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Removable Network Polymer Basics

*Mcelhanon, Russick, Aubert, Science Matters SAND 2010
**Kloxin, et al. Macromolecules, 2010 d

Diels-Alder Thermal Chemistry*

Network Scission/Reformation Mechanism

k forward

kreverse

Network Architecture**
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“Removability” arises from the cleavage 
and reformation of function groups 
along the polymer chain.

Here, we examine functionalities that 
undergo the thermally reversible Diels-
Alder reaction.

When a sufficient number of chains 
break, the material behaves as a liquid

As chains break and reform, the 
network relaxes  the permanent 
shape of the material changes in time…
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Three States and Two Competing Time Scales

Dynamic bond rearrangement competes against the 
characteristic relaxation time scale of the network

At low temperature, reversible linkages cannot alter network 
topology --> typical glassy thermoset behavior expected
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The Need for Removable Thermosets
In Electronics Encapsulation

 Encapsulation of Printed Circuit 
Boards (PCB) provides mechanical 
integrity, voltage isolation, and 
isolation from moisture, dust, …

 Traditional encapsulation cannot be 
removed without damaging PCBs

 Reworking/upgrading components is not 
cost effective

 In-service evaluation of components for 
lifetime assessment is not feasible

A removable encapsulation material is 
needed for components that must survive 
long lifetimes and potentially be serviced

5*Adolf D., et al. SAND2011-4751

*Finite Element Mesh of a quarter 
symmetry capacitor showing the 

underfill and cover coat 

Ceramic

Encapsulation

Underfill Solder

PCB
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Removable Encapsulation Used at Sandia 
to Support Stockpile Stewardship

6

Mcelhanon, et al. App. Polymer Sci., 2002

A foam fully encapsulating a PCB is non-
destructively removed in the presence of a 

solvent at 40 Celcius.

Use: Non-Contact Removal A Concern: Adverse Consequences 
on Other Components

Adolf et al., SAND2011_4751_Fig3_1

Thermal cycling of underfills may crack 
solder joints and deactivate electronics

Are RNP’s better than traditional 
thermosets for this application?
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Current Technology Gaps

 No theoretical/computational description of the effects of 
reversible chemistry on the performance of removable 
encapsulation in service

 Reversible chemistry effects on cure shrinkage stresses 
during encapsulation cure have not been studied

 No capability to predict behavior during removal

 No understanding of the interplay between the glass 
transition and the network topology evolution 7

Pros vs. Cons
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Diels Alder Thermal-Chemistry: 
Equilibrium

 The DA equilibrium reaction 
constant is temperature 
dependent and is set by the 
associated Gibbs free energy  

 The transition solid to liquid 
polymer behavior is set by 
[F], [M], and [F]/[M]
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*Mcelhanon, Russick, Aubert, Science Matters SAND 2010
**Adzima, et al. Macromolecules, 2008
***Vitrification prevents reaching eq. extent of reaction

Diels-Alder Thermal Chemistry*

[F] [M ]
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The number density of chains is set by 
the extent of Reaction ([A]/[A]max)
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Diels Alder Thermal-Chemistry: 
Equilibrium

9

Total Species Density
NOT CONSERVED

Total Possible Bond Density
CONSERVED

Equilibrium Constant
Extent of Reaction
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Diels Alder Thermal-Chemistry: Kinetics

 Assume second order thermal 
chemical kinetics

 Conservation statement of 
chemical species

 Thermally activated forward and 
reverse reaction rates
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Characteristic Half-Life of a Cross-link

The DA chemistry cannot be arrested even at lower T 
 material always evolves

DA Kinetics Model Summary
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Diels Alder Thermal-Chemistry:
Kinetics

11

Law of Mass Action Kinetics
(single step reaction)

From Equilibrium

Thermally-Activated Coefficients
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Constitutive Model

12

 Focus on rubbery (elastomeric) state: 

 Equilibrium Helmholtz free energy 
associated with thermal, elastic, and 
chemical changes

 Shear modulus dependence on       and 

 Equilibrium bulk modulus assumed 
constant

 ,, x, 

 x

G  G0 x  xgel 

Logarithmic Strain

Absolute Temperature

Extent of Reaction      
(or Species Densities)

Thermodynamic Variables




x

glass   gel

Shear modulus depends 
linearly on the number 

density of chains

Stress-Free Strain Tensor

Internal State Variables


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Constitutive Model: 
Helmholtz Free Energy Density:
 Additive Split: Equilibrium + Non-Equilibrium Responses

 Thermodynamic Fluxes

 Equilibrium Helmholtz Free Energy Density

13
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Constitutive Model: Internal State Variable 
and Property Evolution Rules

 Evolution of the stress-free shape:

 Forward reaction increases the shear modulus:

 Reverse reaction decreases the shear modulus:
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 
G

G
dev dev  

1

1 a

G 
G0Kkr

2
[Amax ] 1 x 2

if x  xgel

G  G0kr x if x  xgel

• Adding/removing chains 
changes the permanent shape 

• Material time scale arrests 
this process



Constitutive Model:
Non-Equilibrium Constitutive Behavior

15

 Non-Equilibrium Helmholtz Free Energy Density: Functional Taylor 
Expansion of the free energy about the equilibrium state keeping only 
second order terms:

Volumetric Energy

Shear Energy

Volumetric Chemical 
Coupling

Volumetric Thermal 
Coupling



 Minimal  Network Evolution near and below the glass transition

 Assumption of Rheological Simplicity is reasonable

 Proney-Series Representation of Characteristic Relaxation Functions

 Horizontal (Time-Temperature) Shift Factor:

 Material Relaxation Time Scale

Constitutive Model:
Rheological Simplicity

16

Thermal History
Volumetric History

Shear History
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Equations of Motion Summary

 Mass Continuity

 Species Density Continuity

 Linear, Angular Momenta Balances

 Energy Balance

 Second Law of Thermodynamics Constraint

17

NOTE: (Most) Quantities Are Defined on a Time Invariant Reference Configuration

current

0

 J  det Fij ,     Fij 
xi

X j

Pij

Xi

 Jbj  0 j,      FikPjk  PikFjk
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Results: Demonstration of 
Isothermal Stress Relaxation

18

Normalized Axial Stress Permanent Axial Deformation

 t 

T        

T       permanent 

Adding/removing cross-links changes 
the permanent shape 
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Results: Validation Against Dynamic 
Mechanical Analysis Data

Storage Modulus

19

 Examine the dissipation 
behavior of cyclically loaded 
specimens

Fit a the 75 C Curve and 
Predict Remaining DMA Data

 t   0 sin t 

Apply an oscillating strain

Estorage

ELoss 

Record the complex modulus

Experimental data from Adzima, et al. Macromolecules, 2008
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Results: Effects of Permanent Shape Evolution 
During a Thermal Cycle

Thermal-Mechanical Cycle
 Specify temperature history relevant 

to possible thermal cycles
 Fix deformation in 1 direction

20

“To Flow, or Not to Flow…?”

Applied Temperature vs. Time Extent of Reaction vs. Time

 t   ?

T (t)
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Results: Effects of Permanent Shape Evolution 
During a Thermal Cycle Thermal-Mechanical Cycle

 Specify temperature history relevant 
to possible thermal cycles

 Fix deformation in 1 direction

21

Reversible Chemistry Changes 
The Stress History Compared 

with Conventional Thermosets

Stress vs. Time (Tg=Tlow) Stress vs. Time (Tg=Tmid)
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Future Work

 Augment the permanent deformation tensor evolution to 
account for the Loss of Cross-links

 Examining different shear modulus dependencies on the 
extent of reaction to account for short chain networks

 Examine/optimize the effects of cross-link evolution and the 
role of confinement, voids, free surfaces in real encapsulation 
scenarios
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 
G

G
dev dev  fun G,

G,G,dev,dev 
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Summary

 A multi-physics constitutive framework was developed to 
represent removable encapsulation
 Adding/removing cross-links relaxes the state of stress and causes 

permanent shape change

 The kinetics of adding/removing cross-links can be slowed, but it 
cannot be shutoff

 Model implemented in the Sierra Mechanics Code Suite

 The effects of reversible chemistry may beneficially mitigate 
stresses developed during thermal cycling of encapsulation 
materials.

***The Early Career Laboratory Directed Research and Development 
Program supports this work and has connected me with materials science 
colleagues well outside of the Engineering Sciences Center

23
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Energy Balance

 Referential Energy Density
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Entropy Production—Clausius Duhem
2nd Law of Thermodynamics
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Constitutive Assumptions and the 
Dissipation Inequality

 Combine Energy Balance, Helmholtz Free Energy Density Time 
Derivative, Legendre Transform, and the Clausius Duhem
inequality

26Coleman and Noll, Arch. Rat. Mech., 1964 



Temperature Equation of Motion

 From the energy balance, PIRM, and Helmholtz Free Energy 
Assumptions,
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Chemical Equilibrium and Potentials
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Van’t Hoff Relation

Gibbs Equilibrium Condition

Via Gibbs-Duhem Equality

Chemical Potentials

Statement of Equilibrium



Dynamic Mechanical Analysis: Load 
Cases
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EXPERIMENTAL BASIS: Equilibrium And Chemical Kinetics
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kr  Ar exp 
Ea

RT







Assuming equal concentrations of [F],[M]

K 
[A]

[M ][F]


x

c0 1 x 2

At the reaction equilibrium: 0 
d[F]

dt
 k f [F][M ] kr[A] K 

k f

kr
Adzima, et al. Macromolecules, 2008


