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ABSTRACT

Deep reactive ion etching (DRIE) of silicon enables high
aspect ratio, deep silicon features that can be incorporated into
the fabrication of microelectromechanical systems (MEMS)
sensors and actuators. The DRIE process creates silicon
structures and consists of three steps: conformal polymer
deposition, ion sputtering, and chemical etching.  The
sequential three step process results in sidewalls with
roughness that varies with processing conditions. This paper
reports the sidewall roughness for DRIE etched MEMS as a
function of trench width from 5 pm to 500 um for a 125 pm
thick device layer corresponding to aspect ratios from 25 to
0.25. Using a scanning electron microscope (SEM), the
surfaces were imaged detecting an upper region exhibiting a
scalloping morphology and a rougher lower region exhibiting a
curtaining morphology. The height of rougher curtaining
region increases linearly with aspect ratio when the etch cleared
the entire device layer. The surface roughness for two trench
widths: 15 pm and 100 pm were further characterized using an
atomic force microscope (AFM), and RMS roughness values
are reported as a function of height along the surface. The
sidewall roughness varies with height and depends on the
trench width.

INTRODUCTION
A wide variety of microsystems devices such as
microactuators [1], optical switches [2], accelerometers, and

nanopositioners [3] are fabricated with DRIE using SOI
(silicon on insulator) materials due to the high aspect ratios that
can be achieved [4]. DRIE silicon etching is commonly
referred to as Bosch etching and was patented by Larmer and
Schlip [5]. A thorough review of DRIE high aspect ratio
silicon etching is presented by Wu et al. [6]. In SOl MEMS
fabrication, the initial wafer has three layers: a single crystal
silicon substrate wafer, a thin thermally grown silicon dioxide
layer referred to as the buried oxide, and a mechanically
thinned single crystal silicon layer called the device layer. A
DRIE process enables high-aspect ratio, deep etching of
features in silicon wafers using repeated cycles of conformal
polymer deposition, ion sputtering, and chemical etching of the
silicon. DRIE can be performed on either side of the initial
wafer enabling the fabrication of MEMS structures from the
device layer and removal of the substrate underneath them [7].
One of the issues for DRIE SOI MEMS is sidewall
roughness of the structures fabricated from the device layer.
The sidewall roughness impacts mechanical characteristics
such as the fracture strength [8-11] and adhesion and friction
behavior of structures [12-16]. Recent work has shown that
fracture strength depends on the roughness, in particular the
deepest flaw size [11]. Earlier investigations of SOI MEMS
reported on sidewall roughness [17-20] but a comprehensive
study on the effects of etched trench width (aspect ratio) on the
roughness characteristics is not known to the authors.
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This paper reports sidewall characteristics for SOl MEMS
with trench widths from 5 pm to 500 um for a 125 pm thick
device layer corresponding to aspect ratios from 25 to 0.25. A
sidewall characterization die was designed and fabricated at
Sandia National Laboratories. The SOI wafers had a 125 pm
thick device layer and contained ten trench widths: 5, 10, 15,
20, 25, 50, 75, 100, 300, and 500 pm. SEM and AFM
characterization of the sidewalls for the varying trench widths
are presented.

SIDEWALL CHARACTERIZATION TEST STRUCTURE
DESIGN AND FABRICATION

To investigate the effects of trench width on the sidewall
roughness, a sidewall characterization die was designed with
three characterization surfaces as shown in Fig. 1. The green
lines designate etched trenches in the 125 um device layer, the
red lines specify trenches etched in the backside handle wafer
for die singulation, and the blue lines show metallization for
labeling the die location on the wafer and trench distances.
After singulation, there are four pieces of the sidewall
characterization die. Section 1 has ten trench widths: 5, 10,
15, 20, 25, 50, 75, 100, 300, and 500 pm, corresponding to a
maximum aspect ratio of 25 and a minimum aspect ratio of
0.25. Section 2 contains five trench widths: 5, 15, 25, 75, and
300 pm, aspect ratios from 25 to 0.42. The trench widths and
corresponding aspect ratios for Sections 1 and 2 of the sidewall
characterization die are listed in Table 1. The trench in Section
3 is initially 5 pm wide and then increases linearly to be
500 um wide. The SOI sidewall characterization structures
were fabricated from a wafer with a 550 um thick substrate
wafer, a 2 um buried oxide layer (BOX), and a 125 um thick
device layer. On top of the device layer, gold was deposited
and used for labeling.

As implemented for this investigation, the DRIE process
consisted of three steps lasting for a total of 5.4 seconds in a
PlasmaTherm SLR770 inductively coupled plasma (ICP) etch
tool. The first step was a 1.7 seconds Ar/C,Fg plasma
deposition (30 sccm Ar, 100 sccm Cy4Fg) with minimum bias
(10 V) applied to the wafer. The second step was a 2.2 seconds
Ar1/SFg step to remove the halocarbon gas and deposit polymer
at the bottom of the etched feature (30 sccm Ar, 100 sccm SFg,
750 V bias applied to the wafer). The third step was 1.7
seconds of the main Ar/SFg etch (30 sccm Ar, 250 sccm SF,
50 V bias applied to the wafer). This three-step cycle was
repeated until the Si device layer was cleared to the underlying
BOX.

TEST FIXTURE

A fixture was designed to position and secure the pieces of
the sidewall characterization during imaging. The sections of
the sidewall characterization die are oriented upwards exposing
the device layer, buried oxide layer, and supporting substrate in
the thickness direction, with a total thickness of 677 um.
Figure 2 shows a schematic of the test fixture, and Fig. 3 is a

picture of the fixture containing three sidewall test structure
sections. The test fixture uses spacing washers and a clamping
screw to hold the sections so that the etched device layer is
exposed. At the bottom of the fixture is a mounting post that is
compatible with the scanning electron microscope (SEM)

stage.

The mounting post is removable, and the fixture was

used without the post during the atomic force microscope
(AFM) characterization.
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Figure 1: Schematic of the SOI die design containing the sidewall
characterization surfaces. The green lines outline etched trenches in the
125 pum device layer, the red outlines trenches etched in the backside
handle wafer for die singulation, and the blue shows metallization for
labeling. The black labels indicate the trench widths in microns for the
three die sections with characterization surfaces. The resulting section
dimensions are roughly 1.9 mm wide.

Table 1: Trench widths and aspect ratios for Sections 1 and 2 of the sidewall

characterization die.

Section 1 Section 2
Trench Width | Aspect Ratio | Trench Width | Aspect Ratio
5 pm 25 5 pm 25
10 pm 12.5 15 um 8.33
15 pm 8.33 25 uym 5
20 um 6.25 75 pm 1.67
25 pm 5 300 pm 0.42
50 um 2.5
75 um 1.67
100 pm 1.25
300 pm 0.42
500 um 0.25
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Figure 2: Schematic of the fixture used to hold the sections of the
sidewall characterization die vertically in place during SEM and AFM
imaging.

SEM mounting post

Figure 3: Image of fixture containing three sections of a sidewall
characterization die.

SCANNING  ELECTRON
IMAGING RESULTS

An objective of this study was to determine the effects of
trench width on the SOI device layer sidewall roughness from
DRIE. Two Section 2 surfaces which have five trench widths
were imaged using an SEM. One of the die came from the
center of the wafer; the other was located closer to the edge of
the wafer. No discernible differences were observed based on
die location on the wafer. Two Section 1 die with ten trench
widths were then imaged. Characteristic SEM images for
smaller trench widths: 10 um, 15 pm, and 25 pm are shown in
Fig. 4, and characteristic SEM images for larger trench widths:

MICROSCOPE  (SEM)
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Figure 4: Scanning electron microscope (SEM) images of sidewall
roughness for trench widths a) 10 pm, b) 15 pm, and ¢) 25 pm. The scale
bar for the image in (a) is 10 um and the scale bars in (b) and (c) are
20 pm.

50 pum, 100 pm, and 500 pm are shown in Fig. 5. The SEM
images pictured in Figs. 4 and 5 are from Die C7, Section 1, a
die location near the center of the wafer.
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Figure 5: Scanning electron microscope (SEM) images of sidewall
roughness for trench widths a) 50 um, b) 100 pum, and ¢) 500 um. The
scale bars represent 20 um in all of the images.

At all trench widths, the sidewalls of the device layer
shows two distinct regions: an upper one that exhibits the
scalloping surface texture typical of DRIE processes [6, 17-20]
and a lower region with vertically oriented curtaining structure
[20]. For some of the trench widths like the 50 pum (Fig. 5a)
and 100 pm (Fig. 5b) a band appears in the scalloping region
some distance above the start of the curtaining region. The
500 um trench width image in Fig. Sc reveals the upper
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Figure 6: Height of the curtaining region at the bottom of the sidewall
divided by the total etched height as a function of the trench aspect ratio.
All of the samples cleared the trench for aspect ratios of 6.25 and below.
Die C7, Section 1 is the only one that cleared the trench for aspect ratios
of 8.3 and 12.5, and its data continuing to follow the trendline for those
aspect ratios.

scalloping region and transition to the lower curtaining region
especially well.

The SEM images in Figs. 4 and 5 show that the height at
which the transition to the curtaining texture occurs decreases
with increasing trench width. To further display the trend, the
fraction of the device layer height with curtaining texture is
graphed as a function of aspect ratio in Fig. 6. For aspect ratios
of 6.25 and below, the fraction of the sidewall exhibiting
curtaining texture increases linearly with aspect ratio. At
aspect ratios above 6.25, the Die C7, Section 1 results continue
to increase linearly with aspect ratio up to 12.5 but the results
from the other samples whose results are plotted in Fig. 6
exhibit a more constant fraction of the sidewall that has
curtaining structure. For the highest aspect ratio, 25, none of
the samples etched all the way to the bottom of the device
layer. Die C7, Section 1 etched to the bottom of the sidewall
for aspect ratios of 8.33 and 12.5 but the other samples did not.
Thus, the results show that prior to the etch reaching the bottom
of the device, the fraction of the sidewall height exhibiting
curtaining surface texture is around 0.36. Once the entire depth
of the device layer is etched, the fraction of the sidewall surface
that has curtaining increases linearly with aspect ratio.

ATOMIC FORCE MICROSCOPE (AFM) RESULTS

The sidewall surfaces were further characterized using an
atomic force microscope to view the topography and quantify
the roughness. 20 um by 20 pum scans were performed at
selected regions proceeding down the sidewall from the top to
the bottom for two trench widths: 15 and 100 microns. Figure
7 illustrates representative results of the upper scalloping
region for the 15 and 100 um trench widths. Note that the plots
are rotated. The left edge of the plot is the top part of the scan,
and the scan proceeds down the sidewall moving to the right in
the image. The horizontally scalloping features on the sidewall
therefore appear as vertical. The scalloping of the surface is
clearly visible, and the RMS roughness, R, values are 15.7 nm
for the 15 pm trench width and 16.8 nm for the 100 um trench
width. The scalloping regions for these two trench widths
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Figure 7: AFM images of a 20 pm by 20 pm scan in the upper region for
two trench widths: a) 15 and b) 100 microns. The images are rotated
such that the left side corresponds to top of the scan and moving to the
right is proceeding down the sidewall. The scalloping of the surface is
clearly visible, and the RMS roughness, R, values are 15.7 nm for the
surface in a) and 16.8 nm for the surface in b).

appear very similar. Obtaining clean corresponding AFM
images in the lower curtained regions was difficult due to the
presence of particles along these portions of the sidewall which
attached to the tips creating imaging artifacts.  Thus,
corresponding SEM images of the curtained regions for the
15pum and 100 pm trench widths are given in Fig. 8 for
comparison.

The change in the RMS surface roughness, Ry, quantified
by the AFM is plotted as a function of distance down the
sidewall in Fig. 10 for the 15 and 100 um trench widths. The
roughness at the top of the sidewall is similar for both trench
widths. About halfway down the sidewall, the roughness
increases for both trench widths. For the 15 um trench width,
the roughness remains at this higher value until the bottom of
the sidewall. However, the roughness for the 100 pm trench
width increases again for the bottom 25 pm and is two to three
times greater than that for the 15 pm trench width. Since the
fracture strength is expected to decrease with increased
sidewall flaw size [8-11], it is expected the SOI structures
bordered by 100 pum trench widths will have lower fracture
strengths than structures bordered by 15 pum trenches due to the
larger roughness.
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Figure 8: SEMs of the curtaining region at the bottom of the sidewall
surface for trench widths of a) 15 um and b) 100 um. surfaces. The
magnification in a) is greater than that in b) as seen by the larger 10 um
scale bar.
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Figure 10: RMS Roughness as a function of distance from the top
surface for two trench widths: 15 pm and 100 um corresponding to
aspect ratios of 8.3 and 1.25, respectively.
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CONCLUSIONS

The three-step DRIE process creates silicon structures
through sequential conformal polymer deposition, ion
sputtering, and chemical etching. DRIE results in sidewall
surface roughness which impacts subsequent mechanical
characteristics like fracture strength and friction behavior. An
SOI sidewall characterization die was designed and fabricated
at Sandia National Laboratories containing varying trench
widths from 5 pm to 500 um for a 125 um thick device layer
corresponding to aspect ratios from 25 to 0.25. Using a
scanning electron microscope (SEM), the surfaces were imaged
detecting an upper region exhibiting a scalloping morphology
and a rougher lower region exhibiting a curtaining morphology.
The location of the die on the wafer did not produce noticeable
differences in the surface characteristics. The fraction of the
surface exhibiting the rougher curtaining morphology increases
linearly with aspect ratio if the etch has reached the bottom of
the device layer. AFM characterization for 15 um and 100 pm
trench widths indicate that the roughness increases as a
function of depth along the sidewall surface. Additionally, the
curtaining region for the 100 um trench width was two to three
times rougher than that for the 15 um trench width. This
suggests that the fracture strength for SOl MEMS structures
neighbored by 100 um trenches will be lower than that for
those next to 15 um trenches.
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