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— Biological complexity
— Computational map

* Publications / Presentations

e New directions




Motivation

 Network problems

— Common motif in cognitive science
* Information flow
e Relational influence
— Sandia experience in electrical networks — Xyce

* Mathematical formulation (parallel, modular physics)
* Topological functionality (parallel, analytic)

— Applying Xyce to cognitive and neuroscience benefits
both communities (CS&T and electrical modeling)




Project Goal

* Develop a cognitive and neuron simulation
framework that can address complex, multi-
scale networks.

* Requires:
— Share with the neuroscience & cognitive
community
— Interoperable with existing tools

— Can address
* multiple problem scales
* multiple scientific applications.




Multi-scale Rational

 Multiple, hierarchical structures in
the brain.

— Maintaining fine scale for macro
modeling may not be feasible.

Structural Model
(hippocampus)

— Allow building & simulating macro-
model with varying fidelity of fine
scale.



Multi-scale modeling targets

e Micro-scale:

Structural Model
(hippocampus)

— ion channel & cable equation

C. Warrender, H. Thornquist, T. Mei, R. Schiek




Multi-scale modeling targets

e Macro-scale:

— Population model
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N. Cohen, H. Eichenbaum, M. Bernard, S. Verzi

Structural Model
(hippocampus)




Multi-scale modeling targets

e Meso-scale:

Structural Model
(hippocampus)

— Limiting biophysics —
* jon channel & cable equation

— Want to understand what’s—
lost when fidelity is lost

S. Levenson, A. Duda at Univ. of lllinais,
Romero & Mei, SNL




Population Modeling

 |Implemented device to model a population of

neurons
— Intra-population dynamic connectivity
.) . — Age dependent plasticity
vt — Population dynamics (neurogenesis & cell death)
\ — Fully resolved time dependent population state.
" e LA L ‘ — Modeled after Gage Model

 Mike Bernard has taken lead on new LDRD proposal:

— Using High Performance Computing to Examine
the Processes of Neurogenesis Underlying
Pattern Separation/Completion of Episodic
Information
Proposal # 12-0274
accepted for FY12 LDRD




Meso-scale Modeling

e (Collective Behavior Characterization

— Alex Duda and Steve Levenson at the University
of lllinois

— Basis for a multi-modal associative memory for
language acquisition and motor control.

— Used with an embodied cognitive robotics
platform (the humanoid robot, iCub).

* L. Romero & Mei Ting, SNL:

— Networks of coupled oscillators
— Central pattern generators, circadian rhythms

— New technique for implicitly generating basis functions.




Neocortical Model

Auditory Signal

« Large populations of
canonical Hodgkin-Huxley
neuron model.

* Synaptic connections
evolve according to a
spike-timing dependent
plasticity (inspired)
scheme.

« Excitatory and inhibitory
neurons present with
proportions, spatial
location, and topological
connectivity that are
experimentally inspired.

Visual Signal




Neocortical Model

Auditory Signal

Visual Signal

Initial work in Matlab.
Prototyping larger calculations in Xyce.




Objectives

1. Understanding/identifying population-level features that could be considered the “information-
bearing signal” in the neocortex

2. Discovering robust ways to encode real-world, multi-modal objects/concepts (visual, auditory,
etc.) in a population of spiking neurons.
. Phase synchrony

. Graph Theoretic / Network Analysis
— Weighted Degree distribution
— Network flow metrics

3. Use encodings as part of an inverse model for language production and motor control (to "close-
the-loop" in the sensorimotor integration problem).

4. Use (1-3) as the basis for a multi-modal associative memory implemented in a humanoid robot
(iCub) to acquire basic language and motor control expertise by interacting with the environment.

5. Note: Differs from Jeff Krichmar & Gerald Edelman work:
. Looking for minimal system that can produce function
. Discover information bearing signal to make superordinate decision.
. Neuron populations start uncorrelated and synaptic weights change via learning.

Award for Scientific Achievement and Outstanding Presentation at International Conference on
Complex Systems, Boston, June 2011. Alexander M. Duda and Stephen E. Levinson: Complex
Networks of Spiking Neurons: Collective Behavior Characterization




Micro-Scale Modeling

e Detailed Neuron Models
e What?
— Full ordinary differential equation description
— Cable equation solved for dynamics
e  Why?
— Detailed biophysics are needed to fully describe
natural systems

— Coupling between systems requires detailed
modeling

*  Status

— Multiple neuron and synapse models in place (more
under development).

— Goal is to demonstrate how Xyce performs on
complex systems.




Biological Complexity

e Challenge:

— How do Xyce & Neuron perform on real
problems?

* Extracting circuits from existing projects (i.e.
Human connectome, Retina connectome)

— Proceeding, but difficult to get complete
circuits

— DAPRA SyNAPSE — evolved graphs

e Generate synthetic graphs using external data
— Higher level organisms have neuron/synapse
densities approaching 10,000 synapses per
neuron

Human Connectome Project — Use synaptic density to scale circuit
www.humanconnectomeproject.org E A Al ity




Biological Complexity

* |ncreasing synaptic density — multiple

meanings:
1 neuron, —— Point neuron |
2 synapse » Ignores neuron details
/ \ « Easier to implement
Y ded
1 neuron, BK 7/'4 Exten” € nelrj]_ron detail
8 synapse ol » Full branching details

» Bigger simulations




Biological Complexity

Going from 1 to 10,000 synapses per neuron requires

* More memory

* Parallel Strategies
— Parsing / Loading
— Solver preconditioning

Synapses per Num.
Neuron Unknowns
10 86,000
50 366,000
100 736,000
1000 6,116,000
10,000 60,498,000




Improving solution performance

* Preconditioning of the matrix makes the work-
per-time step faster

10°
0 ‘% W L7
b o
i Y
i el By
2 ' o -

hz = 1725000 x10°

Original matrix




Improving solution performance

* Further research has improved this
(Thornquist)

nz =1%330000

Original matrix Graph / Hypergraph partitioning

@
National _
Laboratories



Improving solution performance

e Schur-complement techniques in prototype
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Erik Boman and Siva Rajamanickam,
H. Thornquist




First Scaling results
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» Problem loading scales as expected

« Larger problems will plateau out at higher CPU numbers

* Preconditioning for parallel, iterative solvers helps, but need
more!




First Scaling results
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Comparing to other simulators

* Neuron
* On average Xyce’s timestep was 10x larger.
* Parallel scale up changes underlying problem
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* Release Xyce neuron work as Open source
release. @

e Joint NSF Funding from work with
— Stanford and/or Berkeley

100 um

e Publications Opportunities
— Alex Duda’s adaptive learning work
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— Scaling of densely connected networks. (JCNS) ~ Parket.al, 2011

e Post-doc starting in fall.

— Guide a specific application in neuroscience




Publications / Presentations

. Publications

Relational Memory Implemented

Patrick D.K. Watson, Shawn Taylor, Craig Vineyard, Steven Verzi, Tom Caudell, Howard Eichenbaum, Neal J. Cohen.
Alexander M. Duda and Stephen E. Levinson: Complex Networks of Spiking Neurons: Collective Behavior
Characterization, International Conference on Complex Systems, Boston, June 2011

. Presentations

Grand Challenges in Neural Computation Il: Neuromimetic Processing and Synthetic Cognition, Feb 21, 2011, Santa Fe,
NM

Design Automation Conference, June 4, 2011, San Diego, Ca

“Understanding Model, Experimental and Population Level Variance in Cognitive and Neuron Simulations”, Schiek,
Warrender, DARPA Neural Restoration Workshop, SNL, Albuquerque 11-2010

R. Schiek and C. Warrender, “Using uncertainty quantification to constrain dynamic neuron modeling parameters,”
International Workshop on Bio-Inspired Design at DAC, Anaheim, CA, June 2010.

R. Schiek, C. Warrender, Thornquist, Mei, Keiter, Russo, “Parallel design simulation for neurologically inspired systems”
DAC, San Diego, CA, June 2011.

R. Schiek, Warrender, Thronquist, Mei, Keiter, Russo, “Advanced partitioning and integration techniques to improve
parallel performance of densely connected neuron simulations.” Society for Neuroscience, October 2011.




