

SAND2011-6069 C

SAND2011-6069C

Cognitive Science & Technology

Neuron Simulations for Emerging Brain Maps

Principal Investigator: Richard Schiek

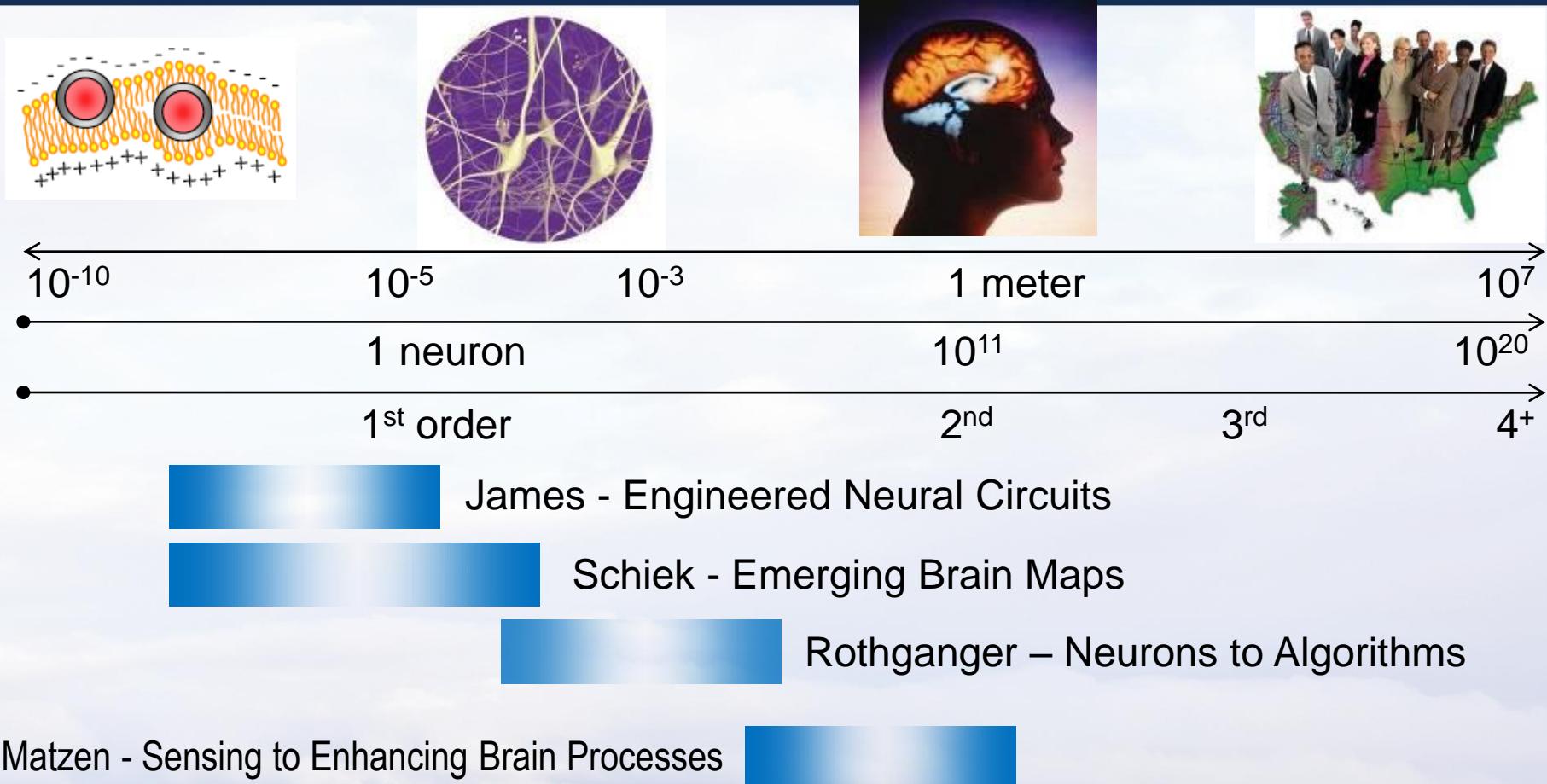
Program Manager: John Wagner

Team Members: Christy Warrender, Heidi Thornquist, Steve Verzi, Ting Mei, Mike Bernard, Alex Duda (student)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

**Sandia
National
Laboratories**

Position in CS&T Roadmap



Outline

- Motivation
- Project Goals
- Status of current work
 - Modeling hierarchy
 - Biological complexity
 - Computational map
- Publications / Presentations
- New directions

Motivation

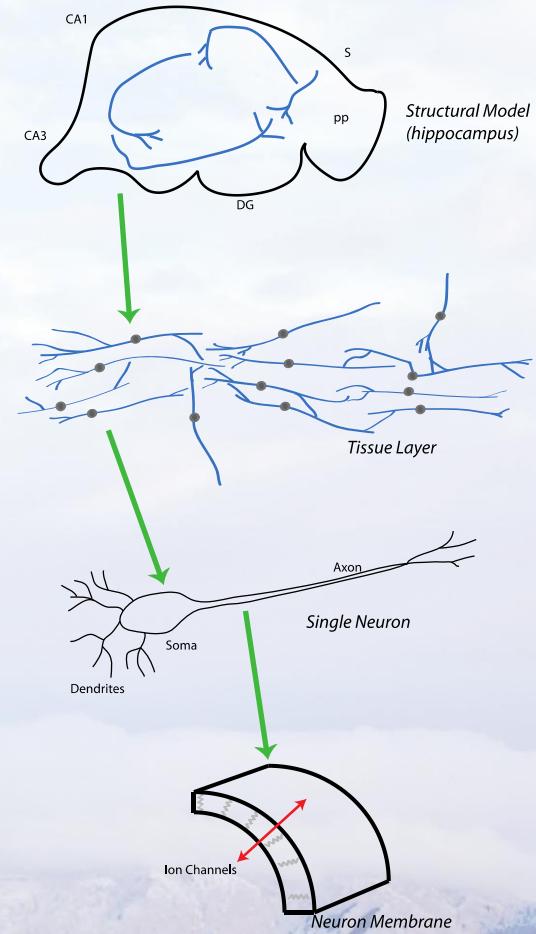
- Network problems
 - Common motif in cognitive science
 - Information flow
 - Relational influence
 - Sandia experience in electrical networks – Xyce
 - Mathematical formulation (parallel, modular physics)
 - Topological functionality (parallel, analytic)
 - Applying Xyce to cognitive and neuroscience benefits both communities (CS&T and electrical modeling)

Project Goal

- Develop a cognitive and neuron simulation framework that can address complex, multi-scale networks.
- Requires:
 - Share with the neuroscience & cognitive community
 - Interoperable with existing tools
 - Can address
 - multiple problem scales
 - multiple scientific applications.

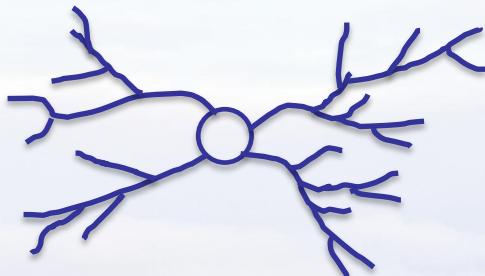
Multi-scale Rational

- Multiple, hierarchical structures in the brain.
 - Maintaining fine scale for macro modeling may not be feasible.
 - Allow building & simulating macro-model with varying fidelity of fine scale.

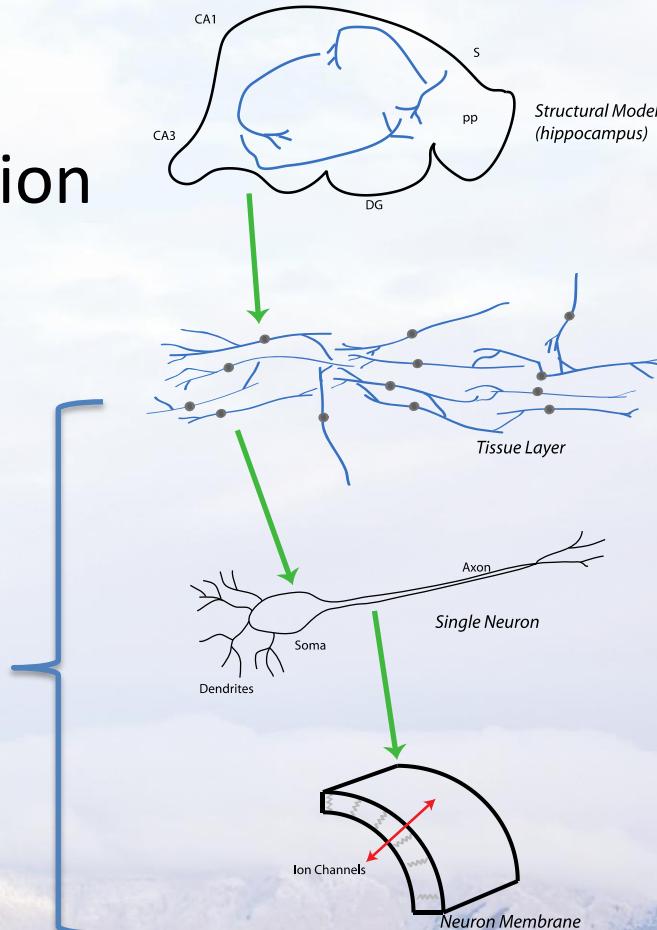


Multi-scale modeling targets

- Micro-scale:
 - ion channel & cable equation



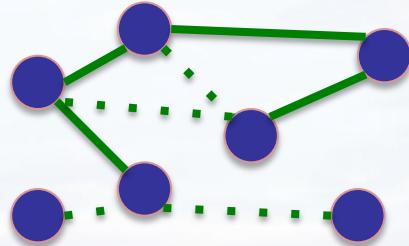
$$C_m \frac{dV_i}{dt} = -i_i^m + \frac{I_i^E}{A_i} + g_{i,i+1}(V_{i+1} - V_i) + g_{i,i-1}(V_{i-1} - V_i)$$



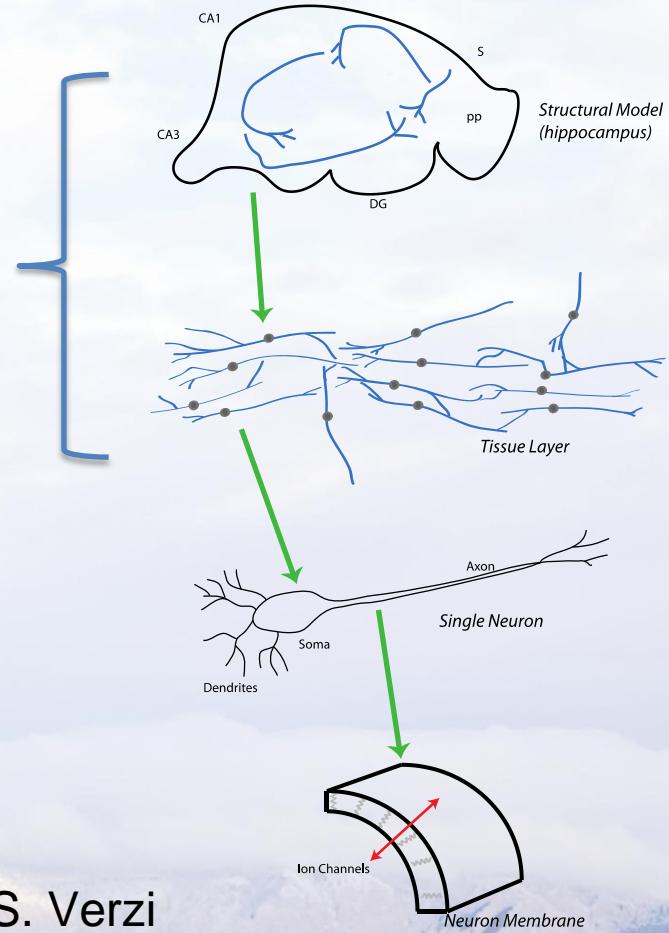
C. Warrender, H. Thornquist, T. Mei, R. Schiek

Multi-scale modeling targets

- Macro-scale:
 - Population model



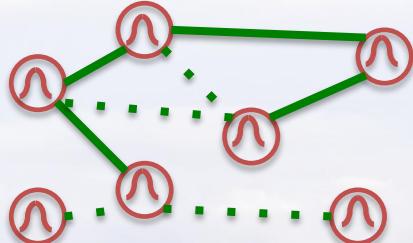
$$N_i \leftarrow \sum_{H(t)} \alpha N_j(t) + \sum_{Int} \alpha N_j \cdot S_j + \sum_{Ext} \alpha N_j \cdot S_j$$



N. Cohen, H. Eichenbaum, M. Bernard, S. Verzi

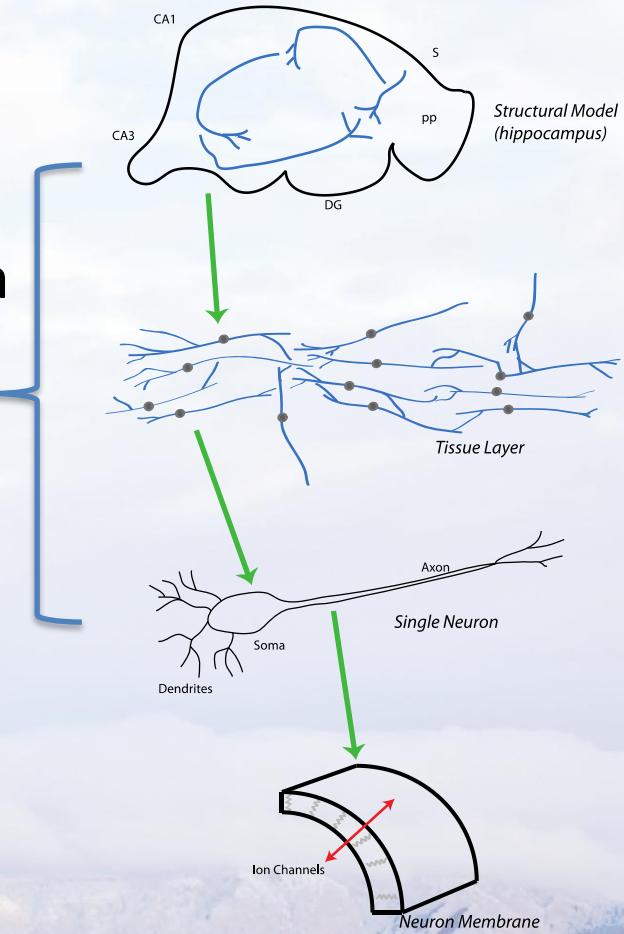
Multi-scale modeling targets

- Meso-scale:
 - Limiting biophysics
 - ion channel & cable equation
 - Want to understand what's lost when fidelity is lost



$$C_m \frac{dV_i}{dt} = -i_i^m + \frac{I_i^E}{A_i}$$

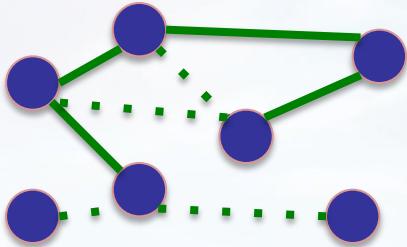
S. Levenson, A. Duda at Univ. of Illinois,
Romero & Mei, SNL



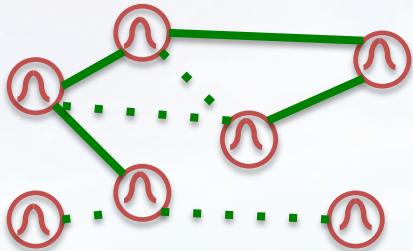
Population Modeling

- Implemented device to model a population of neurons
 - Intra-population dynamic connectivity
 - Age dependent plasticity
 - Population dynamics (neurogenesis & cell death)
 - Fully resolved time dependent population state.
 - Modeled after Gage Model
- Mike Bernard has taken lead on new LDRD proposal:
 - Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information

Proposal # 12-0274
accepted for FY12 LDRD



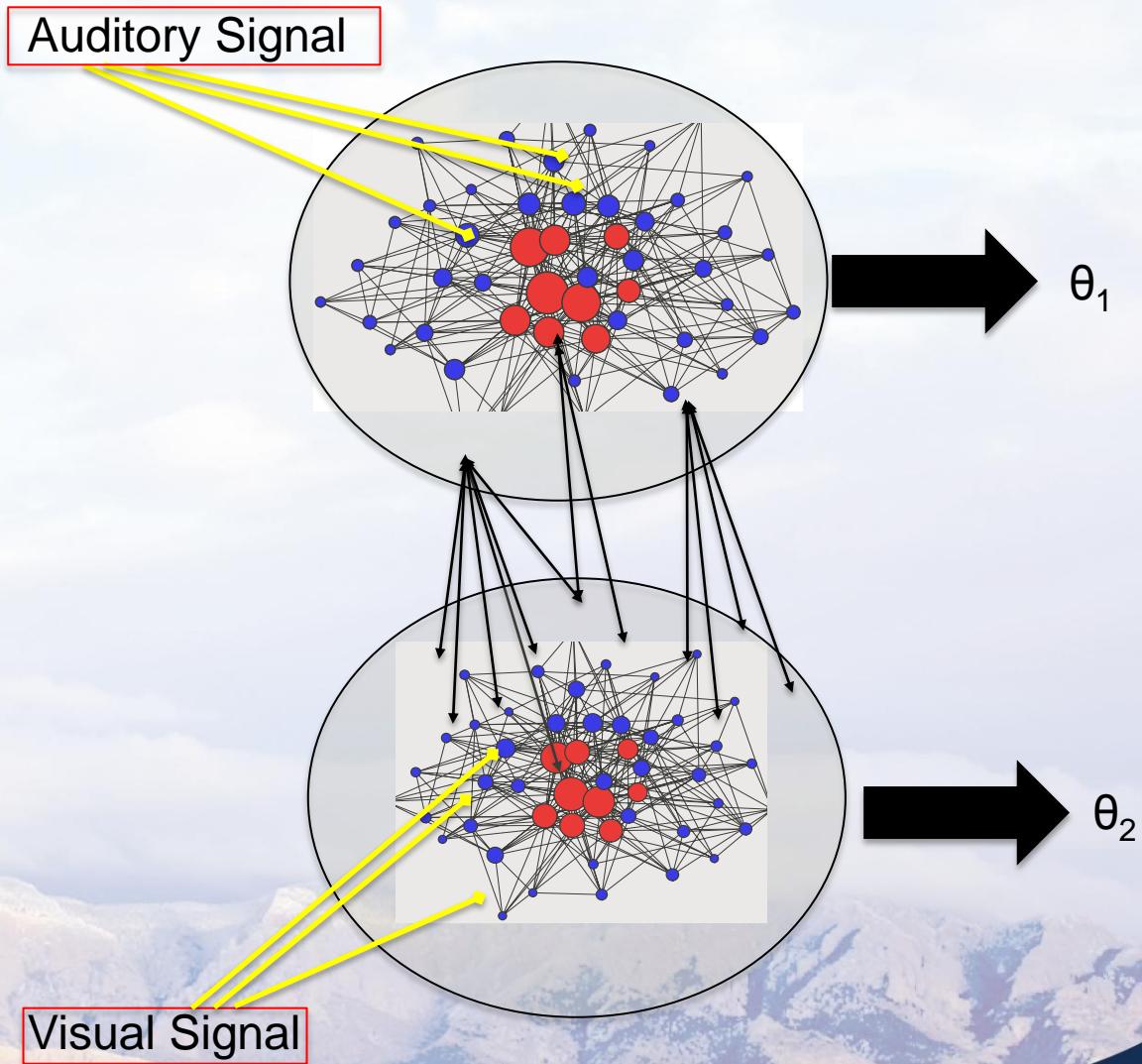
Meso-scale Modeling



- Collective Behavior Characterization
 - Alex Duda and Steve Levenson at the University of Illinois
 - Basis for a multi-modal associative memory for language acquisition and motor control.
 - Used with an embodied cognitive robotics platform (the humanoid robot, iCub).
- L. Romero & Mei Ting, SNL:
 - Networks of coupled oscillators
 - Central pattern generators, circadian rhythms
 - New technique for implicitly generating basis functions.

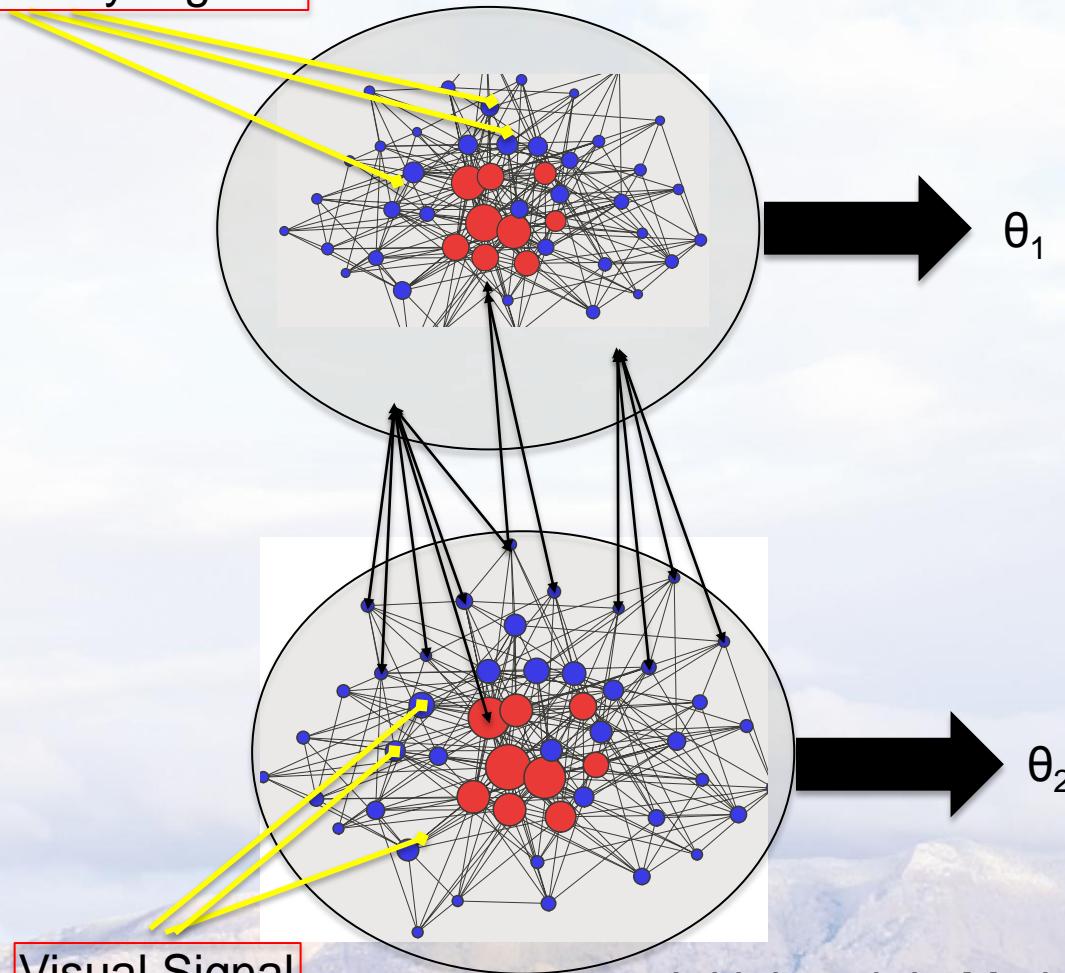
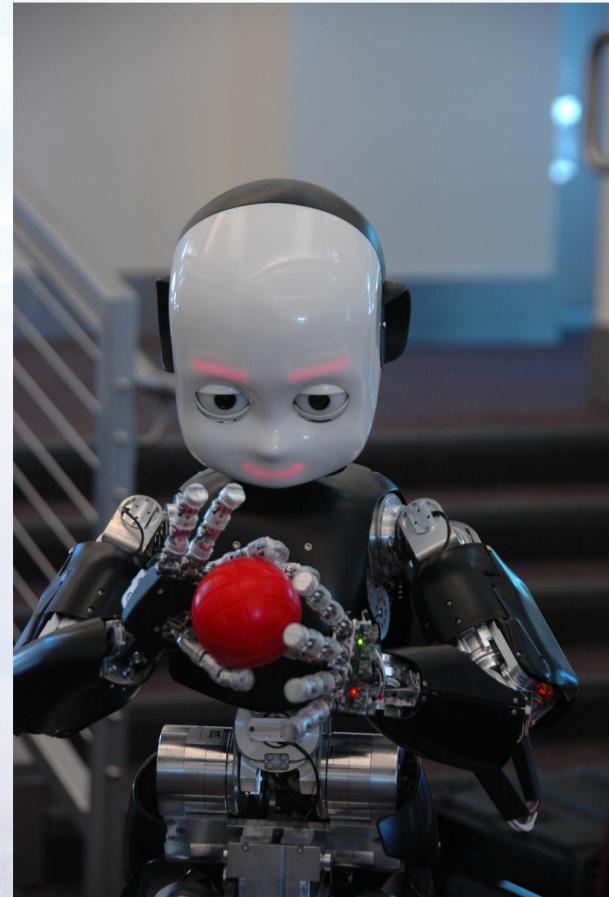
Neocortical Model

- Large populations of canonical Hodgkin-Huxley neuron model.
- Synaptic connections evolve according to a spike-timing dependent plasticity (inspired) scheme.
- Excitatory and inhibitory neurons present with proportions, spatial location, and topological connectivity that are experimentally inspired.



Neocortical Model

Auditory Signal



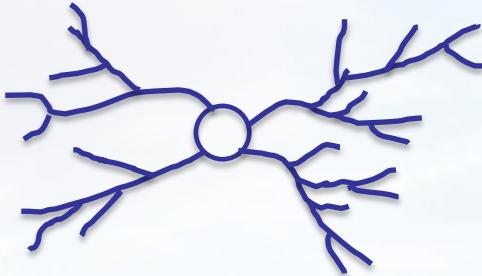
Initial work in Matlab.
Prototyping larger calculations in Xyce.

Objectives

1. Understanding/identifying population-level features that could be considered the “information-bearing signal” in the neocortex
2. Discovering robust ways to encode real-world, multi-modal objects/concepts (visual, auditory, etc.) in a population of spiking neurons.
 - Phase synchrony
 - Graph Theoretic / Network Analysis
 - Weighted Degree distribution
 - Network flow metrics
3. Use encodings as part of an inverse model for language production and motor control (to "close-the-loop" in the sensorimotor integration problem).
4. Use (1-3) as the basis for a multi-modal associative memory implemented in a humanoid robot (iCub) to acquire basic language and motor control expertise by interacting with the environment.
5. Note: Differs from Jeff Krichmar & Gerald Edelman work:
 - Looking for minimal system that can produce function
 - Discover information bearing signal to make superordinate decision.
 - Neuron populations start uncorrelated and synaptic weights change via learning.

Award for Scientific Achievement and Outstanding Presentation at *International Conference on Complex Systems*, Boston, June 2011. Alexander M. Duda and Stephen E. Levinson: *Complex Networks of Spiking Neurons: Collective Behavior Characterization*

Micro-Scale Modeling



- Detailed Neuron Models
- What?
 - Full ordinary differential equation description
 - Cable equation solved for dynamics
- Why?
 - Detailed biophysics are needed to fully describe natural systems
 - Coupling between systems requires detailed modeling
- Status
 - Multiple neuron and synapse models in place (more under development).
 - Goal is to demonstrate how Xyce performs on complex systems.

Biological Complexity

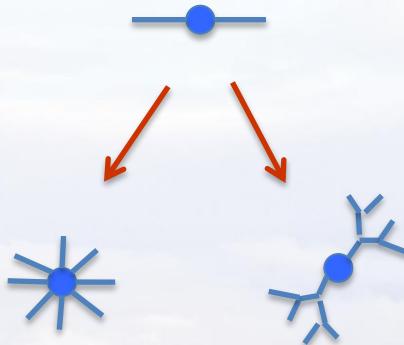
- Challenge:
 - How do Xyce & Neuron perform on real problems?
 - Extracting circuits from existing projects (i.e. Human connectome, Retina connectome)
 - Proceeding, but difficult to get complete circuits
 - DAPRA SyNAPSE – evolved graphs
 - Generate synthetic graphs using external data
 - Higher level organisms have neuron/synapse densities approaching 10,000 synapses per neuron
 - Use synaptic density to scale circuit complexity.

Human Connectome Project
www.humanconnectomeproject.org

Biological Complexity

- Increasing synaptic density – multiple meanings:

1 neuron,
2 synapse



1 neuron,
8 synapse

Point neuron

- Ignores neuron details
- Easier to implement

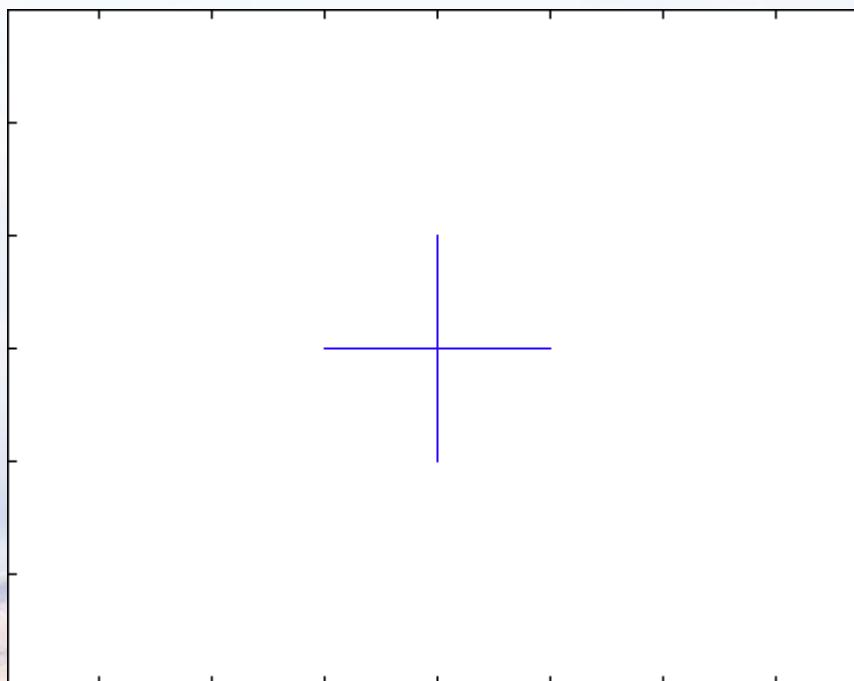
Extended neuron

- Full branching details
- Bigger simulations

Biological Complexity

Going from 1 to 10,000 synapses per neuron requires

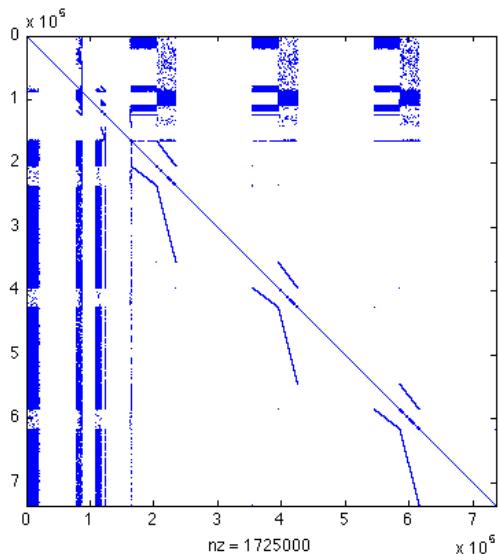
- More memory
- Parallel Strategies
 - Parsing / Loading
 - Solver preconditioning



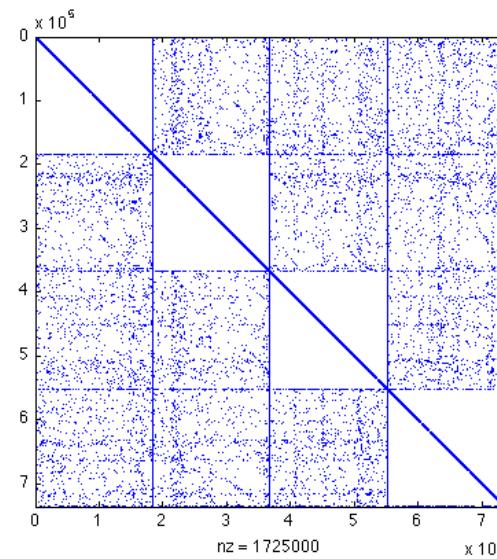
Synapses per Neuron	Num. Unknowns
10	86,000
50	366,000
100	736,000
1000	6,116,000
10,000	60,498,000

Improving solution performance

- Preconditioning of the matrix makes the work-per-time step faster



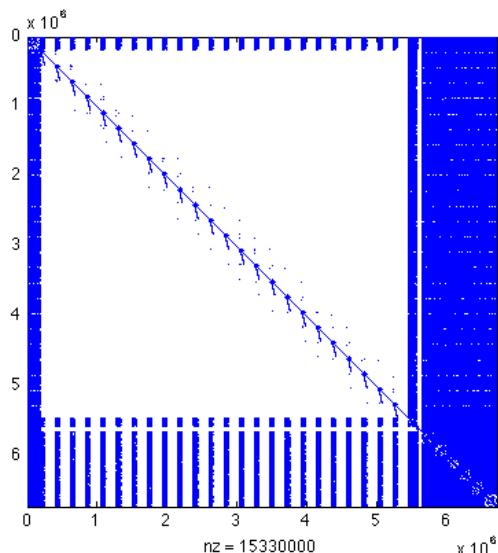
Original matrix



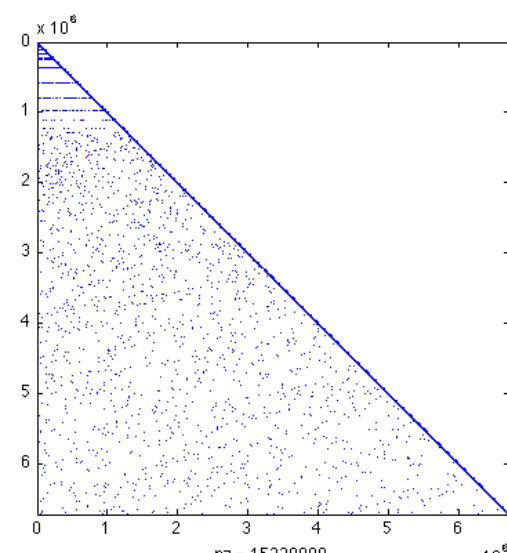
Graph / Hypergraph partitioning

Improving solution performance

- Further research has improved this (Thornquist)



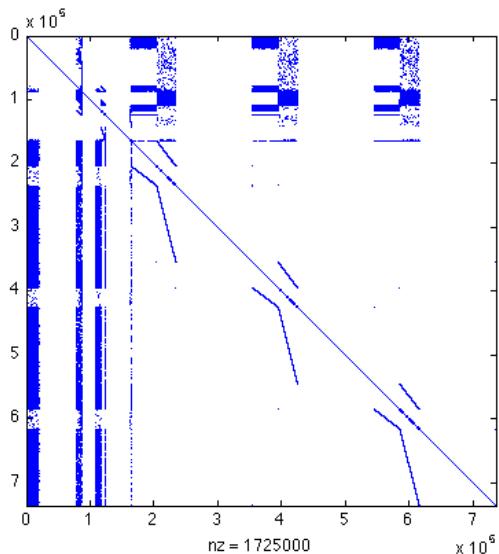
Original matrix



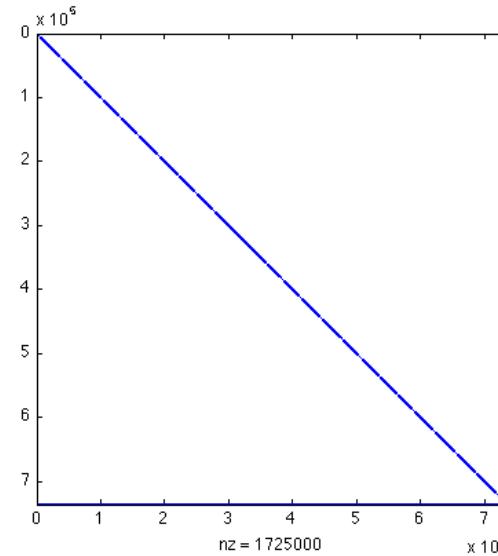
Graph / Hypergraph partitioning

Improving solution performance

- Schur-complement techniques in prototype

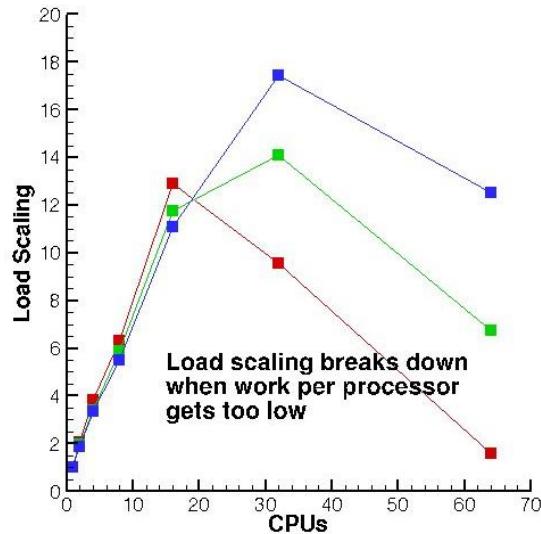
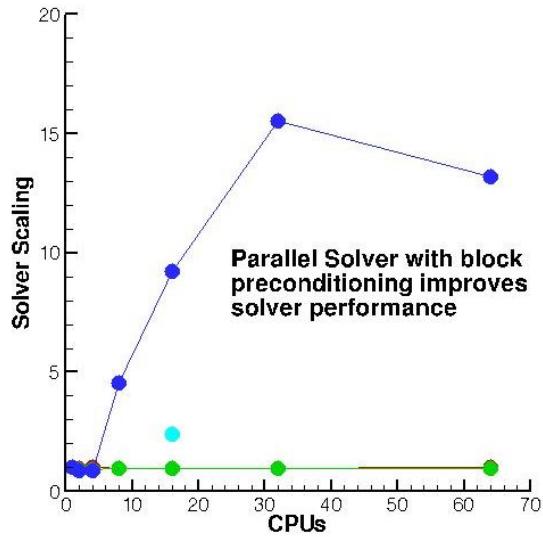


Original matrix



ShyLU (a generalized Schur-complement framework for hybrid linear solvers)
Erik Boman and Siva Rajamanickam,
H. Thornquist

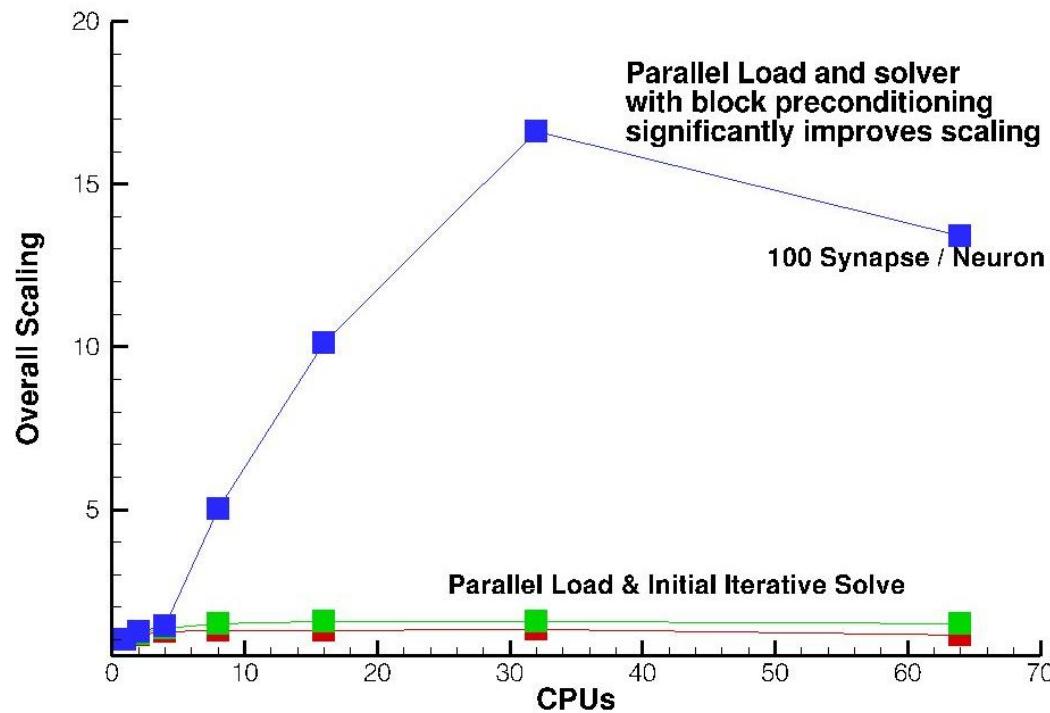
First Scaling results



Improvement from parallel solver preconditioning

- Problem loading scales as expected
- Larger problems will plateau out at higher CPU numbers
- Preconditioning for parallel, iterative solvers helps, but need more!

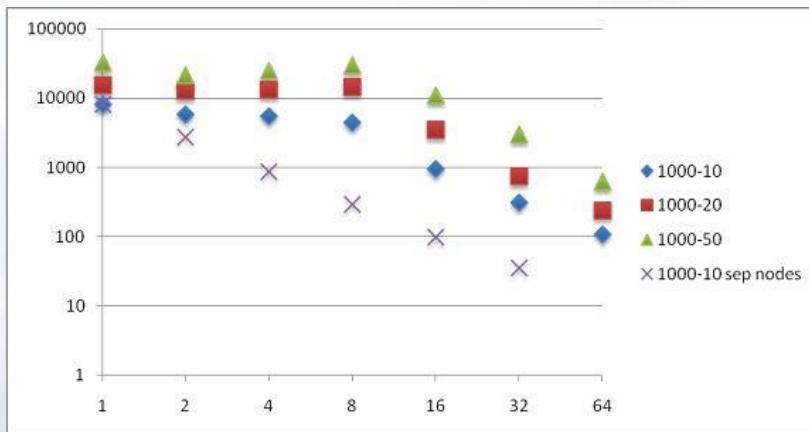
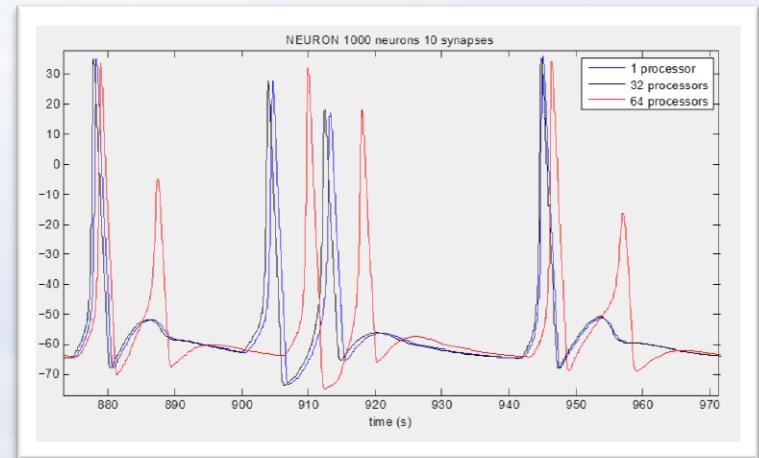
First Scaling results



Overall scaling tops out when work per processor drops

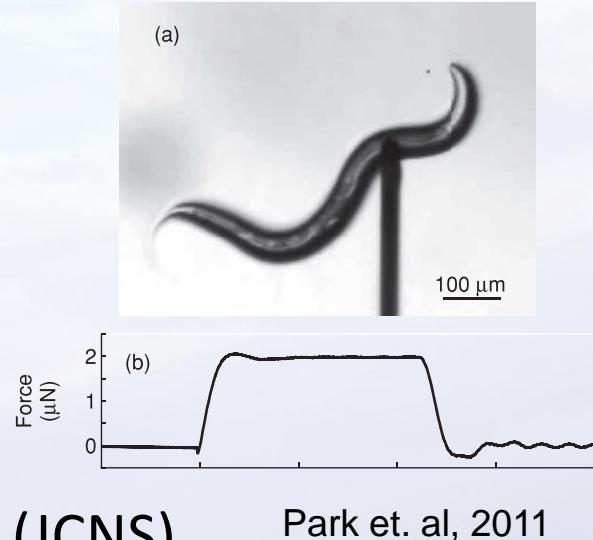
Comparing to other simulators

- Neuron
 - On average Xyce's timestep was 10x larger.
 - Parallel scale up changes underlying problem



Future Work

- Release Xyce neuron work as Open source release.
- Joint NSF Funding from work with
 - Stanford and/or Berkeley
- Publications Opportunities
 - Alex Duda's adaptive learning work
 - Scaling of densely connected networks. (JCNS)
- Post-doc starting in fall.
 - Guide a specific application in neuroscience



Publications / Presentations

- Publications
 - Relational Memory Implemented
Patrick D.K. Watson, Shawn Taylor, Craig Vineyard, Steven Verzi, Tom Caudell, Howard Eichenbaum, Neal J. Cohen.
 - Alexander M. Duda and Stephen E. Levinson: Complex Networks of Spiking Neurons: Collective Behavior Characterization, *International Conference on Complex Systems*, Boston, June 2011
- Presentations
 - Grand Challenges in Neural Computation II: Neuromimetic Processing and Synthetic Cognition, Feb 21, 2011, Santa Fe, NM
 - Design Automation Conference, June 4, 2011, San Diego, Ca
 - “Understanding Model, Experimental and Population Level Variance in Cognitive and Neuron Simulations”, Schiek, Warrender, DARPA Neural Restoration Workshop, SNL, Albuquerque 11-2010
 - R. Schiek and C. Warrender, “Using uncertainty quantification to constrain dynamic neuron modeling parameters,” International Workshop on Bio-Inspired Design at DAC, Anaheim, CA, June 2010.
 - R. Schiek, C. Warrender, Thorquist, Mei, Keiter, Russo, “Parallel design simulation for neurologically inspired systems” DAC, San Diego, CA, June 2011.
 - R. Schiek, Warrender, Thronquist, Mei, Keiter, Russo, “Advanced partitioning and integration techniques to improve parallel performance of densely connected neuron simulations.” Society for Neuroscience, October 2011.