SAND2011-5948 C
SAND2011- 5948C

SPACEWIRE NETWORK SIMULATION OF SYSTEM TIME PRECISION

Session: Networks and Protocols

Long Paper

Brian Van Leeuwen, John Eldridge, Jacob Leemaster
Sandia National Laboratories**
Albuquerque, USA
E-mail: bpvanle@sandia.gov, jmeldri@sandia.gov , jeleema@sandia.gov

ABSTRACT

Many applications sharing a SpaceWire network require synchronized system time and
SpaceWire can be employed to distribute system time. However, in its current form general
system time distribution capability is lacking. In this paper we present a system time distribution
approach that employs a broadcast extension to the SpaceWire protocol. Broadcast messages
distribute specific time values while SpaceWire Time-Codes clock-in or trigger the specific time
contained within the broadcast. The broadcast approach is effective in minimizing network
resource usage by distributing the broadcast-time message in a partial-parallel method.
Additionally, for the objective of identifying the timing precision and jitter for specific network
architectures and network states, high-fidelity models were developed to quantify the timing
variations and to analyze overall SpaceWire networked system performance.

1. INTRODUCTION

The European Space Agency (ESA) in collaboration with other international space agencies
supports a serial data link standard to enable the transfer of large amounts of data onboard
satellites. The standard named SpaceWire and defined in [1], is a satellite communication
network based in part on the IEEE 1355 standard of communications. A SpaceWire network is
typically comprised of a number of links, nodes and routers. SpaceWire routers are necessary
since a SpaceWire node will only support a few links and thus can only be directly connected to
a limited number of nodes. Routers also reduce the number of point-to-point links and enable
redundant paths in case of link failures. The current standard describes a mechanism that can
enable modern satellite systems to transfer large amounts of data on board the satellite. However,
the standard currently lacks a time distribution capability to enable time synchronization among
the various applications on the SpaceWire network [1].

Additionally, a high-fidelity modeling and simulation capability to perform analysis of
SpaceWire networked systems is lacking. This analysis capability should provide precise time

** Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000.

mailto:jmeldri@sandia.gov
lgalleg
Typewritten Text
SAND2011-5948 C

synchronization results under various proposed network architectures. This analysis capability
should also provide results as the architecture under study dynamically changes when faults
occur and redundant paths are utilized. To meet these analysis objectives we created high-fidelity
model representations of SpaceWire nodes, links, and routers that can be configured to represent
any proposed network architecture.

In this paper, we present a time distribution mechanism that can be implemented in a SpaceWire
network that employs the standard SpaceWire Time-Code function along with a custom
SpaceWire broadcast capability. Together, the Time-Code function and broadcast capability
enable a means to distribute time to the various applications utilizing the SpaceWire network.

Our approach required that the general broadcast extension be a layer upon the existing
SpaceWire standard. That is it would be compatible with the existing protocol and not
necessitate the modification of existing intellectual property or the revision of the existing
SpaceWire standard. Rather, the objective was to extend the standard to include the new
capability. Our approach met this objective.

2. SYSTEM TIME DISTRIBUTION WITH SPACEWIRE BROADCAST EXTENSION

The current SpaceWire standard lacks both a general time distribution function and broadcast
function. Multiple solutions have been proposed each with their own benefits and deficiencies
[2][4]. To this end, we designed a time distribution function that utilizes a SpaceWire broadcast
capability. The time distribution function is designed to work in concert, be network efficient,
and fully backward compatible with the current SpaceWire standard.

2.1 SYSTEM TIME DISTRIBUTION

The time distribution function distributes what we consider to be system time. In our time
distribution mechanism, system time refers to distributing actual time versus the SpaceWire
standard Time-Code. The standard SpaceWire Time-Code comprises the SpaceWire ESC
character followed by an eight-bit data character. The data character contains 6-bits of system
time and two control flags. A time-master node asserts a periodic “tick” and immediately sends
out a Time-Code with the 6-bit time field incremented prior to transmission [3]. This Time-Code
mechanism is limited to a 6-bit resolution and increments each network device’s internal time
counter from the current Time-Code value to the next. The counter, which is intended to prevent
looping retransmission of the Time-Code and not necessarily to carry a time value, rolls from its
maximum value of 63 to zero because of its 6-bit field size limit.

Our time distribution approach accomplishes synchronization of system time. This is done by the
time-master node sending a system wide broadcast containing what the system time will be at the
next Time-Code “tick.” The broadcast message is transmitted a predetermined time period prior
to the transmission of the Time-Code. The predetermined time period is an estimated value that
is equal to the worst-case time for the broadcast message to propagate throughout the network.

The time-master node transmits a Time-Code tick indicating to the network that the time
described in the previous time message is now current. Thus, the various network applications
have access to an unambiguous system time.

Unambiguous system time is a 32-bit integer representation and it is broadcast to all nodes in the
network. When the endpoints receive a SpaceWire Time-Code the broadcasted system time
message is accepted as the current time after having been validated by combinational logic. The
time endpoint evaluates whether it is synchronized with the rest of the SpaceWire network with
every received SpaceWire Time-Code “tick.” If the endpoint believes itself to be synchronized
with the rest of the endpoints in the SpaceWire network, it considers itself to be “locked” and
asserts a corresponding signal.

The endpoint determines if it is “locked” in the following way: After every “tick,” the expected
value of the next system time message is calculated. The calculated value is considered to be the
value of the current system time message plus one. If the next received system time message
matches the expected value, the endpoint concludes that it is synchronized with the rest of the
network.

If the next received time message does not match the expected value, or no system time message
is received by the next “tick,” then the endpoint assumes that a synchronization error has
occurred, indicates that it’s no longer “locked,” and will simply increment its system time as a
“best guess.” If the time message arrives late, it will not interfere with operation so long as the
subsequent time message arrives on time, as the new message will override the late message.

In our approach it takes two correct time message/tick pairs to achieve a synchronization “lock.”
It is a known issue that if a series of two or more time messages are consistently late by a tick
period (or a consistent multiple of the tick period), then the timekeeper will erroneously indicate
a lock and synchronize to the late packets as they appear identical to a correct time message/tick
sequence. Expanding the number of previous packets considered when calculating the expected
time value would reduce the likelihood of such a situation at the cost of increasing the number of
correct packets it takes to achieve a “lock.”

2.2 BROADCAST

Our time distribution function employs a hybrid broadcast approach derived from work
described in [4]. The approach was modified with the goal of distributing system time, be
compatible with existing SpaceWire hardware, and not suffer from loops or broadcast storms.
The approach creates a “broadcast server” to be hosted by each router in the network. Our
implementation of this approach has two main configurable aspects: which local ports will
receive broadcasts and a list of the logical addresses of all other broadcast servers in the network.

A packet intended for broadcast is transmitted to the local “broadcast server,” which then
forwards the packet to all other broadcast servers in the network. Once this is completed every

broadcast server in the network will forward the packet to the appropriate local ports on its
respective router. The broadcast servers use several technigues at the protocol level to guarantee
that no loops, infinite broadcast storms, or spurious re-broadcasts occur. The broadcast
mechanism used for our SpaceWire Broadcast Server (SpWBS) includes several stages:

Local-to-Server Stage - A SpWBS receives a Local-to-Server type packet containing the
broadcast message

Server-to-Server Stage - The initiating SpWBS sends a Server-to-Server type packet containing
the broadcast message to every other enabled SpWBS in the network.

Server-to-Local Stage - Once a SpWBS receives a Server-to-Server stage packet or the initiating
SpWBS finishes the Server-to-Server stage transmission it sends Local-to-Server type packets
with the broadcast message to every enabled and connected local port.

This broadcast approach has efficiencies in that it partially distributes bandwidth utilization
across the network and obtains parallelization of the Server-to-Local stage of broadcast. The
approach requires that every router with nodes receiving broadcast messages have an attached
SpWBS and it requires an additional header byte to distinguish between Local-to-Server, Server-
to-Local, and Server-to-Server type messages.

The SpWBS broadcast approach includes mechanisms to prevents broadcast storms. All local
ports and broadcast server addresses are disabled by default and must be explicitly enabled by
server configuration. A configuration error that results in a Server-to-Local packet to be received
by another SpWBS will be detected by identification of an incorrect header byte and prevented
from further broadcast.

3. MODEL DEVELOPMENT

Our SpaceWire model development is done in the OPNET Modeler network simulation
environment [5]. OPNET Modeler includes an extensive model library of network devices;
however, OPNET Modeler does not include SpaceWire models in its standard model library.
Fortunately, OPNET Modeler includes the capability for users to develop nodes based on custom
protocols. To analyze the performance of our time distribution mechanism detailed SpaceWire
models are developed.

The models include many features of the SpaceWire standard including the functionality at the
various communication stack levels in both the end nodes and wormhole router. The models
faithfully implement the disassembly of application layer data and the reassembly of the
resulting NChars at the destination node. Additionally, processes such as the startup sequence,
flow control, Time-Code process, and realistic representation of various buffering and queuing
functions.

A modeling objective was to have representative models of the various SpaceWire modules and
protocols to support system design activities in all phases of a project. This modeling would
range from custom protocol extension analysis to assessing SpaceWire architectures and their
operation under stressful scenario conditions resulting from link and node failures. In pursuit of
this objective, we developed models to be modular. The modular approach enables the
combination of end nodes and routers in various architectures. Figure 1 illustrates an example
SpaceWire network and one of the nodes in the example network. In this example, each node is
comprised of three specific modules; an application node, a wormhole router, and a broadcast
server. The SpaceWire router is the connection point that combines the various applications
nodes and broadcast servers.

Figure 1: Example SpaceWire network topology.

Figure 2 illustrates a description of the custom SpaceWire node model and a single process
model as developed in OPNET Modeler. On the left side of Figure 2 is the SpaceWire
application node model that includes the protocols used in each layer of the SpaceWire
communication stack. The node model includes various application types that access the
network. Specifically, a state-of-health (SOH) application that periodically shares state of health
(SOH) details. A standard application layer can be a data producer, such as a sensor, or a data
consumer, such as a telemetry downlink, or a broadcast application that creates messages
intended for broadcast.

Each of the square blocks in a node model represent a single or multiple process model state
machines and implements the protocol of interest. Figure 2 (right side) illustrates an example
process model. The process model illustrated in Figure 2 is a root process that can spawn child
processes. Child processes are particularly applicable in modeling the wormhole router. The root
process spawns a child process for each data flow through the wormhole router. In many cases
multiple child process are in various states as they represent multiple simultaneous data flows
through the router.

Figure 2: SpaceWire application node model (left) and an example process model (right).

OPNET Modeler includes rich mechanisms to create network traffic. In our time synchronization
analysis, we are able to clearly identify when messages supporting system time distribution are
created and when they arrive at their intended target. Additional application layer traffic can be
generated to represent actual data files being transported through the network as NChars. Thus,
Time-Code traffic is created and introduced into the network along with typical application layer
traffic and its impact on delaying Time-Code messages.

4, SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS WITH HIGH-FIDELITY SPACEWIRE
MODEL

To demonstrate our time synchronization analysis capability we created a SpaceWire network
comprised of 12 nodes, routers, and broadcast servers as shown in Figure 1. The architecture,
constructed in OPNET Modeler, uses the various custom nodes and process modules. In this
demonstration case Node 10 is considered the time master and thus originates both the Time-
Codes and the system-time broadcast messages. Employing our time distribution mechanism,
Node 10 will create a broadcast message immediately following a Time-Code transmission. The
broadcast message will be transmitted to the broadcast server associated with the router shared
by the broadcast server and Node 10 (i.e., Node 1010). This broadcast message contains the time
that the next transmitted Time-Code will clock into the various network slave nodes. Since
Time-Codes are not delayed by full application layer file transfers the broadcast will not arrive at
a slave node prior to the previously sent Time-Code. However, there is no guarantee that the
broadcast message will arrive at the slave nodes prior to the arrival of the following Time-Code
transmission. In cases, where the following Time-Code arrives at the slave node prior to the
broadcast time message the system is said to have lost synchronization “lock.” We examine the
network in Figure 1 for time synchronization precision.

5. RESULTS AND DISCUSSION

The network in Figure 1 with Node 10 producing both the Time-Codes and the broadcast
messages is assessed for time distribution delay variation. In this analysis, we record the receipt
of a broadcast message and the time the broadcast message time value is clocked into the slave

node’s clock. The node’s time is then compared with a global absolute time. The difference of
the absolute time and node clock time is recorded and plotted in Figure 3 as a probability density
function (PDF).

=] Probability Density of Time Synchronization Error

800,000 Probahility Density of Global. TimeCodelelay

700,000

600,000

500,000

400,000 il n A

A UL AS

\ | n AT

A T R WPV TSV vy

: LY VR VN

35 4 45 5 55 & 65 7 75 & 85 8 95 10 105 11"
time (sec) (=1e-006)

| T

Figure 3: Resulting PDF of the time synchronization error when network is lightly loaded (red
trace) and heavily loaded (blue trace). Note the Y-axis should normalized by dividing by 50EG6.

Figure 3 describes a time synchronization error averaging approximately 7.0 psec. The plot has
three regions centered at approximately 5.5 psec, 7.3 psec, and 9.0 psec. Each region describes
the variation in time synchronization based on the number of hops to forward the Time-Code.
Each additional hop adds more variation and thus leads to more spreading of the plot as you
move from left to right on the time axis. The variation between the lightly loaded network (red
trace) and the heavily loaded network (blue trace) results from additional NChars on the network
that may delay the transmission of a Time-Code. The variation is not significant since a NULL
can cause a delay of up to an 8-bit transmission time whereas an NChar can cause a delay of up
to a ten-bit transmission time. In the demonstration network, the SpaceWire links operate at 10
Mbps. Also note that the Time-Code period was 6 msec. and maximum application-layer file size
was less than 60 Kbits and thus were easily within range so the network would not loose time
synchronization lock. We elaborate on synchronization lock in Section 6.

6. FUTURE WORK AND CONCLUSIONS

Our approach’s time synchronization resolution is limited by the frequency of Time-Code
transmissions. The frequency of Time-Code transmissions is limited by the requirement of
sufficient time for the broadcast system time message to propagate throughout the network. We
believe it is possible to decouple the need for a one-to-one correlation of system time messages
and Time-Code transmissions to obtain an improved synchronization error. However, the
theoretical upper limit of system time synchronization precision is limited by the latency and
jitter inherent in SpaceWire Time-Code function. Time-Code enhancement techniques [7] could
be incorporated into our time distribution approach to improve time synchronization.

Additional features will be incorporated into the OPNET Models to expand the representation of
the SpaceWire protocol and the nodes. Specifically a model of Remote Memory Access Protocol
(RMAP) for SpaceWire will be developed. RMAP provides a standard method of reading and
writing to registers and memory across a SpaceWire network. This will further our analysis
capability of application performance.

Additionally, we have developed a Live/Virtual/Constructive capability at Sandia [6] that
combines real devices, emulated devices, and simulated devices in a single hybrid experiment.
We have identified use cases in our SpaceWire development activities that will benefit from
merging our SpaceWire models into hybrid experiments to assess satellite network development
ideas at various stages of the development. This approach is expected to support assessing the
behavior of actual hardware prior to the availability of complete system hardware.

We have demonstrated a viable system distribution approach that can be employed without
modification to the SpaceWire standard. The time distribution approach has been modeled in a
high-fidelity simulator and our analysis has identified the range of time synchronization for
various SpaceWire network architectures. Our broadcast solution has been fully developed in
VHDL and tested in actual custom hardware. We continue with further integration and testing in
actual hardware in our development activity.

7. REFERENCES

[1] European Space Agency, “SpaceWire - Links, nodes, routers, and networks.” ESA-
ESTEC Requirements & Standards Division. 24 January 2003.

[2] Klar, R., Dykes, S., Bertrand, A., Mangels, C., “Integration of Internet Protocols with
SpaceWire using an Efficient Network Broadcast.” International SpaceWire Conference
2007.

[3] Parkes, S., “The Operation and Uses of the SpaceWire Time-code.” ISWS International
SpaceWire Seminar 2003. November 2003.

[4] Roberts, A., Dykes, S. G., Klar, R., & Mangels, C. C. (2007, March). A Link-Layer
Broadcast Service for SpaceWire Networks. Aerospace Conference, 2007 IEEE , 1-10.

[5] OPNET Technologies, Inc., www.opnet.com.

[6] Van Leeuwen, B., Urias, V., Eldridge, J., Villamarin, C., Olsberg, R., "Performing cyber
security analysis using a live, virtual, and constructive (LVC) testbed,” IEEE MILCOM
2010, October 2010.

[7] Cook, B., “Reducing SpaceWire Time-code Jitter.” www.4links.co.uk/bibliography/Reducing-
Time-Code-Jitter-on-SpaceWire.pdf , October 2003.

