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LCIF provides 2D snapshots of plasma 
density and temperature

Motivation: What is the density? What is the temperature? Where and When?
Electrical probe based techniques may couple and perturb
Optically passive techniques are line-of-sight limited
Optically active-techniques such as Thomson scattering pose their own set of challenges

In this presentation
Laser-collision induced fluorescence (LCIF) primer

Describe LCIF technique and application to triplet manifold of Helium
Experimental implementation of LCIF

Applications of LCIF
Pulsed plasmas
Transient anodic plasma structure
Ion sheath expansion and collapse

Future directions and concluding thoughts



LCIF technique relies on redistribution of excited 
states by (electron) collisions

We extend the technique for use in two-dimensions and 
obtain time resolved information

Electron
collisions

This is LCIF
Electrons redistribute laser-excited population
Monitor changes in emission from coupled states

Employ a collisional-radiative model (CRM) to predict redistribution
Utilize limited basis of states to reduce number of equations
Helium, 15 states (ground + 14 triplet states)

Electron density and electron temperature appear in first term
Temperature dependence introduced via Ke

ij t

Technique has been employed for over 30 years
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Ratios of intensity are utilized for determining ne, kTe

Utilizing ratio of intensities  
Eliminate problems associated with absolute calibration 

Capitalize on weak kTe dependence of 33P ->33D
Ratio of 588 nm to 389 nm yields ne;
Ratio of 447nm to 588 nm yields kTe

4

9 10 11 12 13

3

2

Ratio to 389 nm

[707 nm]/[389 nm]

Ratio [447 nm]/[588 nm]

kTe=8 eV

kTe=4 eV
kTe=2 eV

kTe=1 eV kTe=0.5 eV

Electron density (cm-3)

Only need to make three measurements to obtain ne, kTe

10-3

10-1

100

10-2

10-1

10-2

109 1010 1011 1012 1013

Electron density (cm-3)
109 1010 1011 1012 1013

tNnKN e
e

jj Δ××Δ 00~ tnK
N
N

e
e

j
j Δ×

Δ
0

0

~

tnK
N
N

e
e

j
j Δ×

Δ
0

0

~

e
i

e
j

i

j

K
K

N
N

0

0~
Δ

Δ

Presenter
Presentation Notes
Mission. Purpose. Flags.



Experimental implementation of the LCIF is realized
Nanosecond pulsed laser used for excitation

< 10 ns FWHM @ 20 Hz 
Timing of experiment controlled by delay generators

Move experiment and imaging with respect to firing of the laser
Image LCIF with gated-intensified CCD

Narrow (~ 1 nm FWHM) interference filters centered on lines of interest
Take two images per transition considered

Total emission and plasma induced emission (PIE) - subtract the two

5

Timing sequenceOptical setup

Time

50 ms (20 Hz laser)

Time

<10 ns FWHM

ICCD gate
LCIF + PIE

ICCD gate
PIE only

Need to make six (3 x 2) measurements to obtain ne, kTe
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Experiment designed for flexibility
Time modulated rf plasma

Generate metastable "seed " to prepare for transient measurements 
Segmented electrodes

Positive and or negative polarity pulses 
Computer controlled delays

Time step across event of interest

6

Setup Timing sequence

Examine phenomena on different spatial 
and temporal scales

~ 30 μs

Modulated 24 MHz rf
Pulse biases

~ 20 μs

ICCD gate

~ 2 μs
~ 20 ns -> 100 ns
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Plasma generated by time modulated anode tests 
LCIF technique

Challenging plasma system
Dynamic plasma potential

Examine time evolution of transient 
plasma 

RF afterglow, 50 mTorr He
Positive pulse bias (~ 1 kV) applied to 
planar electrode

Two dimensional images vary by orders of 
magnitude in intensity 

Representative LCIF Images and ratios
388 nm 589 nm 447 nm

Setup and behavior

Pre-pulse

Peak-pulse

589 nm/388 nm 447 nm/589 nm
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)

φ=70 mm

Viewing area



LCIF data analyzed with CRM 
predictions to yield ne, kTe

Trends analyzed with CR model
Produce ne, Te as functions of time 

Densities and temperatures vary by orders of magnitude; 
rates demonstrate different time scales

LCIF Trends
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Transient structure of plasma observed 
after pulse excitation
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Higher energy electrons observed around 
edge of anode plasma
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supporting double layer
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LCIF Data

Analysis

Temperature measurements made for +900 ns case
Challenging measurement because of low level signals
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S. D. Baalrud , B. Longmier and N Hershkowitz, Plasma sourc. Sci. Technol. 18 035002 (2009)

"Anodic Fireball"

S. Baalrud et. al

+900 ns
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Height above electrode (mm)
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LCIF captures 2D-sheath formation 

Examine evolution and structure of ion sheath 
- 1 kV, 1 μs bias applied to inner electrode, 5 μs after + pulse ends
20 ns snapshots of LCIF

Transient sheath dynamics captured by LCIF
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Concluding remarks and future directions
LCIF technique demonstrated in 2D

• Good spatial resolution – limited by optical collection
• Decent temporal resolution – limited by ICCD gate times & tolerable signals

Technique should be extendable over broad parameter space
• Higher pressures – neutral collisions
• Other atomic systems - Argon 

Looking into
• ECR based plasma systems (B. Weatherford and J Foster, U. Michigan)
• Rare gas/Hydrogen mixtures (A. El Saghir and S. Shannon, NC State)
• Fast Ionization wave (W. Lempert and I. Adamovich, Ohio State)
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ECR Plasma
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Thank you!
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This work was supported by the Department of Energy Office of Fusion Energy Science 
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Helium atom serves as target species for 
LCIF measurements

Employ Helium to start with
"Simple system" with "better known" rates

Utilize functionalized form of cross-sections compiled by Ralchenko1

Integrate to get rates, compare to measured rates 2,3

14

1: Yu. Ralchenko, R. K. Janev, T. Kato, D. V. Fursa, I. Bray, F. J. De Heer, Atomic Data and Nuclear Data Tables 94, 603 (2008)
2: R. Denkelmann, S.Maurmann, T. Lokajczyk, P. Drepper, and H. –J. Kunze, J. Phys. B: At. Mol. Opt. Phys. 32,  4635 (1999). 

R. Denkelmann, S. Freund and S. Maurmann, Contrib. Plasma Phys. 40, 91 (2000).
3: B. Dubreuil and P. Prigent, J. Phys. B: At. Mol. Opt. Phys. 18,  4597 (1985).

Computed and measured excitation rates in Helium

Accuracy of ne, Te depend on knowledge of Kij(kTe)

33S → 33P, 33D 33P → 33S, 33D 33P → 43S, 43P, 43D

Key transitions
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CRM predicts evolution of various Helium states 
after laser excitation

Computed evolution of LCIF 
After laser excitation of 33P from 23S

Temporal evolution may serve as "fingerprint" of electron interaction
Below ne~ 1011 absolute intensities are needed
Analyze shape of decay above ne~ 1011 electrons/cm3
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Need at least two time-resolved profiles to uniquely obtain ne, kTe

Computed temporal evolution
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References for rates and cross-sections

Superelastic
• Klein Rosseland
• Sobelman
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Two ways of determining density and temperature 

Time resolved measurements involve measuring decay of LCIF
• ~ 100 ns, multiple temporal points to resolve shape 

Integrate LCIF over some defined temporal window
• Short integration times, better temporal resolution
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Intensity of LCIF from 33D and 43D exhibit linearity 
over 3 orders of magnitude, LIF from 33P flat

Computed intensity trends
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Simplification lends insight into what 
technique measures

Reduce coupled sets of equations to emphasize key point
Consider population of "uphill" transitions
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LCIF response is convolution of ne and K(kTe), which is 
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Further experiments point to where 
improvement is needed

Here is the "ugly" data
• Predicted trends approach measured trends

Two data sets offer some clues
• Low pump power and low concentration of species

Stimulated emission inducing 33P to 33S transition?
• Population inversion: NP >> NS after excitation
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Analysis of pulsed plasma offers second 
means to benchmark LCIF technique

Further test measurements made by LCIF
Two approaches to quantify densities and temperatures
Both have their own "baggage"

Trends again appear "reasonable", density 
seems systematically low by a factor of 3….
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Demonstration of LCIF technique:
Transient double layers

Bias electrode positive with respect to chamber
1 kV bias applied to inner electrode, 50 μs into afterglow (low ne, low kTe)

Setup Data

Clearly separated plasma layers  



Examine spatial structure around biased electrode
• Representative LCIF data used for analysis 
• ~ 5 microseconds into 20 mTorr Helium afterglow
• 25 mm diameter electrode, biased to - 1 kV.
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Key transitions

Temperature measurements become 
questionable in the sheath….

33P LIF (@389 nm) 33D LCIF (@588 nm)
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Static structure of a sheath is 
measured in Helium afterglow
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LCIF captures 2D-sheath formation 

Examine evolution and structure of ion sheath 
- 1 kV bias applied to inner electrode, 50 μs into afterglow (low ne, low kTe)
20 ns snapshots of LCIF

Setup Data

Voltage applied

"Matrix" sheath

Sheath evolving

Initial structure

Final sheath 
structure

Decent temporal and spatial resolution demonstrated

Viewing area

φ=70 mm



LCIF captures 2D-sheath formation 

Examine evolution and structure of ion sheath 
- 1 kV bias applied to inner electrode, 50 μs into afterglow (low ne, low kTe)
20 ns snapshots of LCIF

Decent temporal and spatial resolution demonstrated

Set 6
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