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Abstract

Given hundreds of potential gas detector locations, a stochastic programming formulation is developed for
determining the optimal placement of these sensors for detecting gas release events in a petrochemical facilities.
Using a rigorous dispersion model with actual geometry from the process facility, hundreds of different scenarios
are simulated using FLACS with different leak locations, process conditions, and weather properties. Pyomo, a
python-based optimization package, is used to formulate the multi-scenario, mixed-integer programming problem.
Using CPLEX to solve the formulations, different objective functions are explored. Optimal results are presented
for the minimum number of sensors required to detect all scenarios, the minimum expected time to detect events
using a fixed number of sensors, and a robust formulation that minimizes the maximum time to detection across all
scenarios. In all these examples, the formulation can be solved efficiently for real, large-scale problems.
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Introduction
Gas detection, specifically the detection of combust-

ible and toxic gas release events, is a key component of
modern process safety. Combustible gas detection re-
lies upon the detection of a gas before it reaches either
its lower explosive or lower flammable limit, LEL and
LFL, respectively. These limits refer to the gas concen-
trations at which a dispersed gas cloud in air will al-
low a flame front to spread when exposed to an ignition
source. Toxic gas detectors are designed to detect and
alarm at a concentration related to the impact on human
health, typically expressed in parts per million (ppm).
Usually, combustible gas detectors and toxic gas detec-
tors are calibrated to alarm when they detect some fixed
fraction of the LEL, LFL, or toxic gas limits.

In addition to proper selection of the sensor specifi-
cations needed for a particular plant, appropriate place-
ment of these sensors is required to ensure effective de-
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tection of likely gas release events. Improper placement
of gas detectors may reduce the probability of detecting
a particular release, or even yield a sensor completely
useless. Given complex process geometries and vary-
ing weather conditions, the best placement of gas sen-
sors is not obvious. In this paper, we present a stochas-
tic programming formulation for determining the opti-
mal plant-specific placement of gas detectors. FLACS,
a modern package for explosion and dispersion mod-
eling, is used to simulate hundreds of process specific
leak scenarios. Armed with scenarios from the rigor-
ous dispersion model, a multi-scenario, mixed-integer
linear programming (MILP) formulation is developed
to perform optimal sensor placement over several dif-
ferent objectives. This problem formulation is used to
determine the minimum number of sensors required to
detect all release scenarios. With small adjustments to
the problem formulation, we can solve for the sensor
placement that minimizes the expected time to detec-
tion across all scenarios, as well as a robust optimiza-
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tion formulation that minimizes the maximum time to
detection. Furthermore, since the approach is very effi-
cient, we can solve the formulation repeatedly, varying
the number of available sensors, and show the overall
effectiveness of increasing the number of sensors in a
plant.

Background material is discussed first. Next, the
multi-scenario MILP formulation for the optimal place-
ment of gas sensors is given. Using this formulation,
along with slight modifications, numerical results on a
real process geometry are presented. In closing, we re-
view the presented material and offer conclusions and
ideas for continuing research.

Background
Two types of detectors are commonly used for the

detection of combustible gas clouds: catalytic and in-
frared sensors. Catalytic gas sensors detect the presence
of a chemical contaminant by an oxidation reduction re-
action with the catalyst. These sensors provide accurate
contaminant concentrations in air and have a low unit
cost, however, they are susceptible to catalyst poison-
ing and will not reveal a sensor failure without regular
maintenance. Infrared sensors work by detecting the
amount of infrared energy absorbed by a contaminant
cloud at specific wavelengths. These sensors possess a
higher unit cost and lower overall accuracy in terms of
concentration quantification, but can often detect con-
taminant over a large area and require less maintenance.

For toxic release events, electrochemical or semi-
conductor gas detectors are typically used. Electrochem-
ical detectors allow a gas to diffuse through a porous
membrane to an electrode where it can either be oxi-
dized or reduced to determine concentration. A semi-
conductor detector detects a gas by changes in resis-
tance on a conductive surface in the presence of a con-
taminant. Both detector types are calibrated to alarm
at a chemical-specific threshhold concentration. All of
the sensors mentioned can be used in either a fixed or
portable form; however for the purposes of this paper,
all sensors are considered fixed.

The placement of gas detection sensors in the petro-
chemical industry, whether for toxic or flammable re-
leases, is typically based upon heuristics or “rules of
thumb” which rely on identifying equipment of interest
and the properties of the gas in question. Sensors are
then placed near areas where leaks are expected to orig-
inate (UK Health & Safety Executive, 2011). However,
given several uncertainties (e.g., leak location, process
conditions, and weather conditions), we seek to develop
a stochastic programming framework that rigorously con-
siders these uncertainties when determining the sensor
placement.

The work presented in this paper is an extension of

a mixed-integer programming based optimization ap-
proach developed by Berry et al. (2005) for the opti-
mal placement of contamination sensors in large-scale
water distribution networks. By precalculating a large
set of possible contamination scenarios, point sensors
can be placed throughout the network in order to min-
imize the effects of a contamination event subject to a
set of cost constraints. Extensions to this work were
made to relax constraints that required each event to be
detected by at least one sensor with the addition of an
unphysical “dummy” location (Berry et al., 2005). Ad-
ditionally, further extensions considered effects of time
on the sensor placement (including time to detection)
(Berry et al., 2006). In our work, we will extend this
stochastic programming formulation to determine opti-
mal placement of gas detectors in process facilities.

Berry et al. (2005) assumed that point sensors de-
tected contamination if and only if the contaminant phys-
ically passed through the sensor. In this sense, the sen-
sors used in their formulation exhibit the same proper-
ties possessed by infrared and catalytic point gas sen-
sors used in the petrochemical industry (Fire & Safety
World Online, 2011). Additionally, the industry uti-
lizes line-of-sight infrared sensors which can detect a
contaminant crossing the infrared beam over long dis-
tances. These sensors are not as effective at determining
the size or concentration of a contaminant cloud, but are
extremely adept at detecting the existence of a release
and also fail in a manner which triggers a false posi-
tive. This attribute lowers the probability of a missed
detection. The water sensor network problem and the
open-air gas dispersion problem differ mainly in the
simulation frameworks used to create the possible con-
tamination (or gas leak) scenarios. An adaptation of
the sensor placement formulation to the open air prob-
lem has been proposed for homeland security purposes
by Hamel et al. (2006). In their work, computational
fluid dynamics (CFD) is incorporated to generate a set
of potential urban attack events where a nuclear, biolog-
ical, or chemical agent is dispersed into air. This CFD
modeling is a corollary to the EPANET water network
model used in the work by Berry et al. (2006). In our
work, CFD software is used to generate rigorous disper-
sion simulations for various leak locations, conditions,
and weather variables. The event scenarios for this pa-
per were generated by GexCon using their CFD soft-
ware, FLACS (GexCon, 2011). These simulations were
based on flammable gas dispersion using a real process
geometry.

Sensor Placement Formulation
The sensor placement formulation for this paper is

built upon the work previously developed by Berry et al.
(2006). This formulation considers a generic, represen-



Table 1. Tables of Symbols

Symbol Meaning
L = {l1, l2, l3, ..., lN} Set of candidate sensor lo-

cations
N Number of candidate sen-

sor locations
l Sensor location index

A = {a1,a2,a3, ...,aM} Set of release events
M Number of release events
a Release event index

La Candidate sensor loca-
tions affected by event a

αa Probability that event a
occurs

Da,i Damage coefficient for
event a at location i

p Maximum number of sen-
sors allowed

sl Binary variable for sensor
placement

xa,i Variable for the sensor at
location i that first detects
event a

q Dummy sensor location
for undetected events

tmax Maximum time to detect

tative chemical or refining facilty. In this facility, there
exists a set of potential gas sensor locations, defined as

L = {l1, l2, l3, ..., lN} (1)

where L is the set of all N potential locations, indexed
by l. Also, the set of potential release events is defined
as

A = {a1,a2,a3, ...,aM} (2)

where A is the set of all M release scenarios, indexed
by a. It is important to note that not all sensor locations
may be affected by a given release scenario a. There-
fore, a subset of L can be defined for each release event
a ∈ A, defined here as La, that represents the sensor lo-
cations that are affected by the particular release event
a. The parameter αa is the probability associated with
release event a out of all the events in A. That is, the αa
parameters are set such that,

∑
a∈A

αa = 1. (3)

A damage coefficient Da,i is identified for each re-
lease event a ∈ A and each sensor location i ∈ La. This
coefficient represents the amount of damage that will

be done if event a is first detected by a sensor at a loca-
tion i. The physical meaning of the damage coefficient
is determined by the particular problem at hand. If the
released material is a flammable or explosive threat for
example, Da,i can be represented as the total volume of
gas that lies within the flammable region of concentra-
tions for that material. Similarly, in the event of a toxic
gas release, it may be more applicable to define Da,i as
the volume of gas above some toxic threshhold, such as
the LC50. It should be noted that this damage coefficient
can be tailored to represent a variety of different release
types.

The binary decision variable sl is used in the formu-
lation to represent the existence of a sensor, sl = 1, or
the lack of a sensor, sl = 0, at location l. The contin-
uous decision variable xa,i is used to indicate the first
sensor i ∈ La to detect a particular event a. While xa,i
is a continuous variable, because of the problem formu-
lation, each xa,i will be forced to be either 0 or 1 at the
solution (Berry et al., 2006). The variable xa,i will be 1
if sensor location i is the first to detect scenario a, and
0 otherwise. Finally, because gas sensors can be a cost
prohibitive item, a parameter p can be assigned limiting
the total number of sensors to be placed.

The overall mixed-integer formulation is written as

min ∑
a∈A

αa ∑
i∈La

Da,ixa,i (4a)

subject to:

∑
i∈La

xa,i = 1 ∀a ∈ A (4b)

xa,i ≤ si ∀a ∈ A, i ∈ La (4c)

∑
l∈L

sl ≤ p (4d)

sl ∈ {0,1} ∀ l ∈ L (4e)
0≤ xa,i ≤ 1 ∀a ∈ A, i ∈ La. (4f)

The first constraint specifies that each event must have
a sensor that first detects that event. However, this con-
straint can be easily relaxed, and is in our problem for-
mulation, by including a dummy location q in La that
represents a situation where the event a is not detected
(Berry et al., 2006). A corresponding damage value
Da,q is assigned for the situation where event a is not
detected. Typically, this value is selected as the maxi-
mum resulting release size without mitigation or detec-
tion. The second constraint forces a sensor, si = 1, to be
located at any location i ∈ La that is the first to detect,
described by xa,i = 1. Therefore, if si = 0, that loca-
tion cannot claim to be the first to detect an event. The
third constraint places a limit p on the total number of
sensors placed in the facility. Finally, the decision vari-
ables are defined as binary and continuous on [0,1] for
sl and xa,i, respectively. The objective function of this



formulation seeks to minimize the expected value of the
damage over the set of event scenarios.

This formulation can be modified to find the mini-
mum number of sensors required to detect all events.
The objective function can be rewritten as,

min p (5)

and the dummy location q is removed, in order to force
detection of every event.

Another formulation provides the so-called robust
optimization formulation. That is, considering the dam-
age resulting from each potential event, this formula-
tion seeks to find a sensor placement that minimizes
the maximum damage over all scenarios. The objective
function for this formulation can be written as,

min maxa∈A ∑
i∈La

Da,ixa,i. (6)

This min-max objective function can be easily refor-
mulated into a standard mixed-integer linear problem
through the addition of one new variable tmax and a set
of constraints, giving the following formulation,

min tmax (7a)
subject to:

∑
i∈La

Da,ixa,i ≤ tmax ∀a ∈ A (7b)

∑
i∈La

xa,i = 1 ∀a ∈ A (7c)

xa,i ≤ si ∀a ∈ A, i ∈ La (7d)

∑
l∈L

sl ≤ p (7e)

sl ∈ {0,1} ∀ l ∈ L (7f)
0≤ xa,i ≤ 1 ∀a ∈ A, i ∈ La. (7g)

The three formulations presented above will be used
in the next section to provide optimal detector place-
ment for a real process facility.

Placement Results
The mixed-integer problems presented in this pa-

per were formulated and solved using Pyomo, a pack-
age from the Coopr open-source software library (Hart
et al., 2011), which is part of the COIN-OR project.
The Python Optimization Modeling Objects (Pyomo)
software package utilizes the Python language to de-
velop and solve optimization problems. Included in
the Pyomo package are Python classes for defining pa-
rameters, variables, and sparse sets, allowing the user
to formulate objective functions and constraints. Lin-
ear, mixed-integer, non-linear, and non-linear mixed in-
teger models can be formulated in Pyomo for solving
large-scale problems. The Pyomo package is part of
the Coopr (COmmon Optimization Python Repository)

software library (COOPR, 2009). Coopr includes inter-
faces to common linear, mixed-integer, and nonlinear
solvers, allowing users to apply optimizers to models
developed using Pyomo. The set of Python packages
used by Pyomo are included in a Coopr installation util-
ity.

The event scenarios for this paper were generated by
GexCon using their CFD software, FLACS (GexCon,
2011). A set of 279 release scenarios were generated
for a real process facility. The process geometry itself
is proprietary, however, it represents the full process ge-
ometry (equipment, piping, etc.) for a medium-scale
facility. All scenarios were considered to have equal
probability of occuring, thus αa = 1/279 is the same for
all release events a ∈ A. Concentrations were provided
at 994 potential point sensor locations and 92 potential
line-of-sight sensor locations. Point sensors detect con-
taminant concentrations in terms of a percentage of the
lower flammability limit (LFL). Line-of-sight sensors,
on the other hand, detect contaminant concentrations in
terms of lower flammability limit meters (LFLm). This
provided a total of 1086 potential sensor locations for
our placement problem. The measure selected for the
damage coefficient in this example was the “time to de-
tect” for each release scenario and each potential sensor
location. The time to detection was selected since it
was the available output for the set of release scenar-
ios. Of course, other measures, like the volume of the
flammable cloud at the time of detection, could instead
be used. Data were provided for two sensor detection
levels for each sensor type: 10%LFL and 30%LFL for
point sensors, 1LFLm and 2LFLm for the line-of-sight
sensors. For this optimization problem, we used the
lower of the two values for both sensor types (10%LFL
and 1LFLm). It should be noted that 9 of the events
were not detected by any of the potential sensors at
these concentration settings. These events were removed
from the data for all results shown here for simplicity.
The problem formulations were all written in Pyomo,
part of the Coopr 3.0 software library, and solved us-
ing CPLEX 12.2 on a dual quad-core Intel(R) Xeon(R)
CPU X5570 @ 2.93GHz, with 96 GB RAM and hyper-
threading enabled.

Using the first formulation, with p = 50, we can
solve for an optimal placement in just over 3 seconds
using Pyomo and CPLEX on the aforementioned com-
puter. This is very favorable performance given the
large number of potential locations. Given the fast so-
lution time, it is computationally efficient to explore a
large range for p, the maximum number of sensors, and
examine the tradeoff between the number of sensors
(resources) and the optimal expected time to detection
(performance).

Using the first formulation from the previous sec-



tion, we can solve a sequence of problems with an in-
creasing value for p, the maximum number of sensors.
In this formulation, the “dummy” location is added to
relax the first constraint and allow for the possibility
that a release event is not detected. In this case study,
the damage coefficient (or in this problem, “time to de-
tect”) for the “dummy” location is set to be one order
of magnitude larger than the largest damage coefficient
provided by the CFD simulations. This value heavily
penalizes any instances where an event is considered
not detected, encouraging the detection of all events.
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Fig. 1. Expected time to detection (•) and fraction of
events detected (×) as a function of the maximum

number of allowed sensors, p.

Figure 1 shows the expected time to detect a release
with respect to the maximum number of sensors placed.
The circular, decreasing data points are plotted along
the left axis, which is the expected time to detection
as represented by the objective function in equation 4a.
The “x” symbol data points, which increase from left
to right, correspond to the right hand axis, and repre-
sent fraction of events that were detected. The second
subplot is simply a zoomed-in view, with the new left
axis being scaled from 0 to 120. It can be seen that all
of the events are detected when 43 gas detectors are al-
lowed (p = 43). This result can be further verified using
the second formulation (minimizing the number of sen-
sors required to detect all scenarios) from the previous

section. Solving this formulation, we find that the min-
imum number of sensors required to successfully de-
tect all the included 270 scenarios is 43 total sensors, of
which 36 are point sensors and 7 line-of-sight sensors.
As mentioned above, in the generation of Figure 1, the
large damage coefficient assigned to the “dummy” lo-
cation encourages detection of all events, so this agree-
ment is not surprising.

While Figure 1 shows the tradeoff between the num-
ber of sensors and the expected time to detection, it does
not provide any information about the maximum time to
detection associated with a particular solution.

To illustrate a robust optimization solution, we can
instead choose to optimize using the third formulation,
and minimize the maximum time to detection. Results
for this formulation as a function of the maximum num-
ber of allowed sensors are shown in Figure 2. Since 43
sensors are required to detect all events, the maximum
time to detection is infinite for all values of p < 43.
Therefore, in Figure 2, all p values before 43 are omit-
ted. Above 61 sensors, the optimal objective value does
not improve, and the addition of more sensors beyond
this number provides no further improvement (for this
formulation). This min-max robust optimization formu-
lation is significantly more expensive to solve, although
still sufficient for realistically scaled problems. Solving
this problem with p = 50 required 107 seconds on the
aforementioned computer.
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Fig. 2. Maximum time to detect any event for a given
number of installed sensors.

Conclusions
In this paper, we adapted a previously developed

mixed-integer approach for optimal sensor placement
to the problem of placing gas detectors in a petrochem-
ical facility. This required the integration of data from
CFD simulation tools with the mixed-integer optimiza-
tion formulation. Three formulations were developed.



First, the stochastic programming formulation seeks to
minimize the expected value of potential damage. The
second formulation solves for the minimum number of
sensors required to detect all possible events. The third
formulation represents a min-max robust optimization
formulation and solves for a placement that minimizes
the maximum time to detection over all discrete scenar-
ios.

All of these formulations were effective and compu-
tationally efficient. Numerical results were presented,
including 279 CFD simulations representing different
possible leak scenarios, for an actual process geome-
try. This case study demonstrates that the approach is
feasible for gas detector placement with real process fa-
cilities. While we have demonstrated the effectiveness
of this, there are several improvements that can be made
to the base formulation.

In this paper, we used existing gas leak simulations
for our multi-scenario formulation as provided by Gex-
Con. The time to solve the optimization formulation
is very reasonable, and the time to create these simu-
lations is by far the dominant cost for the overall ap-
proach. Given another facility (a new geometry), a sin-
gle simulation can take hours to days of computational
time. Therefore, computing clusters are typically re-
quired to generate the necessary scenarios. Further-
more, the characteristic uncertainties (leak location, pro-
cess conditions, weather, etc.) are continuous variables,
and there is no guarantee that enough scenarios were in-
cluded to effectively approximate this continuous space.
Future work will include the development of confidence
intervals on the objective function to provide some as-
surance that a sufficient number of scenarios have been
included. PySP, a recent extension to the Pyomo mod-
eling framework, provides techniques to calculate these
confidence intervals. This package will be considered
in future work. Once confidence intervals are known,
additional constraints may be necessary to provide ro-
bust solutions when there are only a small number of
scenarios. Future work will investigate the robustness
of solutions with smaller numbers of scenarios.

Given the large computational time associated with
generating scenarios, one would like to extend the value
of the scenarios used. Since the computational time as-
sociated with the optimal gas detector placement is rel-
atively small, it may be possible to extend this formu-
lation while retaining sufficient solution times. To pro-
vide increased solution robustness with the existing sce-
nario set, one could consider a two-stage problem that
considers the potential for failure of one of the sensors
to detect a particular scenario (Berry et al., 2009). This
two-stage problem, which will be significantly larger
and more computationally expensive, will be the sub-
ject of future work. Additionally, since nuisance trips,

or false alarms, are highly undesirable in process facil-
ities, a formulation taking sensor voting into account
will be developed.
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