
SPACEWIRE IN THE JOINT ARCHITECTURE STANDARD

Session: SpaceWire missions and applications

Long Paper

Leonard Burczyk
1
, Justin W. Enderle

2
, Daniel Gallegos

2
, Paul S. Graham

1
,

Richard D. Hunt
2
, Jeffrey L. Kalb

2
, David S. Lee

2
, Jacob E. Leemaster

2
,

John M. Michel
1
, and Justin L. Tripp

1

1
Los Alamos National Laboratory, Los Alamos NM 87545

2
Sandia National Laboratories, Albuquerque, NM 87185

E-mail: rdhunt@sandia.gov, jtripp@lanl.gov

ABSTRACT

The Joint Architecture Standard (JAS) is a joint project between Los Alamos National

Laboratory and Sandia National Laboratories to provide a common processing and

communication infrastructure upon which to more quickly develop payload sensing

and processing capabilities. JAS offers a flexible, scalable, and reliable solution to

space-based processing for our customer’s applications. This standardized

architecture is a modular design that allows for rapid prototyping and provides faster

system integration and testing that reduces development and integration time and

costs. The adaptable architecture meets a wide range of performance requirements

including: throughput speeds; reliability; Size, Weight and Power (SWaP) reduction;

and mechanical and electrical interfaces. The architecture also allows for evolving

design changes while minimizing impacts to established interfaces.

The primary capability enabling technologies in JAS are packet-switched network

connectivity and reconfigurable computing. The fundamental technology of packet-

switched networks in JAS are serial interconnects. Because JAS has a broad range of

data rate requirements and has the added challenge of providing reliable command,

control and data handling in a space environment, this architecture has employed two

network tiers connected using Consultative Committee for Space Data Systems

(CCSDS) and European Cooperation for Space Standardization (ECSS)

communication protocol standards. One of these tiers is driven by high performance

gigabit-per-second class communication for high bandwidth sensors and data

processing. The other tier is driven by reliable command and control that can also

support moderate data transfer rates. SpaceWire is an excellent candidate and is the

serial interconnect of choice for the latter tier.

BACKGROUND

The JAS hardware architecture defines several standard hardware nodes connected

through a minimal number of serial and discrete interconnects. Each of these nodes

provides a fundamental capability such that a set of them can be combined to form the

basis of a payload data processing system.

SAND2011-6032C

mailto:rdhunt@sandia.gov
lgalleg
Typewritten Text
SAND2011-6032 C

The JAS node types are

shown in Figure 1. The

Configuration and Host

Interface Node (CH) provides

the interface between the

payload and Host Platform.

This node contains a

radiation-hardened processor

to allow it to reliably boot and

operate when power is

applied to the payload. It

runs the application software

used for configuring,

controlling and monitoring

the payload and provides the

interfaces to connect the

payload to the ground system.

The Non-volatile Mass

Storage Node (NV) contains

non-volatile memory for

storing applications and data.

The SDRAM Mass Memory

Node (SD) contains a large

amount of fast and dense memory. It provides a temporary storage capability for

processing nodes to manipulate payload data as well as being a communication buffer

between nodes. The Reconfigurable Processing Node (RP) and Reconfigurable

Sensor Interface Node (RS) contain a large reconfigurable logic device, such as the

Xilinx Virtex 5, that can be configured to run hardware applications or a soft-core

CPU that runs software applications. They are general purpose, high performance

processing nodes intended to process payload data. The network interface node (NI)

provides network connectivity for slower sensors and lower performance critical

processing. The RS and NI nodes contain an I/O interface that allows the

development of program-specific interface boards to connect to payload hardware

devices. The intent of these nodes is to provide an interface to sensors and perform

any necessary pre-processing of their data prior to passing it to other RP, CH or NI

nodes for final processing and downlink.

The number and type of nodes to use in a JAS based payload are determined by

system requirements. Complex custom backplanes are eliminated by having a

minimal number of physical interconnects between nodes which allows this node-

based architecture to scale to most applications. SpaceWire can be used for routing

payload command and state-of-health data as well as moderate bandwidth mission

data. For high bandwidth requirements, additional networks based on Peripheral

Component Interconnect Express (PCIe), Serial RapidIO (SRIO) or custom fast serial

can be used.

Each JAS node contains a field-programmable gate array (FPGA) that provides a set

of common functions to the node. This FPGA is referred to as the System Monitoring

and Communications (SMAC) device. As shown in Figure 2, the SMAC provides a

standard set of physical interfaces for communicating with devices both on and off the

Figure 1: JAS Node Architecture

node. It includes a scalable

SpaceWire network router

with at least 5 ports and a

suite of serial and parallel

I/O interfaces.

The SMAC runs a suite of

firmware intellectual prop-

erty (IP) that provides a

standard set of services.

SpaceWire communication

is provided by router and

endpoint cores designed by

NASA Goddard. A Remote

Memory Access Protocol

(RMAP) core provides a

common interface to read

and write to memory-mapped peripherals connected to the SMAC. Standardizing on

RMAP as a communication protocol reduces the number of protocols that must be

supported to communicate with hardware peripherals connected to JAS-based

payloads. In addition to the I/O interfaces, RMAP is also used to communicate with

other standard devices on JAS nodes such as Point-of-Load (POL) power converters

and EEPROM storage devices containing Intelligent Platform Management Interface

(IPMI)-based node identification records. This storage format defines items like node

capabilities, product and firmware versions, and a unique device identifier. By

accessing this information over the SpaceWire network using RMAP, the

configuration host node can gather detailed information about each node using a

standard protocol.

The SMAC may contain additional features as well. A SpaceWire broadcast

capability can be used by any endpoint to deliver a single SpaceWire message to a

variable number of other nodes in an efficient manner. This broadcast capability can

be used in conjunction with SpaceWire timecodes to achieve coarse-grained time

synchronization between nodes without the use of discrete signals. RMAP-accessible

SelectMAP and JTAG interfaces provide remote configuration and debugging of

Xilinx FPGAs over SpaceWire. This library of services will continue to grow as JAS

evolves and the SMAC is a versatile and critical component in standardizing the JAS

architecture.

JAS COMMUNICATION

PROTOCOLS

There are a number of

communication proto-

cols being used on a

JAS Spacewire net-

work. Table 1 shows a

list of these protocols

and their Protocol ID

(PID) values. The

RMAP and RDDP

Figure 2: System Monitor and Communications Device

Protocol Name Value

Remote Memory Access Protocol (RMAP) 1

Reliable Data Delivery Protocol (RDDP) 238

JAS Packet Protocol (JPP) 240

Goddard Memory Access Protocol (GMAP) 241

JAS RDDP (JRDDP) 242

Time Protocol 243

Broadcast 245

Broadcast 246

Table 1: SpaceWire Network Protocols

protocols are being used from the defined set of ECSS SpaceWire standard protocols

[3]. The others were developed for JAS and assigned values in the user-defined range.

Software applications built on JAS will use a service oriented architecture based on

the CCSDS Spacecraft Onboard Interface Services (SOIS) standard [4]. This standard

specifies a layered architecture for communicating with devices and applications over

serial data links. A representation of the CCSDS SOIS architecture showing the JAS

data links and protocols is shown in Figure 3. Services can be implemented as

hardware (FPGAs) or as software based on the needs of the application.

SpaceWire is used by JAS for payload command and control as well as low-to-

moderate rate mission data routing. Applications will use one of three fundamental

communication protocols for sending data over SpaceWire: the Remote Memory

Access Protocol (RMAP); the JAS Reliable Data Delivery Protocol (JRDDP); or the

JAS Packet Protocol (JPP). Other SpaceWire protocols are used for specific JAS

functions such as router configuration or broadcasting time between the nodes.

RMAP is used to access remote memory based devices across a SpaceWire data link.

This protocol is implements the standard managed by the ECSS committee [5]. The

protocol itself supports three primary operations: read, write and read-modify-write.

While this is not a reliable delivery protocol in that it will not retransmit the

commands if there is an error, it does support the ability to notify the sender that the

operation was successful. It has the capability of supporting write operations that both

verify the data prior to writing it as well as acknowledge that the data was written.

The JAS Reliable Data Delivery Protocol (JRDDP) is a reliable packet transmission

protocol used for guaranteed data delivery between two applications over a

SpaceWire data link. It is based on the RDDP protocol created by NASA for the

GOES-R program and has been modified to make it more flexible so it can meet the

Application

Layer

Application

Support Layer
CMD & Data

Acquisition

Services

C
o
m

m
u
n

ic
a

tio
n

 M
a

n
a

g
e

m
e
n
t

Subnetwork

Layer

Transfer

Layer

Network Protocol

Time

Access

Service

File &

Packet Store

Services

Message

Transfer

Service

Device

Enumeration

Service

Mission

Specific

Applications

JAS Packet

Service

Memory

Access

Service

Synchronization

Service

Device

Discovery

Service

Test

Service

Transport Protocol

R
M

A
P

J
R

D
D

P

SpaceWire Ethernet

S
o

c
k
e

t

Rapid I/O

R
a

p
id

 I
/O

J
P

P

G
M

A
P

T
im

e

B
ro

a
d

c
a
s
t

Figure 3: CCSDS SOIS with JAS Protocols

needs of JAS payloads [6]. JRDDP consists of essentially two parts, a sender and a

receiver. The sender accepts data from a user application, segments the data into

smaller pieces in accordance with user-defined Maximum Transmission Unit (MTU)

of SpaceWire, packetizes it for transmission, and then sends it over the data link.

Transmission includes a closed-loop acknowledgement packet that is returned to the

sender to confirm correct delivery of the packet to the remote application. The

receiver accepts SpaceWire packets read from the network and reassembles them to

create the original data message. Once reassembled, the data is delivered to the

receiving application in the identical form as originally sent. If any errors occur in

this transmission, timers will expire on the transmission side, and the sender will try

and resend the data for a user-definable number of times.

The JAS Packet Protocol (JPP) provides the capability to send a JAS data packet over

a SpaceWire data link. It is a best-effort protocol that provides little error checking

and no retransmission capabilities. As such, JPP requires little processing overhead

which also makes it easy to implement in hardware or for testing purposes. JPP

supports sending a single JAS packet within a single SpaceWire packet. The

maximum JAS packet size is 64Kbytes. Since JAS packets contain a Cyclic

Redundancy Check (CRC) as part of their definition, this CRC can be used to check

the integrity of the JAS packet by receiving applications. The CRC combined with a

packet sequence counter, provide the tools necessary for reliable data transfer. In the

future, if JAS continues to use this protocol, a segmentation capability will be added

for the case that a maximum SpaceWire MTU size is enforced.

The Goddard Memory Access Protocol (GMAP) is used specifically to configure the

Goddard SpaceWire routers, and the GMAP packet format expands on the SpaceWire

defined packet. There are three GMAP functions: GMAP Write, GMAP Read, and

GMAP Read Response. When sending a GMAP Read request to a Goddard router,

the GMAP protocol inserts a variable length reply address field into the packet which

the router copies byte-for-byte to the address field of the Read Response packet. The

router will also insert a SpaceWire protocol ID into the response packet as well as the

final return address byte. The return address and protocol ID allow the Read

Response packet to be routed to the node that originated the read request and

processed by GMAP protocol service. GMAP writes occur without any response

from the router so there are no additional capabilities in the router to support this

function.

The Time Protocol is used to send an absolute time message from one node to another

within a payload. Typically, a single node will maintain the reference time and

broadcast it out to all other nodes. This protocol is intended to be used along with

SpaceWire timecode packets which are used as the low-latency epoch for telling the

receiving nodes that the previously delivered time is valid. This protocol is also

intended to be used with the broadcast protocol to enable a coarse-grained time

distribution solution for payloads. Discrete hardware signals between nodes can also

be used to implement a time distribution solution if more precise timing is required.

The Broadcast Protocol provides the capability for a single node to send a SpaceWire

packet to any number of nodes in the system. It uses two different SpaceWire

protocol IDs to accomplish this. The combination of the two packet types handles the

broadcasting of the packet to all SpaceWire routers and endpoints while eliminating

any duplicate deliveries.

JAS provides standard computing and data services for a wide range of sensor

systems from small, simple networks to large, complex networks consisting of dozens

of nodes. To support this flexibility, the network is divided into subnets at each router

and a two-byte SpaceWire regional address is utilized. The first address byte delivers

a packet to a specific router, and the second byte delivers the packet to a specific

endpoint or application attached to that router. By knowing the topology of the

network, routing tables can be established which will delete the first regional address

byte from the SpaceWire packets intended for its neighbors, leaving only the

application logical address when the packet reaches the intended router. This regional

addressing scheme allows remote nodes to communicate with all other nodes using

only standard SpaceWire routing, but without the need to assign separate logical

addresses for each unique endpoint, which would quickly overrun the available

logical address space.

To establish the topology and routing tables, JAS implements two options. The first

option is a manual process and requires a priori knowledge of the network. Details of

the topology, which includes the physical addressing paths to each router, and the

individual routing tables, can be uplinked to the CH node. Using physical addressing

along with either the GMAP or RMAP protocol, the CH node loads all the routing

tables. The second option uses a network discovery algorithm which, by using

physical addressing and polling each port of a router, establishes the topology. Then,

a routing algorithm establishes the routing tables. This auto-discovery method allows

for a quick way to establish the SpaceWire network as nodes are added or deleted

giving the system a level of plug-and-play capability.

JAS DATA FORMATS

The JAS architecture is designed to be a collection of nodes interconnected through a

peer-to-peer network topology based on SpaceWire. Transferring data across the

network requires a packetized data format. A logical choice was to use a data format

based on the CCSDS Space Packet Protocol Standard [1] and ECSS Packet Utilization

Standard (PUS) [2]. A combination of these standards were used to create the JAS

command and telemetry packet formats (JAS Packets) shown in Figure 4 and Figure

5. The structure of JAS packets are identical to those defined for a CCSDS/PUS

packet with the

optional fields defined

or additional fields

added as needed by

JAS. The source and

destination Application

Identifiers (APIDs) are

used to describe the

generating and

receiving entities for

the packet. The

Transaction_ID can be

used as a sequence

counter by applications

that wish to maintain a

list of outstanding

Figure 4: JAS Command Packet

command requests in

which a telemetry

response is expected.

The last two important

fields are the Service

Type and Service

Subtype fields. These

are used to identify the

packet data contents

and follow the services

that are described in

the PUS specification.

The only other

modification to the

standards was to

replace the PUS packet

version number with

the JAS packet version number in the secondary header. We needed a method to

track changes to the JAS packet format and we had no intentions of changing it even

if there are future changes to the PUS standard.

JAS SERVICES

Using JAS packets as the data format for communicating between applications across

a SpaceWire network, a set of services were defined to identify the data contents and

format. The JAS packet services are based on the PUS service concept. There are a

set of standard services described within PUS and these can be used if appropriate but

they are targeted primarily for communication between the payload and ground

system. A set of additional on-board services is needed for communication between

payload applications. Table 2 shows a subset of these additional services, defined for

JAS, along with a brief description of each. The service numbers were chosen based

on the user-definable range expressed within the PUS specification. Within each

service, subtypes were also defined as needed. For example, Table 3 shows two

service subtypes defined for the File Access Service. These subtypes correspond to a

command packet for requesting the contents of a remote file system and the associated

telemetry packet that contains the

response.

JAS services provide a

straightforward interface to

develop applications and provide

for a set of standard services as

well as the capability to create sets

of mission specific services. At

the current stage of JAS

development, these services are

still evolving as the functional

aspects of the nodes evolve. The

intent is that there will be fixed set

of services targeted to JAS

Figure 5: JAS Telemetry Packet

Service

Number
Description

128 Device Access Service

129 File Access Service

130 Platform Management Service

131 Time Management Service

132 Sensor X Service

133 Sensor Y Service

134 Test Service

Table 2: JAS Packet Services

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000

common functions, such as the file system service, and there will be a reusable set of

services for program-specific applications.

CONCLUSION

To date, networks ranging from two standalone nodes, a configuration host node and a

network interface node, to a network of a dozen nodes including multiple

reconfigurable processing nodes in a VPX chassis have been demonstrated. Nodes

from both Los Alamos and Sandia have been combined and interconnected with

SpaceWire for the command and control network. SpaceWire nodes can both be

directed from either simulated ground control or networked CH nodes. The rich

protocol support and extensibility has made SpaceWire an excellent candidate for

reliable communication and is the serial interconnect of choice for reliable command

and control at moderate data transfer rates.

REFERENCES

1. The Consultative Committee for Space Data Systems (CCSDS), “Space Packet

Protocol”, CCSDS 133.0-B-1, September 2003

2. European Cooperation for Space Standardization (ECSS), “Ground Systems and

Operations – Telemetry and Telecommand Packet Utilisation”, ECSS-70-41A, 30

January 2003

3. European Cooperation for Space Standardization (ECSS), “SpaceWire Protocols”,

ECSS-E-ST-50-11C Draft 1.3, July 2008

4. The Consultative Committee for Space Data Systems (CCSDS), “Spacecraft

Onboard Interface Services”, CCSDS 850.0-G-1.1, May 2010

5. European Cooperation for Space Standardization (ECSS), “SpaceWire – Remote

Memory Access Protocol”, ECSS-E-ST-50-52C, February 2010

6. Sandia National Laboratories, “Joint Architecture Standard Reliable Data Delivery

Protocol”, JRDDP-001 Version D

7. Sandia National Laboratories, “Joint Architecture Standard Communication

Services Specification”, JAS-CSS-00001 Version C Draft 4

File Access Service

Service

Type

Service

Subtype

Subtype Description Cmd Tlm Service Parameters Data Types and Description

129 1 File System Directory

Listing Request

X File_System_ID File_System_ID is an unsigned integer that identifies the

file system. It is assumed there is only the root directory in

the file systems for JAS so a directory identifier is not

required

129 2 File System Directory

Listing Report

X File_System_ID,

Directory_List

File_System_ID is an unsigned integer that identifies the

file system. Directory_List is a null-terminated string

which is contains a list of each file and attributes. Each

file is a record separated by a '|' (pipe) character and ends

with a '\n' (newline) character. The fields and format of a

single entry would look like

"file_name|size|modification_time|create_time\n".

Table 3: File Service Subtypes

