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Conceptual model

Learning more about how CO2 injection affects subsurface microbes is useful for 
developing biological strategies to enhance CO2 storage.

Unknowns:
scCO2 tolerance?

Variation in aqueous 
chemistry – electron 
donors, energy 
available, pH?

Biomass distribution?



Examine how variation in aqueous chemistry after CO2 injection 
affects the balance between subsurface microbial reactions

• Calculated variation in energy available for microbial reactions 
during 2 CO2 injection field experiments:

- Frio Formation experiment
- Zero Emission Research and Technology (ZERT) experiment

• Considered 3 groups of microorganisms:
- Fe(III) reducers (goethite, hematite, magnetite)
- SO4

2- reducers
- methanogens

• Two electron donors:
- acetate
- hydrogen

Objective



Energy available

• Energy available to a group of microorganisms is the free energy released by 
that groups metabolic reaction:

activity 
coefficient

molality

stoichiometric
coefficient

• Speciation modeling - GWB using LLNL dataset and B-dot equation

• Result normalized to conditions prior to CO2 injection:



Variation in aqueous chemistry

Data sources – [Frio] Kharaka et al. (2006) Geology 34; Kharaka et al. (2007) J. Geochem. Expl. 89; 
[ZERT] Kharaka et al. (2010)  Environ. Earth Sci. 60

Precipitation events



Fe(III) reduction 8 Goethite + CH3COO- + 17 H+  2 CO2(aq) + 14 H2O + 8 Fe2+

8 Goethite + 4 H2(aq) + 16 H+  16 H2O + 8 Fe2+

SO4
2- reduction SO4

2- + CH3COO- + 3 H+  2 CO2(aq) + 2 H2O + H2S(aq)
SO4

2- + 4 H2(aq) + 2 H+  4 H2O + H2S(aq)

methanogenesis CH3COO- + H+  CO2(aq) + CH4(aq)
CO2(aq) + 4 H2(aq)  2 H2O + CH4(aq)

Frio – energy available



ZERT – energy available

Precipitation events Precipitation events



Microbial reaction rates

energy available

Factors that control microbial reaction rates include the kinetics of electron 
donation and acceptance as well as energy available in the environment:

Kinetic model – Jin and Bethke (2002) Biophys. J. 83; (2003) Appl. Environ. Microbiol. 69; 
(2005) Geochim. Cosmochim. Acta 69; (2007) Am. J. Sci. 307

The increase in ∆GA for Fe(III) reducers resulting from 
CO2 injection could allow the rate of Fe(III) reduction 
to increase. 50 nm

goethite
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Conclusions and implications

• Geological CO2 storage can create 
conditions that are more favorable for 
microbial Fe(III) reduction

• The rate of Fe(III) reduction could increase 
as a result

• Result implies a biological pathway for 
enhanced trace element mobility

• Fe(III) reducers and other acid-consuming 
species may be ideal for biological strategies 
to enhance carbon storage
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More details can be found in Kirk (2011) ES&T 45, 6676-6682
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