and array-based containers (e.g., hash-
maps).

Kokkos is publicly available through the Trilinos reposi-
tory at www.trilinos.org. MiniMD and miniFE are available
through the Mantevo repository at www.mantevo.org.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000. This paper is cross-
referenced at Sandia as SAND2013-#%*%*],

REFERENCES

[1] H. C. Edwards, D. Sunderland, C. Amsler, and S. Mish, “Multi-
core/gpgpu portable computational kernels via multidimensional ar-
rays,” in Cluster Computing (CLUSTER), 2011 IEEE International
Conference on. 1EEE, Sep. 2011, pp. 363-370.

[2] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore performance-portability: Kokkos multidimensional array
library,” Scientific Computing, pp. 89-114, 2012.

[3] H. C. Edwards and D. Sunderland, “Kokkos array performance-portable
manycore programming model,” in PMAM, Feb. 2012, pp. 1-10.

[4] C. G. Baker, M. A. Heroux, H. C. Edwards, and A. B. Williams, “A
Light-weight API for Portable Multicore Programming,” in Parallel,
Distributed and Network-Based Processing (PDP), 2010 18th Euromi-
cro International Conference on. IEEE, 2010, pp. 601-606.

[5]1 J. Reinders, Intel Threading Building Blocks. O’Reilly, Jul. 2007.

[6] “Cuda Toolkit Thrust documentation,” docs.nvidia.com/cuda/thrust/,
Jun. 2013.

[71 K. Gregory and A. Miller, C++ Amp, Accelerated Massive Parallelism
with Microsoft Visual C++. Microsoft Press, Sep. 2012.

[8] R. Garcia, J. Siek, and A. Lumsdaine, “Boost.MultiArray,”
www.boost.org/libs/multi_array, Jun. 2013.

[9] “IEEE Std 1003.1, 2004 Edition, <pthread.h>,” 2004.

[10] “The OpenMP API Specification for Parallel Programming,”
openmp.org/, Jun. 2013.

[11] “CUDA home page,” www.nvidia.com/object/cuda_home_new.html,
Jun. 2013.

[12] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: a Generic Framework
for Managing Hardware Affinities in HPC Applications,” in PDP 2010
- The 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, IEEE, Ed., Pisa, Italie, Feb. 2010.

[13] “Mantevo project home page,” www.mantevo.org/, Jun. 2013.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia

National Laboratories, Albuquerque, New Mexico 87185, Technical
report SAND2009-5574, September 2009.

[15]

[16]

[17]

[18]

Information Technology Industry Council, Programming Languages —
C++, International Standard ISO/IEC 14882, 1st ed. 11 West 42nd
Street, New York, New York 10036: American National Standards
Institute, 1998.

“Draft Technical Report on C++ Library Extensions,” www.openstd.org
/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf, Jun. 2005.

T. Mattson, B. Sanders, and B. Massingill, Patterns for parallel pro-
gramming, 1st ed. Addison-Wesley Professional, 2004.

“mvapich home page,” mvapich.cse.ohio-state.edu, Jun. 2013.

