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• Exothermic heat generation upon ignition.  

• Self-propagating reaction.

• Reactive foils may be ignited using shock 
waves, static discharge, and heating.

• Laser irradiation leads to more control over 
energy delivered to foil.

• Laser irradiation allows for remote ignition.

• Study effects of ignition on rate of heat 
input.

• Vary pulse length from femtosecond to 
millisecond to study effects of heating rate 
on ignition.

Motivation

Applications:  Joining, Soldering
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Al + Pt → AlPt (intermetallic phase)

• DC Magnetron sputtered layers

• 10 - 15 Å thickness variation

• 1 to 1 Al/Pt ratio

• Heat of reaction =  - 100 kJ/mol

• Adiabatic reaction temperature = 2798 °C

• Reaction onset temperature = 136 °C

• Melting not required for ignition
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Reactive Multilayers



Ignition using capacitive discharge

Ignition and 

Reaction Propagation
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Imaging Reaction Propagation
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Equiatomic Al/Pt, bilayer thickness = 50 nm
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• Point ignition in air.

• Tested as freestanding foils.

• Room temperature.

• High speed photography of steady-state propagation.
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Bilayer Dependence

• Propagation speed increases with decreasing bilayer 
thickness.

• Shorter diffusion distances lead to shorter reaction times.

• Pre-mixing affects propagation speed of thinnest bilayers. 
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1.0 m

Al/PtIrradiated at 80% ignition threshold

Laser Irradiation 100 fspulse

SiO2 Substrate

Layer Mixing

Reactive Foil



• Foil not on substrate

• Single Pulse Irradiation

• Flat-top Beam Profile

• Irradiate Pt side

50

100

150

200

250

300

0 1000 2000

G
ra

y 
V

al
u

e

Distance (μm)

Determining Laser Ignition 

Threshold

Laser 
Pulse

Foil

Focused Beam Beam Profile

• Laser energy is increased 
until foil ignites.

• Non-irradiated region of 
sample is used for each test.

Foil
Pt Face

Test 1 Test 2 Test 3

1 mm





Change interaction volume 

Laser Spot Size

Bilayer Thickness

100 μm 314 μm

40 nm
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Heat Flow and

Interaction Volume

Total thickness = 1.6 µm
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Energy Density Threshold

• Energy density (J/cm2) calculated using total laser pulse E and focused laser area.

• Ignition threshold depends on laser spot size and bilayer thickness.

• Larger interaction volume and larger volumetric interfacial surface area lead to a lower 
threshold.
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Energy
Intensity Threshold

• Intensity (W/cm2) calculated using energy density and pulse length.

• Ignition threshold depends on intensity.

• Longer pulse lengths lead to lower intensity threshold.

• Longer pulse length may increase interaction volume via 
conduction.
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• Reactive foils are ignited using single laser pulses.

• Laser pulse lengths ranging from femtoseconds to milliseconds can ignite foils.

• Laser ignition threshold depends on pulse duration, laser spot size, and foil bi-layer 
thickness.

• Increasing laser spot size and decreasing bilayer thickness increases the volume-
specific interfacial surface area, leading to decreased ignition threshold.

• Dependence of threshold on laser pulse duration likely due to competition between 
rate of heat input delivered by laser pulse and heat conductive losses.

Conclusions


