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Removable Network Polymer Basics ~ T&:.

Diels-Alder Thermal Chemistry*
“Removability” arises from the cleavage

o] o . .
) iﬁ _Heat. / y and reformation of function groups
R§ " along the polymer chain.
Furan Maleimide DA Adduct

o _ ~ Here, we examine functionalities that
Network Scission/Reformation Mechanism undergo the thermally reversible Diels-

Alder reaction.
forward

When a sufficient number of chains
reverse break, the material behaves as a liquid

Network Archltecture** As chains break and reform, the

A j\ﬁ( network relaxes = the permanent
shape of the material changes in time...
\©\N,lz *Mcelhanon, Russick, Aubert, Science Matters SAND 2010

**Kloxin, et al. Macromolecules, 2010 d 3
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Three States and Two Competing Time Scales ().
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Dynamic bond rearrangement competes against the
characteristic relaxation time scale of the network

At low temperature, reversible linkages cannot alter network
topology --> typical glassy thermoset behavior expected
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The Need for Removable Thermosets @iz
In Electronics Encapsulation

= Encapsulation of Printed Circuit
Boards (PCB) provides mechanical
integrity, voltage isolation, and
isolation from moisture, dust, ...

= Traditional encapsulation cannot be
removed without damaging PCBs

= Reworking/upgrading components is not
cost effective

= |n-service evaluation of components for
lifetime assessment is not feasible

. o *Finite Element Mesh of a quarter
A removable encapsulation material is symmetry capacitor showing the

needed for components that must survive underfill and cover coat
long lifetimes and potentially be serviced

*Adolf D., et al. SAND2011-4751 §
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Removable Encapsulation Used at Sandia e
to Support Stockpile Stewardship

Use: Non-Contact Removal A Concern: Adverse Consequences
on Other Components

Adolf et al., SAND2011_4751_Fig3_1

(© (d)
Mcelhanon, et al. App. Polymer Sci., 2002

Thermal cycling of underfills may crack

solder joints and deactivate electronics
A foam fully encapsulating a PCB is non-

destructively removed in the presence of a ( Are RNP’s better than traditional )

solvent at 40 Celcius. thermosets for this application?
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Current Technology Gaps ) .

= No theoretical/computational description of the effects of
reversible chemistry on the performance of removable
encapsulation in service

Pros vs. Cons

7N\

Traditional

= Reversible chemistry effects on cure shrinkage stresses
during encapsulation cure have not been studied

= No capability to predict behavior during removal

= No understanding of the interplay between the glass
transition and the network topology evolution 7
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Diels Alder Thermal-Chemistry: =
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E q U | I | b rl um Diels-Alder Thermal Chemistry*

Heat

-——— -

~

The number density of chains is set by D * ) = | .

o ) F) 4]

the extent of Reaction ([A]/[A]

= The DA equilibrium reaction
constant is temperature
dependent and is set by the
associated Gibbs free energy

Equilibrium Extent of
Reaction

= The transition solid to liquid
polymer behavior is set by
[F], [M], and [F]/[M]

cmpceraturc

**Adzima, et al. Macromolecules, 2008
***Vitrification prevents reaching eq. extent of reaction

*Mcelhanon, Russick, Aubert, Science Matters SAND 2010
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Diels Alder Thermal-Chemistry: ) e,
Equilibrium

Laboratories

Heat o 9
R o
Furan Maleimide DA Adduct
Total Species Density Total Possible Bond Density
NOT CONSERVED CONSERVED

N = N4+ NF + NM

¢:NA_|_%<NF_|_N]W)

Equilibrium Constant

Extent of Reaction

N&/¢ z

A o, B0 = ey ity T o

NF

= N" = ¢(1 - 2), N = ¢(2 — ).

9
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Diels Alder Thermal-Chemistry: Kinetics e

Laboratories

The DA chemistry cannot be arrested even at lower T
— material always evolves

Characteristic Half-Life of a Cross-link DA Kinetics Model Summary
4
10 ¢
= Assume second order thermal
j Rubt?ery chemical kinetics
. Regime
10 3 o
[ g_ .
5 | 2 GEJ = - Consgrvatlon §tatement of
£ | 8B ? chemical species
EI0F O 8
2 2
.,5 >

. = Thermally activated forward and
' ] reverse reaction rates

24 hours ~1,440 min
1 week~10,080 min

/

0

20 40 60 80 100
Temperature (C) 10
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Diels Alder Thermal-Chemistry:
Kinetics
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m National
Laboratories

Law of Mass Action Kinetics
(single step reaction)

NF = NM — _pINFNM N4 From Equilibrium
. K K>[0]
N4 =/ NINM — N4 [Tl

Thermally-Activated Coefficients

—F '
K=k 2
exp [ = ]
; _Eact kO _Eact
kr — kmscokO _
eXp[ RT ] ot eXp[ RT ]

11
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Constitutive Model ) s,

Laboratories

= Focus on rubbery (elastomeric) state:

Thermodynamic Variables
®glass < @ < ®gel v .
Logarithmic Strain Y
= Equilibrium Helmholtz free energy Absolute Temperature (9
a;soqatcledhwwh thermal, elastic, and Extent of Reaction X
chemical changes (or Species Densities)
\I—’(Y, O, x,e“;) Internal State Variables
Stress-Free Strain Tensor &

= Shear modulus dependence on ())and X

Shear modulus depends
linearly on the number
density of chains

G=aG, (x—xgd)@)

Equilibrium bulk modulus assumed
constant 12
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Constitutive Model:

m ﬁgggﬁal_
. Laboratories
Helmholtz Free Energy Density:
= Additive Split: Equilibrium + Non-Equilibrium Responses
\If (Tij7 @7 ]Voz7 fzg) _ \Ijoo i \Ijvisco
= Thermodynamic Fluxes
SZI]‘ — S@Soo 4+ S«Z_I‘jvzls:co7 Ny = 7780 4+ 77(1))2'8007 Iua — Mavisco + luozvisco
= Equilibrium Helmholtz Free Energy Density
\Ijoo (Tij7 @7 Na? gl]) — \Ijg?a,st'éc + qj?’?ermal + \Ijgl.;emical -+ \Ij;.r?ia:ed + qj?“ef?
Ko
\Dz?astic — Prefll [T] + Lk (]1 [T])Q + G [$7 @] 12 [T%‘?v - ggjev] ?
CFO O CFl 2
o0 — @_@re — o1 ——@_@re )
thermal Pref ( / 8 (@ref>> 2pref@r€f ( f)
?Lemical - Z (lu’aNa) ’
Z%g;ed - _Kbulkﬂvol(x - x?“ef)-[l [T] - Kbulk@vol(@ - @'r‘ef)-ll [T]
13
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Constitutive Model: Internal State Variable
and Property Evolution Rules

= Evolution of the stress-free shape: |°*

G

: X - . 1
E.,':E(Ydev E.;a’ev)

l+a

Sandia
m National

Laboratories

Adding/removing chains

changes the permanent shape
Material time scale arrests
this process

_ G,K kK,
2

G

+

(4, ](1-x)’

ijf X > xgel

G =Gkx if x> X gl

Forward reaction increases the shear modulus:

545

Reverse reaction decreases the shear modulus:

et




Constitutive Model: e
Non-Equilibrium Constitutive Behavior

Laboratories
= Non-Equilibrium Helmholtz Free Energy Density: Functional Taylor

Expansion of the free energy about the equilibrium state keeping only
second order terms:

t t
Cvisco _ l(KG . Koo)/ dS/ d’U,fl (t’ _ 3’715’ _ ’U,/) dlyy dlvy Volumetric Energg

ds du
d Tdev _ ¢dev Tdev _ ¢dev
— G*) /ds/ duf?(t' — st —u) " — &) di y &) Shear Energy
S U
~ po(Crg — Criso) / / . dO dO
d d (t'— st —
20, ’ uf*( s V) s ds du
( Al d i
_(KGaG_Kooaoo)/ ds/ duft (¢ — s 1 — o) v dO Volumetric Thermal
! ds du Coupling
r_(KG’BG B KooBoo)/t s /t duft (' — 5.t — )d]nr dx \Jolumetric Chemical
L ds du Coupling
dO dx
6 —_ J—
+(ANpang — Ans.) / ds / duf®(t' — st —u)— T T
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Constitutive Model: =,
Rheological Simplicity

Laboratories
= Minimal Network Evolution near and below the glass transition

- Assumption of Rheological Simplicity is reasonable

= Proney-Series Representation of Characteristic Relaxation Functions

fk(t/—S/,t/—ul) :ZAj(k)eXp<_(t7_—S>>eXp<_(t _u)>

ji Tj

j=1
= Horizontal (Time-Temperature) Shift Factor:

. . —C|N
G*(w,0) = G*(apw, Oyer) loga = N
= Material Relaxation Time Scale , 5o
N = <@ — O glass — / dsfv (t' — 5',0)—) .
—> /0 ds

Thermal History . o a
Volumetric History > 03 <11T—/0 dsf* (t' =, 0) d?)

S A d(T — &) d(TF — &)
Shear History ——> +C4/0 dS/O duf® (¢ = st/ — o) =———— e
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Equations of Motion Summary )

Laboratories

NOTE: (Most) Quantities Are Defined on a Time Invariant Reference Configuration

Mass Continuity | Pewrex
Po

Species Density Continuity | N = —

=J=det(F), F, = s)’;"
J
OH*
1 HO&
oxX,

Linear, Angular Momenta Balances

Energy Balance

oot

. . 2y ) o
CF@—Q—@+Z<@ 0L o pgo0F >

X;

RV 0w o\
.. _ 7B
Ogear, it zﬂ: (6 0002 am)

0BO0N~ ' 0X;

Second Law of Thermodynamics Constraint

. . . . e
\I/+770@0—Sr-rij‘|————z(/LaNa—Hq i > <0

’ aXZ 17
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Results: Demonstration of

Isothermal Stress Relaxation

Adding/removing cross-links changes
the permanent shape

Normalized Axial Stress

1 : : : :
QM:~‘h~‘~‘h~“‘-~h~““‘“~—~
i\
A
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P\ T —> O
2 0.7}
L |
Z o6} .
5 ! —50C
= osp ! ——75CH
S | -—--87C
= 04} 1
=4
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Z03F |
\ ~
02t \ S
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O 1 — T — [
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Results: Validation Against Dynamic )
Mechanical Analysis Data

Laboratories

Fit a the 75 C Curve and
Predict Remaining DMA Data
Storage Modulus

= Examine the dissipation
behavior of cyclically loaded
specimens 6

10
g(t)=¢,sin(o?)
<— e 105
Apply an oscillating strain
£ 10°}

ﬁLoss 8
7

Record the complex modulus

10° — — '
10 10 10 10

Experimental data from Adzima, et al. Macromolecules, 2008 radians / sec 19
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Results: Effects of Permanent Shape Evolution

During a Thermal Cycle

Thermal-Mechanical Cycle

= Specify temperature history relevant “To Flow, or Not to Flow...?” |
to possible thermal cycles

»  Fix deformation in 1 direction
Applied Temperature vs. Time

Sandia
m National

Laboratories

Extent of Reaction vs. Time

80 0.95
60 \
c 0.9}
Q4o § To = Thow
)
: < /
= & 085 _ -
=
& E Tg = Trmid
ol L
0.8}
=20¢
0 2 4 6 8 10 0y 4 & 8 10
Time (hours) Time (hours) 20
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Results: Effects of Permanent Shape Evolution

During a Thermal Cycle

Reversible Chemistry Changes
The Stress History Compared
with Conventional Thermosets

Stress vs. Time (Tg=Tlow)
X 105 .

1.5

Axial Stress (Pa)

Removable
— — Conventional

4 6 8
Time (hours)

10
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Thermal-Mechanical Cycle

= Specify temperature history relevant
to possible thermal cycles

= Fix deformation in 1 direction

Stress vs. Time (Tg=Tmid)
X 106

Axial Stress (Pa)

Removable
— — Conventional

| -

4 6 8
Time (hours)

10
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Future Work )

= Augment the permanent deformation tensor evolution to
account for the Loss of Cross-links

e .
E.,' = G+ (Ydev _E.f'dev)_)fun(G+9G—9G9 Ya’ewe.f'dev)

= Examining different shear modulus dependencies on the
extent of reaction to account for short chain networks

= Examine/optimize the effects of cross-link evolution and the
role of confinement, voids, free surfaces in real encapsulation
scenarios

22
-
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Summary ) e,

= A multi-physics constitutive framework was developed to
represent removable encapsulation

= Adding/removing cross-links relaxes the state of stress and causes
permanent shape change

= The kinetics of adding/removing cross-links can be slowed, but it
cannot be shutoff

= Model implemented in the Sierra Mechanics Code Suite

= The effects of reversible chemistry may beneficially mitigate
stresses developed during thermal cycling of encapsulation
materials.

***The Early Career Laboratory Directed Research and Development
Program supports this work and has connected me with materials science
colleagues well outside of the Engineering Sciences Center

23
-
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Energy Balance )

= Referential Energy Density | | |
Etotal — Qtotal in Wby system + Especies

wo Owo wo

8w0 wo

Y (— / PO HEN;dA + / /ﬂHadv).
8w0 wo

«

- 8Qk I'r o NTQ aa:ua
EO__a—‘Xv]g—i_Q—I_SUFZJ—i_%:(NN _Hz aXZ
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Entropy Production—Clausius Duhermg, ..
2"d Law of Thermodynamics

/nOdV+ @iV )4 /—dV>0
wo Owo @

B A A 1L S
Tl @*@aX 02 ax, =

U = €0 — @7707




Constitutive Assumptions and the
Dissipation Inequality
i — jT‘I’r + 0% > (;T‘I’N) ' ; (%m) |

= Combine Energy Balance, Helmholtz Free Energy Density Time
Derivative, Legendre Transform, and the Clausius Duhem

Sandia
m National
Laboratories

inequality
. . . Q. 00 - ou®
W+ 19Oy — SLlii + ——— — *N® - H? < 0.
0=y T g g, za:“ Pox, ) =
o _ OV __ov L oY

] ar@_j? 770__%7 — aNa'

: ovr . alua Qr 00
A = —Z HY ——— <0
S az2)* X (#5x) + 6 e <0
Coleman and Noll, Arch. Rat. Mech., 1964 26




Sandia

Temperature Equation of Motion  ®i.

= From the energy balance, PIRM, and Helmholtz Free Energy
Assumptions,

860) ( 02\11 )
O = —_— - —@
F <a@ FZ-J-,NO‘,ZB 8@8@ I‘ij’Na,ZB

Qi 0" o On°
CrO=Q- XZ t2 (%@fﬂ\f N0 0X;

(0’4

PU v
p
a@arw poar,, vt Z ( 90077 8Z5> 4
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Chemical Equilibrium and Potentials @&

Van’t Hoff Relation
Age —AH? An?
l KOO e Trn e TN rrn
05 RT e | R

Gibbs Equilibrium Condition

0= dg|@,Pij = Fwdp@] — 770d@ + Z (/,LadNa + d,U,aNa)

a=A,F,M
| | D> (urdN)
Chemical Potentials a=AF,M
A . . .
A= 1 4 ROlog(ay),  a = NW Via Gibbs-Duhem Equality
NF
u" = " + ROlog(ar), aF = 5
N]M
p't = pM+ ROlog(an), oy = —

Statement of Equilibrium
/LAO . luFo . MMo _ Agﬁm

28
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Dynamic Mechanical Analysis: Load
Cases

Sandia
m National

Laboratories
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Sandia
EXPERIMENTAL BASIS: Equilibrium And Chemical Kinetics (Y l&es,,

Assuming equal concentrations of [F],[M]
[4] X
[MIIF] ¢,(1-x)°
At the reaction equilibrium: O=——= —kf[F] | M|+ kr[A] S K=-L

Adzima, et al. Macromolecules, 2008




