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What is a Foam?

« A multiphase material of gas
bubbles in a liquid or solid matrix
* How do you make a foam?
» Generate bubbles in a liquid
» Stabilize them with particles,
fat globules, or surfactant
« Solidify liquid -freezing,
polymerization, or phase
change — if desired
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Foams need enough
bubbles to jam, e.g.
bubbles are touching
or it is just a bubbly
liquid

Ice cream is a foam —that's why it ~ Epoxy foam is a coIIect|on of
is so much work to make bubbles in polymer
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Liquid foam characterization is challenging

Opacity prevents direct observation

» Foams are multiphase materials with a
compressible gas dispersed as bubbles in a
continuous phase

» Bubble microstructure affects macroscopic
properties

» Microstructure can evolve in reversible and
irreversible manner

* Property measurements can alter foam

Structure is continuously evolving

Liquid Drainage Cell Coarsening
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Coalescence and
4 rupture also occur @



Polymeric foams offer additional complexities and are
difficult to understand on a fundamental basis

limit foam
fexpansion
Decrease Continuous prevent cell
Phase Mobility — rupture
Accelerate Expand
Cure Reaction Bubbles
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Exothermic Cure Reaction = Heat
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Polyurethane (PMDI-4): Model Development

At Sandia, we use a variety of physically and chemically

blown foams.

PMDI-4 is used as an encapsulant for electronic
components, to mitigate against shock and vibration

We would like to develop a computational model to
help us understand foam expansion for manufacturing
applications.

Polyurethane is a chemically blown foam:
fundamentally different model is needed from
physically blown foams.

Polyurethane foams have two primary, competing
simultaneous reactions: CO, production and
polymerization. Separating these reactions can be
difficult.

DSC does not offer enough resolution: Used IR to track
reaction rates in several isothermal experiments at
different temperatures.

IR does not provide a clear signal for the foaming
reaction: Gas generation measured by free rise height
as before.

Component encapsulated with PMDI
from “KCP Encapsulation Design
Guide” (Mike Gerding)
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Peak 1218 represents pure curing reactions:
polyol-isocyanate urethane reactions



Polyurethane Resin Cure and Foaming Reactions

Two key reactions: Isocyanate reaction with polyols and water

H O

] Urethane formation,

R,—N=C=0 + HO—R; —> R;—N-C-0O-R, crosslinking

H O : o
Foaming reaction yields

l
R,—N=C=0 + H20 —> R;—N-C-OH —> CO, * R;—NH, CO,andamine

Various follow up reactions: Isocyanate reaction with amine, urea and urethane

] Urea formation
Rl_N:C:O + Rl_NHZ — Rl_N_C_N_Rl

Tyt PRy
R,—N-C—N-R; + R;—N=C=0 —> R;—N-C—N—C—N-R, Biuretformation

H O HOR O
.l | | Allophanate formation

Rl_N_C_O—RZ + Rl_N:C:O — Rl_N_C_N_C_O—RZ



Extent of Reaction for Polymerization
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Extent of Reaction for Polymerization

eNormalize the peak height data by the maximum height at the highest temperature to
obtain the extent of reaction, p

eSuperposition of data from different temperatures T gives activation energy AE

eNumerically differentiate the extent of reaction to obtain the rate

*Fit the rate and the extent of reaction simultaneously to a standard equation form,
where only the exponent is unknown

eForm of between 2"¥ and 3" order reaction fits data

dée K e E/RT (1 2.75 ko=2.96 x 108 1/hr,
dt =Ko ( - gcure) AE/R=-5731.8 K
o “Wet” vs. “dry” slightly different rates — used full PMDI-4 (wet) formulation results
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Resin Continuous Phase Viscosity

PMDI-4 Foam (dried) DMA Viscosity Tests
° Storage and IOSS modulus for dry comparing rates of reaction from three temperatures
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Polyurethane: CO, Generation
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e 1t generation model uses a
source term for gas generation

e Data from height of foam in a
column at three temperatures
(volume vs. time)

e Assume all gas is CO,
generated in the reaction

e Foaming stops because curing
continuous phase reaches gel
point or resin become too
viscoelastic to allow bubbles to
expand



Polyurethane: Foam Viscosity

T=30°C

* Foam viscosity measured at R
30°C, 50°C, and 70°C in
oscillatory rheometer at various |
shear rates Joono |
* Relative viscosity as a function
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Higher Fidelity Model Adds More Complex Material Models with
Cure, Temperature, and Void Fraction Dependence
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Time scale and filling behavior set by density equation and unaffected by increasing shear
viscosity or dilatational effects => Results here using constant viscosity (Rao et al, 2008)



}j Finite Element Implementation

 Approximate variables with trial function, e.g.
n n n m .
u=> uN; v=) VN, wx ) wN, p~2 PN,
i=1 i=1 i=1 i=1

e Substitute into equations of motion, weight residual with
shape function for Galerkin implementation

Weighted - Residual = [ N;R.dV
« Gaussian quadrature
e Solve discretized system

Ax=D

 Issues: Linear system solved with Krylov-Based iterative
solvers =>require stabilization
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Evolving Level Set ¢ to Locate Foam-Gas Interface

*Given fluid velocity field, u(x,y,z), evolution on a fixed mesh is according to:
0
99 +U-Vg=0
ot

*Purely hyperbolic equation ... fluid particles on ¢(x,y,z) = 0 should stay on this
contour indefinitely

* Does not preserve ¢(x,y,z) as a distance function

* Introduces renormalization step.

*Equations are averaged depending on the level set, ¢

Du Du : :
HAPAE"‘HBPBE:_VP+HAV'(,UA7)+HBV'(/UB7)+(HAPA+HBPB)Q"‘ 1T,
H, DpA+HB DpB"‘(HApA"'HBPB)V'u:O % Ha Hy

Dt Dt =
H,+H, =1 K gas foam
|
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Typical problem graph for incompressible flow

re 3D Free Surface Problems Hard?

p%z ~VP + uV°v+ pg

V-u=0

» Formulation uses a coupled u-p solve with a decoupled
level set solve
 Incompressibility constraint and distinguishing
conditions and boundary conditions lead to non-
diagonally dominant matrices
* In 2D, direct solver can be used with LBB elements
* In 3D, only Krylov-based iterative solvers are feasible
» Stabilization for the continuity equation is used to allow
for equal order interpolation and improve the matrix
condition number
« Stabilized methods that may work well on single phase
flows, have difficulty handling the pressure jumps
associated with the level set method
* Solution requires heavy duty preconditioner-solver
pairing such as ILUT(1-3)/GMRES, which are not very
scalable
» Mass loss issues must be ameliorated
» Remediated via new boundary conditions,
stabilization methods, renormalization, and time-

stepping algorithm @ ﬁg"(]idoﬁal

Laboratories



Temperature °C
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PMDI-4 Temperature-Instrumented Flow Viz

030110 PMDI-4 60°C
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eFront location, Temperatures,
Fill rate analysis

Volume vs Time from Image Processing Video
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Run 030110-PMDI-4 60°C

Free Rise

eVideo of polyurethane
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PMDI-4 Free Surface Validation Study

Data
+ Data
—Aria simulation

100

200

300
time (s)

400 500

600

Time:125 5

Time=125s

Time=175s

[ |

Time=175s

|

Time=284s

¥

Time=284s

eModel tracks density change
from foaming in full system

(o —(t-t)
p=(p pf)eXp{ cm) ]pr

eBut validation data show
that model foams too slow
and then too fast with this
simplification
eCurrent work:
- Improve density model
- Add a function to tie foam
generation to gelation
- Work on more complete
kinetic model



PMDI-4 Thermal Validation Study
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temperature
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PMDI-4: Improved CO, Production Model

e Compare curing PMDI-4 foam with model foam system that does not cure (mid range viscosity
epoxy mimics PMDI-4 continuous phase) to deconvolute foaming from increasing viscosity and
elasticity, which can lead to bubble pressurization with lack of volume increase
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e Curable PMDI-4 foams faster - because of extra heat and synergism from cure reactions?
Catalysis of amines?
e The underlying foaming (CO, evolution) can be resolved and is much slower
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Complex Kinetics of Foaming Reaction

e CO, generating foaming reaction due to water-isocyanate has activation energy AE ~41kJ/mol
e Curing reactions due to polyol-isocyanate urethane reactions in dried PMDI-4 has roughly the same

~41kJ/mol

- The isolated foaming reaction is relatively slow
- The isolated curing reactions have slightly different rates than in presence of H,0
- In the presence of polyol (as in the PMDI-4 foam system) we observe much faster foaming

action and a different AE (29kJ/mol).
- Not perfectly isothermal due to internal heat of reaction and auto-catalysis?

1) PMDI-4 mix; 37.5:62.5 R:T; 0.071% LV33 in R-Comp
foam rise exothermic polyol cure tagether
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Improved Kinetic Model will include CO,

Generation
rate, = ke **'""[isocyanate]*[ polyol]”>  Polymerization
rate, = k,e %' [isocyanate]’[H,O]" €O, generation

e Continue work on kinetics of polymerization coupled to blowing reaction

* Must track five species: water, polyol, polymer, carbon dioxide, and
isocyanate , since we have competing primary reaction

*Use existing experiments to determine new Arrhenius rate coefficients

DICO, ] _ . rate *Must provide initial conditions for all species
2 °Integrate rate equations as part of the simulation
D[H,O] *Density can now be predicted from gas generation
= —rate, eCompeting reactions should slow reaction, but actually

D[isocyanate] speeds up foaming while curing is unaffected

= —rate, —rate,

Ol poyol #(t) = oo oo
T = —rate, nc02 / MWcozpco2 + nliquid / MWquuideiquid
D[ polymer] _ Trate, Ptoam = (pCO2 ~ Pliquid )o(t) + Pliquid

Dt



Conclusions and Future Work

e Current model is adequate for production calculation e.g.
determining voids, gate, and vent location
Olnvestigate polyurethane encapsulation of new geometries of interest

e Experiments have been completed for advanced model
OPolymerization and rheokinetics are accurate
ONeed to populate and implement models for more accurate kinetics

e Advanced methods for free surface flows under development
0 Conformal Decomposition Finite Element Method (DR Noble)




Finite Element Methods for Interfaces in

' Fluid/Thermal Applications

 Boundary Fitted Meshes
— Supports wide variety of interfacial conditions accurately
— Requires boundary fitted mesh generation
— Not feasible for arbitrary topological evolution (ALE)
« Mesh quality degrades with evolution, phase breakup and merging are precluded.
 eXtended Finite Element Methods (XFEM)
— Dolbow et al. (2000), Belytchko et al. (2001)

— Successfully applied to numerous problems ranging from crack propagation to phase change to
multiphase flow

— Supports weak conditions accurately, mixed and Dirichlet conditions are actively researched
(Dolbow et al.)

— Avoids boundary fitted mesh generation
Supports general topological evolution (subject to resolution requirements)

. Generallzed Finite Element Methods (GFEM)

— Strouboulis et al. (2000)

— Combination of standard finite element and partition of unity enrichment
 Immersed Finite Element Methods

— Lietal. (2003), llinca and Hetu (2010)

— Supports selected jumps across material boundaries (discontinuous gradient or value)

Conformal Decomposition Finite Element Method (CDFEM)
— Enrichment by adding nodes along interfaces

LB DRECTEL E-E4 i HE: DE LT RE @ Sandia National Laboratories



2 CDFEM Uses Ideas From XFEM, Level Set
IE Methods, and ALE Moving Mesh

Base mesh Level Set Function CDFEM Mesh
added dynamically
at interface

Benefits: Meshed free surface allows for easy application of boundary conditions,
discontinuous variables are straight forward, topological changes
Drawbacks: Mass loss similar to diffuse interface methods, expensive, file bloat

/‘@B *CDFEM shown convergent for steady flow, Noble et al, IJINMF, 2010
ISDRE Extension to moving boundary problems () sandia National Labortores

LB R DECTEL T E=E e




— What do we do when nodes change sign?
— What space do we use for pressure, velocity and level set?

— Goals
* Try to recover moving mesh case for moving interface
» Try to preserve minima, maxima
e Smooth interface
— Proposal
* Prolongation: Set “old” value to value of nearest point on interface
* Dynamics: Use ALE style (u-dxdt) for advection term
» Allow velocity gradient and pressure jumps across interface
» Level set on sub-element mesh

LOR () sandia National Labortores

LB G DECTEL T E=E e = DEEL DT R




Code to Code Comparisons for 2D Buoyant

" Drop: Two Test Problems

*Test 2 has fine trailing structures that must be captured
by the code

*Density ratio of 1000 and viscosity ratios of 100, Re=35
and Eo=125

*Both CDFEM and a classic diffuse interface method do
a reasonable job, but give disparate results

*Results given for coarse mesh (h=1/40)

Test 2

AAmAna

CFX Comsol Fluent TP2D FreeLIFE MooNMD

Figure 1. Numerical simulations of a two-dimensional rising bubble for six different codes
with identical problem formulations.

Hysing et al, “Quantitative benchmark computations of two-dimensional
m% ubble dynamics, IINMF, 2009 () sandia National Labortores
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Figure 15. Typical time evolution of the interface for test case 2: (a) r=0.6; (b) r=1.2; (c) r=1.5;
(dy r=2.2; (e) r =24, (f) r=2.6; (g) r=2.8; and (h) r=3.0.
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u=0

CDFEM: 2D Rayleigh-Taylor Instability

u=v=0

heavy green fluid:

p=1.2, 1 =0.003

gravity

\4

light yellow fluid:
p=0.17, 1 =0.003

u=v=0

u=0

eUnstable stratification of heavy fluid
over light fluid initiates Rayleigh-
Taylor instability

*Problem similar to Rayleigh-Taylor
instability from Smolianski (IJNMF,
2005) but with a 2:1 aspect ratio
instead of a 4:1

e|nitial condition has flat interface,
which will affect wave number of
instability

*Results for zero surface tension with
fine mesh: h=1/80, dt=h/3



CDFEM: 2D Rayleigh-Taylor Instability

Dynamic CDFEM mesh detail

eInstability initiates from noise in solution and flat interface
eAsymmetric instability form
*CDFEM capture breakup of light fluid as it displaces heavy fluid



CDFEM: 2D Rayleigh-Taylor Instability

u=v=0

eUnstable stratification of heavy fluid
over light fluid initiates Rayleigh-
Taylor instability

*Problem similar to Rayleigh-Taylor
instability from Smolianski (IJNMF,
2005) but with a 2:1 aspect ratio
instead of a 4:1

e|nitial condition for the shape of the
interface affects wave number and
symmetry of instability

*Results for zero surface tension with
fine mesh: h=1/80, dt=h/3

light yellow fluid:
p=0.17, n=0.003

u=v=0
eInstability seeded with a perturbation of the free surface
» Arc of a circle with center = (0,2) and radius 2



Long Time Behavior of Instability

Symmetric perturbation of the interface
*Symmetric instability

eLong time behavior is a stable state without
density inversion

*Mass loss occurs on fine structure, but is
less than 10%

*Verification study and documentation in a
journal article underway




The End

*Thank you for your attention

eQuestions, comments, etc?




