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Abstract. In this work we study the effects of agenda setting on attitude
diffusion using the “Multi-Agent, Multi-Attitude Framework” (MAMA).
MAMA captures the interaction between attitudes (through cognitive
consistency effects) and interpersonal interaction. Agenda setting is when
media’s focus on certain stories increases their importance in the minds
of the viewers. Using the MAMA model, we study the impact of Agenda
Setting on time to diffusion. We show that agenda setting can signifi-
cantly decrease diffusion time for a variety of network topologies. Sec-
ondly, we show that agenda setting plus strategic choice of seed nodes
provides the fastest time to convergence.

1 Introduction

Attitudes have long been known to have an impact on individual behavior. Thus,
many computational models of attitude diffusion have been proposed. However,
it is also clear from the social psychology research that attitudes are not indepen-
dent — sets of attitudes interact through, for instance, the drive for consistency
among attitudes.

The first contribution of this work is to develop a multi-agent system that
models attitudes, the interaction between attitudes, and interpersonal influ-
ence. We call this the “Multi-Agent, Multi-Attitude Framework” (MAMA). This
framework captures the important concept of “cognitive consistency”, which has
a large effect on the dynamics of attitude change and attitude interaction.

Cognitive consistency is a hypothesized drive for individuals to have atti-
tudes that are “consistent” with each other. Cognitive consistency has long been
shown to be an important factor in attitude change [1,2]. For instance, accord-
ing to these theories, an individual holding a strong positive attitude towards
environmentalism should also hold a strong positive attitude towards recycling;
if they do not, the attitudes are inconsistent with each other and could cause an
uncomfortable feeling (i.e. cognitive dissonance) which tends to result in either
attitude or behavior change [3].

* Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94A1.85000.



Another aspect to consider in attitude diffusion is the impact of the media.
Agenda setting is when the media’s focus on certain stories increases their im-
portance in the minds of the viewers [4,5]. Agenda setting and interpersonal
communication interact to influence individuals. In the early “two-step” model,
media was thought to influence “opinion leaders” who then interacted and influ-
enced others [6]. While the two-step model has lost support, the general idea of
media influencing the agenda, which in turn spurs discussion and interpersonal
influence, has some support [4].

Agenda setting becomes more important when considering interacting atti-
tudes — how does the order of discussion topics influence attitude diffusion? Using
the MAMA model, we explore this question through extensive simulations. We
show that agenda setting can significantly decrease the time to convergence in
the MAMA model.

A common problem is to identify “seed” nodes that initially have the attitude
that should be diffused [7]. We show that agenda setting plus strategic choice
of seed nodes provides the fastest time to convergence. Finally, the simulations
show that for a scale-free network, seed node choice is still the most important
factor in determine time to convergence — far outweighing the impact of agenda
setting aspect. This highlights the important role of interpersonal influence on
diffusion.

2 MAMA Model

s

O \
7 SR
= & &

Fig. 1. Social network. See text for de- Fig. 2. Cognitive network. See text for
tails. details.

To explore the impact of multiple attitudes we have developed a multi-level
agent based model that contains two levels, a social level — which captures in-
terpersonal interaction between agents — and a cognitive level that captures the
interactions of attitudes within an agent.

Let G5 =< Vi, Es > be a undirected graph that represents the social level
of the model. Let a; € V; be the set of agents, and (ai,aj) € E; represent a
bidirectional influencing relationship between agents i and j. Figure 1 depicts
an example social network, where each rectangle is an agent



Each agent has a cognitive network associated with it. A cognitive network
is a weighted undirected graph, G. =< V., E. > that represents cognitions and
the interactions between them. We use the term cognitions to refer to any entity
towards which an individual can have an attitude, such as people, places and
things; but also to more abstruse entities like values.

Let ¢, € V. be the set of cognitions, and (cg,cq) € E. represents a bidirec-
tional influencing relationship between cognitions k and ¢. w(k, ¢) is the weight
of edge (ck,cq); the weight can either be +1, or —1: w(k,l) € {1,—1}. The
weight represents the relationship between cognitions, as we describe later on.
For convenience, we let n. = |V,|.

An attitude towards a cognition is represented as a real number, called the
value of the cognition, between —1 and +1. The sign of the value represents the
valence of the attitude; positive values indicate positive attitudes and negative
values represent negative attitudes. The size of the value represents how strongly
the individuals holds the attitude. So a value of 0.5 would be a mildly positive
attitude, whereas a value of —1.0 is a very strong positive attitude. In this work,
we limit the values to be either —1 or +1. Let v(¢, k) be the value of cognition
k of agent 1.

Figure 2 depicts a cognitive network. The lines represent relationships be-
tween cognitions; dashed lines are negative relationships, solid lines are posi-
tive relationships. The bottom of each cognition contains the currently assigned
value.

Let x;(k, q) be the consistency of an edge (cx, ¢q) in the cognitive network of
agent a;. The value of x;(k, q) is:

1)

D) = {1 if w(k,)o(i K)o, g) > 0,
0 Otherwise

Intuitively, if an edge has a negative weight, the edge is consistent if the two
cognitions have values with differing signs. If an edge has a positive weight, the
edge is consistent if the two cognitions have values with the same sign.

Let the state of a cognitive network be an assignment of values to its cogni-
tions. There are m = 2" states for a cognitive network, labelled: s; ... sp,. sp(k)
is the value of cognition k in state p.

The consistency of a cognition k for agent 7 is:

Z Cl,C . Xz(k7q)
Bi(k) = ZEREn (2)

where [; is the number of edges incident to concept i. Intuitively, consistency
increases as a cognition has more edges that are consistent.

Cognitive networks can be viewed as bi-valued, binary constraint satisfac-
tion network [8]. A significant body of work has been developed around binary
constraint satisfaction. The problem there is finding the correct solution; our
problem is understanding when a solution diffuses across a network.



2.1 Attitude change

In our model, attitude change is initiated by interpersonal interaction, but me-
diated by the state of the cognitive network. Given no cognitive influence, the
baseline probability that an agents changes their attitude is indicated by Ppygse.
In this work we assume that Py, is the same for all agents. In the following we
describe how the state of the cognitive network modifies Pyqse.

Drive for cognitive consistency In Figure 2, concept ¢; is in an inconsistent
state with concept c3 — the link between them is negative, so they should be
opposite, however there are positive attitudes towards both concepts. Based on
cognitive consistency theory, we should expect ¢; to be more likely to change’.
On the other hand, concepts that are highly consistent should be less likely to
change — since they are consistent with most of their neighbors.

We represent this drive to consistency as a multiplicative weight on the base-
line probability.

Let feon(k, 1) represent the inclination to change cognition & of agent ¢ based
on its consistency with other cognitions. Intuitively, the more consistent the
concept is with its neighbors, the less likely it is to change.

We define feon(k,4) as a sigmoid curve:

) 2
fcon(kal) =€+ 1+ 6—10((1—¢i(k))_~5)) (3)

For cognitions that have more than 50% of their neighbors in an inconsistent
state, feon(k) > 1.0, thus increasing the probability they will change (with a
maximum multiplicative increase of 2). For those with less than 50% of their
neighbors in an inconsistent state, feon(k) < 1.0, decreasing the probability to
change (with a minimum of ).

For example, consider Figure 2; f.on(1) = 0.5 because concept ¢z is inconsis-
tent with ¢; but consistent with cs.

On the other hand, f.on(2) = €, since all of its neighbors are consistent with
it. Finally, feon(3) & 2.0, since all of its neighbors are inconsistent with it.

Embeddedness The embeddedness of a cognition refers to how well it is con-
nected to other cognitions in the cognitive network. Embeddedness is related to
a resistance to change (see [9, Chap. 12] for a review).

Consider an individual who initially has a negative attitude towards envi-
ronmentalism. If the individual were to suddenly have a positive attitude, there
would be serious dissonance with past decisions and their current state; they
may be dissatisfied with their car, worried about how they consume energy, etc.
Thus, more connected cognitions are resistant to change.

! There are a host of other factors that play a role, such as the type of attitude (implicit
or explicit), the persuasion route, etc. See [9,10]. In this model we focus on the core
concepts of cognitive consistency and leave further refinement to future work



In Figure 2, concept ¢; is connected to two other concepts vs. co, which
is only connected to 1 other concept. Thus, we would expect ¢; to have more
resistance to change than cs or cs.

We represent this resistance to change as a multiplicative weight on Pygse.

Let fqeq(k,?) be the resistance to change cognition k of agent i based on
the cognitions embeddedness, which we measure through its degree (deg(k)).
Intuitively, we want fgeq(k, ) to decrease as we increase the degree of the concept.

1.0 if deg(k) < degmaz.i/2,

4
0.5 else )

fdeg (ka Z) = {
where degymqqe,i is the highest degree in the cognitive network of agent i.
For example, Figure 2; fgeq(1) = 0.5, since cognition ¢; has the highest
degree. faeq(2) = faeq(3) = 1.0, since they only have one neighbor.

Probability of Change Bringing everything together, let Pepange(k,7) be the
probability of cognition k of agent ¢ changing value, given that ¢ is interacting
with another agent with the opposite value for cognition k. Then:

Pchange(kv Z) = Pbaseline : fdegree(ka Z) : fcon(ka Z) (5)

2.2 Model Dynamics

Algorithm 1 specifies the dynamics of the model. Similar to other work ([7]) we
study the progressive case. Since we have multiple concepts in our model, we
designate a single state s* as the goal state. Once a cognitions switches to the
value in the progressive state, it cannot switch back.

Algorithm 1: Model Dynamics

for t < 1 to tyae: do
Choose a strategy m
for t; + 1 to N do
Choose a random agent a;
Choose a; a random neighbor of a;
Choose a topic cognition 7 according to .
if v(a;, 7) # s"(7) and v(a;, 7) # v(aj, 7) then
| Set v(ai,7) = v(a;, ) with probability Pehange(T)
end

end
end

Each iteration of ¢ is called a single timestep, and within each timestep we
randomly and with replacement, sample N = |V;| agents. Thus on average, every
agent is chosen once per timestep.



Note that these dynamics correspond closely to a voter model [11], except the
probability of switching varies over the length of the simulation. Voter models
have a long history as a simple tool to study diffusion (see Section 4.

2.3 Agenda Setting

In the classic study on agenda setting individuals were asked to indicate issues
they thought were important, which then were compared to news coverage of
those issues. It was found that what people found important was what was
covered most [5].

We assume that issues are represented by cognitions, and that increasing issue
importance leads to more discussion. Thus we define agenda setting in terms of
the choice of topic cognition. We define an agenda m = [P(c1),...,P(cn,)] as a
probability distribution over cognitions. The agenda defines which cognition is
chosen in 1.

A Time-Independent Agenda (TIA) is a fixed probability distribution over
the cognitions. A special case is the uniform distribution, where each cognition
has a probability of 1/n. of being chosen.

A Time Varying Agenda (TVA) is an agenda that changes over time. Es-
sentially, it is some number of agendas which are active at certain times. For
instance, for the cognitive network from Figure 2, we can define a time varying
agenda by specifying multiple agendas that span the timestep range from (0, 00).
From timestep 0 to timestep 1000, the agenda may be w900 = [1/3,1/3,1/3],
but from 1000 onwards, the agenda may be: 7o, = [1/9,1/9,7/9].

3 Experiments

Our goal is to study how agenda setting vs. node choice influences the propa-
gation of attitudes in a population. Thus, the metric we will use is the mean
diffusion time — the number of timesteps the system takes for 90% of the popu-
lation to reach the goal state, averaged over some number of runs (we also call
this time to convergence).

We assume that all agents have the same type of cognitive network, depicted
in Figure 2, and only vary in their initial state. We call this the “3-Fan” net-
work, because it has one central cognition (¢1) and two ancillary cognitions that
connect to it (cg,c3). More generally, a “n-Fan” network would have 1 central
cognition and n — 1 ancillary nodes connected to it.

The fan network, while simple, represents the interaction between attitudes.
Consider the central cognition as an attitude towards a specific decision, such
as purchasing an energy efficient lightbulb. The ancillary nodes represent other
cognitions that can impact this decision, say political preference [12]. The bidi-
rectional link between the central node and the ancillary nodes illustrate bidi-
rectionality of influence — your attitudes can influence your behavior, but your
behavior can influence your attitudes.



The goal state is set to s* =< +1,+1, —1 >. Initially, a random 10% of the
population is assigned the goal state. The rest of the agents are assigned the
state of s =< —1,—1,41 >. Note that these are the only two fully consistent
states in the 3-Fan network.

We use two social networks. The first is a k-regular graph — a graph where
each vertex has degree k.

The second social network is a small-world network, which is a network that
features a high clustering coefficient and short average path length.

Three social networks were studied:

k-regular Graph A graph in which each vertex has degree k. We use a network
with 1000 agents, and k = 4.

Small World Graph A graph which features a high clustering coefficient and
short average path length. Small world networks appear in many real-world
domains [13]. We used the algorithm defined in [13], implemented in [14]. We
use a network with 1000 agents, and following [13], we set the initial number
of neighbors to 10, and the rewiring probability to 0.01. This produces a
small world network with clustering coefficient of 0.668519 and average path
length of 6.289300.

Scale Free Graph A scale free network has a degree distribution described by
P(k) k=*. We used the software tool SNAP to generate a scale free graph
by the Barabasi-Albert preferential attachment method, with n = 2000 and
m = 3 (see [15,16] for details on the algorithm)

Facebook Circles We used the Facebook ego dataset collected by [17] which
contains n = 4039 vertices and 88234 edges. This data set contains the
(anonymized) ego networks of participants of a Facebook Survey. See [17]
for more details.

We are interested in two conditions, whether agenda setting is on or off, and
how the seeds are chosen.

When agenda setting was on, we used a time varying agenda. Let 7 be
an agenda that was used from timestep 0 to timestep b which sets cognition
k to p = .9 and the other two cognitions to (1 — p)/2. After timestep b, we
set the agenda to m = [1/3,1/3,1/3]. Previous work has shown that a time
varying agenda with a high p for cognitions 2 or 3 performs better than a time-
independent agenda [18].

Without agenda setting, we assume that each cognition can be a topic with
equal probability. This corresponds to an agenda of [1/3,1/3,1/3].

The seed nodes were set according to four different methods:

Random Seeds were selected uniformly randomly from the vertices of the graph.

Degree Vertices were ordered by degree (from highest to lowest) and the top
10% were chosen to be seeds.

Betweenness Vertices were ordered by betweenness (from highest to lowest)
and the top 10% were chosen to be seeds. A vertex with high betweenness
is one that appears in many of the geodesics connecting nodes in the graph
[19].



Eigenvector Centrality Vertices were ordered by eigenvector centrality (Google’s
PageRank measure is a variant of this centrality measure) and the top 10%
were chosen to be seeds.

Previous work has shown that the boundary value b has a significant impact
on time to convergence, and thus we varied b from 0 to 1500

3.1 Experiment 1: Impact of Agenda Setting

In this experiment we study the impact of time-varying agendas on mean time to
convergence. Previous work [18] has shown that choosing a strategy with k = 2
or k = 3 and a high p (= .90) significantly reduces mean time to convergence.
Thus, in the following experiments we set k = 2 and p = .90.

Figure 3 shows the results for this experiment.

1300 -
© 1200 -
o 1100 -

rgence

nvi

(0]

H

o

S

S
I

900 -
800 -

700 - | | | | | | | | | | |
0 200 400 600 800 10001200 1400 1600 1800 2000
Boundary

Mean Time t

Facebook — Regular — Scale Free Small World

Fig. 3. Mean time to convergence for all graph types

At b = 0, the time varying strategy 77 equals the strategy [1/3,1/3,1/3].
We consider this the “Agenda Off” case. As we increase the boundary value b,
the impact of the non-uniform agenda is stronger. We can see that initially the
non-uniform strategy helps, but eventually the over-focus on it actually increases
the time to convergence (for a more thorough explanation, see [18]).

3.2 Experiment 2: Strategic seed choice vs. Agenda Setting

Figure 4 shows the mean convergence time (over 100 runs) for different choice
of seeds and for varying boundary values.
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Fig. 4. Mean time to convergence +/- 1 standard deviation. Betweenness and Degree
are overlapping. For the Scale Free network.

In the “Agenda off” situation, as expected, we see that the random setting
performs the worst by more than 200 timesteps, than any of the other seed setting
options. This matches expectations; existing work in the influence maximization
setting indicates that strategically choosing the seed nodes can increase the
influence spread under a linear cascade model [20, 7].

As we increase the boundary value, the influence of the non-uniform strategy
become more prevalent. The minimum mean time of convergence occurs when
the agenda setting is on, and the seed nodes are set (the results for Between and
Degree almost entirely overlap).

These results indicate the the best performing option is to include agenda
setting and strategic node choice. For the scale free network, choosing the degree
or betweenness measure provides the best results.

Figures 5 and 6 show the mean convergence time for the Facebook network.
Figure 5 shows all the node choice metrics. Surprisingly, the eigenvector central-
ity measure performs very poorly.

Figure 6 only shows the Degree, Random and Betweenness node choice met-
rics. Interestingly, the random node choice performs better than the degree based
node choice. This is probably due to the topology of the Facebook graph.

4 Related Work

To our knowledge, there has been no work that computationally explores the
impact of agenda setting on diffusion.
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The interpersonal interaction dynamics of our model are closely related to
the voter model a well explored model from the physics domain [21] in which
nodes can take on the values 0 or 1. At each timestep a random nodes takes on
the value of one of its neighbors. While the choice of agents is similar, few voter
models capture multiple interacting values within an agent.

Chapter 10 of [22] describes the “consensus = coherence + communication”
(CCC) model. In this model each agent has a parallel constraint satisfaction
network where concepts represent hypotheses and evidence, and links represent
explanatory relations. The purpose of the model was to explain the diffusion of
scientific theories in a population, so pairs of agents could interact (simulating
a complete network) and agents could execute “lectures” for many other agents.

The main difference between our model and the CCC model is in the inter-
action. In the CCC model agents exchange concepts with others, thus changing
the structure of the network. We have focused on a different perspective, given
that individuals already know the links between concepts, how do persuasive
messages between agents lead to attitude change.

The parallel constraint satisfaction model has been explored in a wide variety
of contexts, such as impression formation [23], legal inference [24-26], and as a
model of change in attitude to the persian gulf war [27].

In Axelrod’s model of social dynamics agents have multiple cultural features
where each feature can take on a value from a small set of “traits” [28],[29].
Agents can interact only The model uses a bounded confidence in which only
agents that match on a certain percentage of features will interact.
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Several extensions to Axelrod’s model have been proposed that incorporate
mass media. Often, this is incorporated through a virtual agent that represents
the media and which has edges connecting it to all other agents in the population
[29]. This work studies the influence effect of media, and not the agenda setting
effect.

5 Conclusions

Agent-based simulation is an important tool that allows empirically study of
complex interactions, in our case between interpersonal influence and attitudes.
In this work, we developed a novel agent based model that captures social and
cognitive factors that affect decision making (the MAMA model). We used agent-
based simulation to study the impact of agenda setting on diffusion time within
the MAMA model.

We found that:

1. Agenda setting can significantly reduce diffusion time.
2. Agenda setting paired with strategic seed choice results in the quickest dif-
fusion time.

Surprisingly, merely setting the topic of discussion (not even influencing at-
titudes) can have an impact on diffusion time.



These results suggest that for rapid diffusion, influencers ad campaigns should
focus on identifying the “influencers” in a network, and also understand the
underlying attitudes towards a product.

6 Future Work

A critical part of the MAMA model is the definition of the cognitive network.
While we have focused solely on the “3-Fan” network it’s clear that other topolo-
gies could reasonably exist. Variance in cognitive network topology may dramat-
ically increase diffusion time, or preclude convergence entirely (for instance, in
the case where there are no consistent states).

While we can hypothesize many different cognitive networks, identifying real
world cognitive networks may be more difficult. There has been some work for
specific domains (e.g., health decisions [30]), but a general procedure to learn
the links between attitudes does not seem to exist yet.
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