

Application of *in-situ* electron microscopy in nanoscience and energy research

Jianyu Huang

Sandia National Laboratories
Center for Integrated Nanotechnologies (CINT)
Albuquerque, NM 87185

Transmission electron microscopy (TEM) is a powerful tool for structural characterization of materials. However *in-situ* studies of the mechanical, electrical and electrochemical properties of materials at a nanometer scale are still challenging. A scanning probe microscopy (SPM), including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nano-indentor, explores the physical and mechanical properties of materials down to a single atom level but without internal structural information. A combined TEM-SPM platform, which integrates a fully functional SPM into a TEM, takes advantage of both the SPM and the TEM capabilities and provides unprecedented opportunities to probe the structural, mechanical, electrical, and electrochemical properties of materials *in-situ* down to a nanometer scale. This allows for direct correlation of the physical, electrochemical and mechanical properties to the atomic-scale microstructure.

In the first part of my talk, I will review our recent progress in using TEM-SPM platform to probe the electrical and mechanical properties of carbon nanotubes, nanowires and graphene. First, individual multiwall carbon nanotubes are peeled off layer-by-layer by electric breakdown inside the TEM. This provided new insights into the transport property of nanotubes. Second, plastic deformation, such as superplasticity, kink motion, dislocation climb, and vacancy migration, was discovered in nanotubes and graphene for the first time. Third, We induced sublimation of suspended few-layer graphene by *in-situ* Joule-heating inside a TEM. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like “coastline” morphology was observed. In the second part of my talk, I'll review our recent progress in *in-situ* studies lithium ion batteries. We created the first nano-battery inside a transmission electron microscope, allowing for real time atomic scale observations of battery charging and discharging processes. Two types of nano battery cells, one ionic liquid based, and the other all solid based, were created. The former consists of a single nanowire anode, an ionic liquid (IL) electrolyte and a bulk LiCoO₂ cathode; the latter uses Li₂O as a solid electrolyte and metal Li as anode. Several case studies of nanobattery will be presented.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

- 16 Li Zhong, Xiao Hua Liu, Chong Min Wang, Guo Feng Wang, Scott X. Mao, Jian Yu Huang
Multiple-stripe lithiation mechanism of individual SnO_2 nanowires in a flooding geometry
Phys. Rev. Lett. (in press)
- 15 Jian Yu Huang, Li Zhong, Chong Min Wang, John P. Sullivan, Wu Xu, Li Qiang Zhang, Scott X. Mao, Nicholas S. Hudak, Xiao Hua Liu, Arunkumar Subramanian, Hong You Fan, Liang Qi, Akihiro Kushima, Ju Li
In situ observation of the electrochemical lithiation of a single SnO_2 nanowire electrode
Science 330, 1515-1520 (2010) (A perspective accompanying this paper was written by Yet-Ming Chiang, a professor at MIT, and founder of A123)
- 14 Yang Lu, Jian Yu Huang, Chao Wang, Shouheng Sun, Jun Lou
Cold-welding of ultrathin gold nanowires
Nature Nanotech. 5, 218-224 (2010). DOI: 10.1038/nnano.2010.4
- 13 He Zheng, Ajing Cao, Christopher R. Weinberger, Jian Yu Huang, Kui Du, Jianbo Wang, Yanyun Ma, Younan Xia, Scott X. Mao
Discrete plastic deformation in sub-ten-nanometer-sized Au crystals
Nature Communication 1, 1-8 (2010), article number 144, DOI: 10.1038/ncomms1149
- 12 J. H. Luo, F. F. Wu, J. Y. Huang, and S. X. Mao
Superelongation and atomic chain formation in nanosized metallic glass
Phys. Rev. Lett. 104, 215503 (2010)
- 11 E. Akatyeva, J.Y. Huang and T. Dumitric
Edge-mediated dislocation processes in multishell carbon nano-onions?
Phys. Rev. Lett. 105, 106102 (2010)
- 10 J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, Q. Liang, and J. Li
In-situ Observation of Graphene Sublimation and Multi-Layer Edge Reconstructions
PNAS 106, 10103-10108 (2009) (Highlighted in U. Penn Press Release, Science Daily, e! Science News, Eurekalert, Nano Werk)
- 9 Feng Ding, Jian Yu Huang, B.I. Yakobson
Comment on "Mechanism for superelongation of carbon nanotubes at high temperatures"
Phys. Rev. Lett. 103, 039601 (2009)
- 8 J.Y. Huang, F. Ding, and B.I. Yakobson
Dislocation dynamics in multiwalled carbon nanotubes at high temperatures
Phys. Rev. Lett. 100, 035503 (2008)
- 7 Huisheng Peng, Daoyong Chen, Jian Yu Huang, S. B. Chikkannanavar, J. Hanisch, Menka Jain, D. E. Peterson, S. K Doorn, Yunfeng Lu, Y. T. Zhu, and Q. X. Jia
Strong and ductile colloidal carbon tubes with walls of rectangular macropores
Phys. Rev. Lett. 101, 145501 (2008) (Highlighted in **Nature News**, **Science News**, MRS eNews, Sandia Lab. News)
- 6 J.Y. Huang, F. Ding, J. Kun, B.I. Yakobson
Real time microscopy, kinetics, and mechanism of giant fullerene evaporation
Phys. Rev. Lett. 99, 175503 (2007). (Highlighted in **Nature Nanotechnology**, **New Scientist**, **Science News**, **EETimes**, Nanotechweb, Sciencedaily...)
- 5 J.Y. Huang, S. Chen, Z.F. Ren, Z. Wang, K. Kempa, M.J. Naughton, G. Chen, and M. S. Dresselhaus
Enhanced ductile behavior of tensile-elongated individual double- and triple-walled carbon nanotubes at high temperatures
Phys. Rev. Lett. 98, 185501 (2007)
- 4 J.Y. Huang, S. Chen, Z. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, and Z.F. Ren
Superplastic carbon nanotubes
Nature 439, 281-281 (2006) (Highlighted in **New Scientist**, MRS-eneews, Nanotechweb, **Chemical Engineering News**...)
- 3 J.Y. Huang, S. Chen, Z.F. Ren, Z.Q. Wang, D.Z. Wang, M. Vaziri, Suo, Z., G. Chen, and M.S. Dresselhaus
Kink formation and motion in carbon nanotubes
Phys. Rev. Lett. 97, 075501 (2006) (Highlighted in **Nature Nanotechnology**, Materials Today)

2 J.Y. Huang, S. Chen, S.H. Jo, Z. Wang, D.X. Han, G. Chen, M.S. Dresselhaus, and Z. F. Ren
Atomic scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes
Phys. Rev. Lett. 94, 236802-1-4 (2005)

1 D. Cai, J.M. Mataraza, Z.H. Qin, Z.P. Huang, J.Y. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z.F. Ren
Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing
Nature Methods 2, 449-454 (2005)