
1

An Overview of Trilinos

Mark Hoemmen

 Sandia National Laboratories

18 August 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-AC04-94AL85000.

SAND2011-5957 C

SAND2011-5957C

2

Outline

 What can Trilinos do for you?

 Trilinos’ software organization

 Whirlwind tour of Trilinos packages

 Getting started: “How do I…?”

 Preparation for hands-on tutorial

Trilinos Contributors
Chris Baker

Ross Bartlett

Pavel Bochev

Paul Boggs

Erik Boman

Lee Buermann

Cedric Chevalier

Todd Coffey

Eric Cyr

David Day

Karen Devine

Clark Dohrmann

Kelly Fermoyle

David Gay

Jeremie Gaidamour

Mike Heroux

Ulrich Hetmaniuk

Mark Hoemmen

Russell Hooper

Vicki Howle

Jonathan Hu

Joe Kotulski

Rich Lehoucq

Kevin Long

Karla Morris

Kurtis Nusbaum

Roger Pawlowski

Brent Perschbacher

Eric Phipps

Siva Rajamanickam

Lee Ann Riesen

Marzio Sala

Andrew Salinger

Nico Schlömer

Chris Siefert

Bill Spotz

Heidi Thornquist

Ray Tuminaro

Jim Willenbring

Alan Williams

Michael Wolf

Past Contributors

Jason Cross

Michael Gee

Esteban Guillen

Bob Heaphy

Robert Hoekstra

Kris Kampshoff

Ian Karlin

Sarah Knepper

Tammy Kolda

Joe Outzen

Mike Phenow

Paul Sexton

Bob Shuttleworth

Ken Stanley

4

Who am I?

 Postdoc at Sandia National Laboratories, NM

 Research: “Scalable algorithms”
 Communication-avoiding iterative methods

 Fault-tolerant iterative methods

 Trilinos developer since Spring 2010
 New, fast, accurate block orthogonalization (TSQR)

 New iterative methods in progress

 Sparse matrix input / output

 Other utilities and bug fixes

 Trilinos packages I’ve worked on:
 Anasazi, Belos, Kokkos, Teuchos, Tpetra

 I can’t answer every question, but will try my best!

5

What can Trilinos do for you?

What is Trilinos?

 Object-oriented software framework for…

 Solving big complex science & engineering problems

 More like LEGO™ bricks than Matlab™

6

Applications

PDEs

Circuits

Inhomogeneous Fluids

And More…

Applications

 All kinds of physical simulations:

 Structural mechanics (statics and dynamics)

 Circuit simulations (physical models)

 Electromagnetics, plasmas, and superconductors

 Combustion and fluid flow (at macro- and nanoscales)

 Coupled / multiphysics models

 Data and graph analysis

 Even gaming!

8

Target platforms:
Any and all, current and future

 Laptops and workstations

 Clusters and supercomputers
 Multicore CPU nodes

 Hybrid CPU / GPU nodes

 Parallel programming environments
 MPI, OpenMP

 Intel TBB, Pthreads

 Thrust, CUDA

 Combinations of the above

 User “skins”
 C++ (primary language)

 C, Fortran, Python

 Web (today’s hands-on!)

Unique features of Trilinos

 Huge library of algorithms

 Linear and nonlinear solvers, preconditioners, …

 Optimization, transients, sensitivities, uncertainty, …

 Growing support for multicore & hybrid CPU/GPU

 Built into the new Tpetra linear algebra objects

• Therefore into iterative solvers with zero effort!

 Unified intranode programming model

 Spreading into the whole stack:

• Multigrid, sparse factorizations, element assembly…

 Growing support for mixed and arbitrary precisions

 Don’t have to rebuild Trilinos to use it!

 Growing support for huge (> 2B unknowns) problems

10

11

How Trilinos evolved

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1 fh

Algorithms

physics

computation

Linear

Nonlinear

Eigenvalues

Optimization

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Petra

Utilities

Interfaces

Load Balancing

solvers

discretizations methods

core

 Started as linear solvers and distributed objects

 Capabilities grew to satisfy application and

research needs

 Discretizations in space and time

 Optimization and sensitivities

 Uncertainty quantification

From Forward Analysis, to Support

for High-Consequence Decisions

Forward Analysis

Accurate & Efficient Forward Analysis

Robust Analysis with Parameter Sensitivities

Optimization of Design/System

Quantify Uncertainties/Systems Margins

Optimization under Uncertainty

Each stage requires greater performance and error control of prior stages:

Always will need: more accurate and scalable methods.

 more sophisticated tools.

Systems of systems

Trilinos strategic goals

 Algorithmic goals

 Scalable computations

 Hardened computations

• Fail only if problem intractable

• Diagnose failures and inform the user

 Full vertical coverage

• Problem construction, solution, analysis, and optimization

 Software goals

 Universal interoperability

• Between any Trilinos components

• With external software (PETSc, Hypre, …)

 Universal accessibility

• Programming languages, hardware, operating systems

14

Trilinos’ software organization

15

Trilinos is made of packages

 Not a monolithic piece of software

 Like LEGO™ bricks, not Matlab™

 Each package:

 Has its own development team and management

 Makes its own decisions about algorithms, coding style, etc.

 May or may not depend on other Trilinos packages

 Trilinos is not “indivisible”

 You don’t need all of Trilinos to get things done

 Any subset of packages can be combined and distributed

 Current public release contains ~50 of the 55+ Trilinos packages

 Trilinos top layer framework

 Not a large amount of source code: ~1.5%

 Manages package dependencies

• Like a GNU/Linux package manager

 Runs packages’ tests nightly, and on every check-in

 Package model supports multifrontal development

16

Interoperability vs. Dependence

 (“Can Use”) (“Depends On”)

 Packages have minimal required dependencies…

 But interoperability makes them useful:
 NOX (nonlinear solver) needs linear solvers

• Can use any of {AztecOO, Belos, LAPACK, …}

 Belos (linear solver) needs preconditioners, matrices, and vectors

• Matrices and vectors: any of {Epetra, Tpetra, Thyra, …, PETSc}

• Preconditioners: any of {IFPACK, ML, Teko, …}

 Interoperability is enabled at configure time
 Each package declares its list of interoperable packages

 Trilinos’ CMake system automatically hooks them together

Capability areas and leaders

 Capability areas:

 Framework, Tools & Interfaces (Jim Willenbring)

 Software Engineering Technologies and Integration (Ross Bartlett)

 Discretizations (Pavel Bochev)

 Geometry, Meshing & Load Balancing (Karen Devine)

 Scalable Linear Algebra (Mike Heroux)

 Linear & Eigen Solvers (Jonathan Hu)

 Nonlinear, Transient & Optimization Solvers (Andy Salinger)

 Scalable I/O: (Ron Oldfield)

 Each area includes one or more Trilinos packages

 Each leader provides strategic direction within area

18

Whirlwind Tour of Packages

Full Vertical

Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems
AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems
NOX S

e
n

s
it

iv
it

ie
s

(A

u
to

m
a

ti
c

 D
if

fe
re

n
ti

a
ti

o
n

:
S

a
c

a
d

o
)

Kokkos

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards, Tpetra::RTI

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros, Teko

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos

21

Whirlwind Tour of Packages

Core Utilities

Discretizations Methods Solvers

22

Interoperable Tools for Rapid Development
of Compatible Discretizations Intrepid

Intrepid offers an innovative software design for compatible discretizations:

 Access to finite {element, volume, difference} methods using a common API

 Supports hybrid discretizations (FEM, FV and FD) on unstructured grids

 Supports a variety of cell shapes:

 Standard shapes (e.g., tets, hexes): high-order finite element methods

 Arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

 Enables optimization, error estimation, V&V, and UQ using fast invasive techniques

(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/D

Reconstruction

Cell Data

Reduction

Pullback: FEM

Higher order General cells

Λk

Forms

d,d*,,^,(,)

Operations

{C0,C1,C2,C3}

Discrete forms

D,D*,W,M

Discrete ops.

Developers: Pavel Bochev and Denis Ridzal

23

Rythmos

 Suite of time integration (discretization) methods

 Currently includes:

 Backward and Forward Euler

 Explicit Runge-Kutta

 Implicit BDF at this time.

 Native support for operator splitting methods

 Highly modular

 Forward sensitivities included in first release

 Adjoint sensitivities coming soon

Developers: Todd Coffey, Roscoe Bartlett

24

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

25

Sacado: Automatic Differentiation

 Efficient OO based AD tools optimized for element-level computations

 Applies AD at “element”-level computation
 “Element” means finite element, finite volume, network device,…

 Template application’s element-computation code
 Developers only need to maintain one templated code base

 Provides three forms of AD

 Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward

• Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

 Reverse Mode:

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards

• Gradients, Jacobian-transpose products (adjoints), when n > m.

 Taylor polynomial mode:

 Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

26

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

27

 Portable utility package of commonly useful tools

 ParameterList: nested key-value pair database (more later)

 LAPACK, BLAS wrappers (templated on ordinal and scalar type)

 Dense matrix and vector classes (compatible with BLAS/LAPACK)

 Memory management classes (more later)

 Scalable parallel timers and statistics

 Support for generic algorithms (traits classes)

 Takes advantage of advanced features of C++:
 Templates

 Standard Template Library (STL)

Developers: Chris Baker, Roscoe Barlett, Mike Heroux, Mark Hoemmen,

 Kris Kampshoff, Kevin Long, Paul Sexton, Heidi Thornquist

Teuchos

28

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra

 Petra provides a “common language” for distributed

linear algebra objects (operator, matrix, vector)

 Petra1 provides distributed matrix and vector services

 Exists in basic form as an object model:

 Describes basic user and support classes in UML,

independent of language/implementation

 Describes objects and relationships to build and use

matrices, vectors and graphs

 Has 2 implementations under active development

29

Petra Implementations

 Epetra (Essential Petra):

 Current production version

 Uses stable core subset of C++ (circa 2000)

 Restricted to real, double-precision arithmetic

 Interfaces accessible to C and Fortran users

 Tpetra (Templated Petra):

 Next-generation version

 Needs a modern C++ compiler (but not C++0x)

 Supports arbitrary scalar and index types via templates

• Arbitrary- and mixed-precision arithmetic

• 64-bit indices for solving problems with >2 billion unknowns

 Hybrid MPI / shared-memory parallel

• Supports multicore CPU and hybrid CPU/GPU

• Built on Kokkos manycore node library

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams

30

Zoltan

 Data Services for Dynamic Applications

 Dynamic load balancing

 Graph coloring

 Data migration

 Matrix ordering

 Partitioners:
 Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)

• Recursive Inertial Bisection (Taylor, Nour-Omid)

• Space Filling Curves (Peano, Hilbert)

• Refinement-tree Partitioning (Mitchell)

 Hypergraph and graph (connectivity-based) methods:
• Hypergraph Repartitioning PaToH (Catalyurek)

• Zoltan Hypergraph Partitioning

• ParMETIS (U. Minnesota)

• Jostle (U. Greenwich)

 Isorropia package: interface to Epetra objects

Developers: Karen Devine, Eric Boman, Robert Heaphy, Siva Rajamanickam

31

Thyra

 High-performance, abstract interfaces for linear algebra

 Offers flexibility through abstractions to algorithm developers

 Linear solvers (Direct, Iterative, Preconditioners)

 Abstraction of basic vector/matrix operations (dot, axpy, mv).

 Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

 Nonlinear solvers (Newton, etc.)

 Abstraction of linear solve (solve Ax=b).

 Can use any concrete linear solver library:

• AztecOO, Belos, ML, PETSc, LAPACK

 Transient/DAE solvers (implicit)

 Abstraction of nonlinear solve.

 … and so on.

Developers: Roscoe Bartlett, Kevin Long

32

“Skins”
 PyTrilinos provides Python access to Trilinos packages

 Uses SWIG to generate bindings.

 Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and
NewPackage are supported.

 CTrilinos: C wrapper (mostly to support ForTrilinos).

 ForTrilinos: OO Fortran interfaces.

 WebTrilinos: Web interface to Trilinos

 Generate test problems or read from file.

 Generate C++ or Python code fragments and click-run.

 Hand modify code fragments and re-run.

 Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala, Jim Willenbring

Developer: Bill Spotz

Developers: Nicole Lemaster, Damian Rouson

33

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

34

 Interface to direct solvers for distributed sparse linear

systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

 Challenges:
 No single solver dominates

 Different interfaces and data formats, serial and parallel

 Interface often changes between revisions

 Amesos offers:

 A single, clear, consistent interface, to various packages

 Common look-and-feel for all classes

 Separation from specific solver details

 Use serial and distributed solvers; Amesos takes care of data

redistribution

 Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

35

 Second-generation sparse direct solvers package

 Unified interface to multiple solvers, just like Amesos

 Amesos2 features:

 Supports matrices of arbitrary scalar and index types

 Path to multicore CPU and hybrid CPU/GPU solvers

 Thread safe: multiple solvers can coexist on the same node

• Supports new intranode hybrid direct / iterative solver ShyLU

 Abstraction from specific sparse matrix representation

• Supports Epetra and Tpetra

• Extensible to other matrix types

 September 2011 release

Developers: Eric Bavier, Erik Boman, and Siva Rajamanickam

Amesos2

36

AztecOO

 Krylov subspace solvers: CG, GMRES, BiCGSTAB,…

 Incomplete factorization preconditioners

 Aztec is Sandia’s workhorse solver:

 Extracted from the MPSalsa reacting flow code

 Installed in dozens of Sandia apps

 1900+ external licenses

 AztecOO improves on Aztec by:

 Using Epetra objects for defining matrix and vectors

 Providing more preconditioners/scalings

 Using C++ class design to enable more sophisticated use

 AztecOO interface allows:

 Continued use of Aztec for functionality

 Introduction of new solver capabilities outside of Aztec

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

37

Belos

 Next-generation linear iterative solvers

 Decouples algorithms from linear algebra objects
 Better than “reverse communication” interface of Aztec

 Linear algebra library controls storage and kernels

 Essential for multicore CPU / GPU nodes

 Solves problems that apps really want to solve, faster:
 Multiple right-hand sides: AX=B

 Sequences of related systems: (A + ΔAk) Xk = B + ΔBk

 Many advanced methods for these types of systems
 Block methods: Block GMRES and Block CG

 Recycling solvers: GCRODR (GMRES) and CG

 “Seed” solvers (hybrid GMRES)

 Block orthogonalizations (TSQR)

 Supports arbitrary and mixed precision, and complex

Developers: Heidi Thornquist, Mike Heroux, Mark Hoemmen,

 Mike Parks, Rich Lehoucq

38

IFPACK: Algebraic Preconditioners

 Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, & block direct solves.

 Accepts user matrix via abstract matrix interface

 Uses Epetra for basic matrix/vector calculations

 Simple perturbation stabilizations and condition est.

 Can be used by NOX, ML, AztecOO, Belos, …

Developers: Marzio Sala, Mike Heroux, Siva Rajamanickam, Alan Williams

39

 Second-generation IFPACK

 Highly optimized ILUT (60x faster than IFPACK’s!)

 Computed factors fully exploit multicore CPU / GPU

 Via Tpetra

 Path to hybrid-parallel factorizations

 Arbitrary precision and complex arithmetic support

Developers: Mike Heroux, Siva Rajamanickam, Alan Williams, Michael Wolf

Ifpack2

40

 : Multi-level Preconditioners

 Smoothed aggregation, multigrid and domain decomposition

preconditioning package

 Critical technology for scalable performance of many apps

 ML compatible with other Trilinos packages:

 Accepts user data as Epetra_RowMatrix object (abstract interface).

Any implementation of Epetra_RowMatrix works.

 Implements the Epetra_Operator interface. Allows ML preconditioners

to be used with AztecOO, Belos, Anasazi.

 Can also be used independent of other Trilinos packages

Developers: Ray Tuminaro, Jeremie Gaidamour, Jonathan Hu, Marzio Sala, Chris Siefert

41

Anasazi

 Next-generation iterative eigensolvers

 Decouples algorithms from linear algebra objects
 Better than “reverse communication” interface of ARPACK

 Linear algebra library controls storage and kernels

 Essential for multicore CPU / GPU nodes

 Block eigensolvers for accurate cluster resolution

 Can solve
 Standard (AX = ΛX) or generalized (AX = BΛX)

 Hermitian or not, real or complex

 Algorithms available
 Block Krylov-Schur (most like ARPACK’s IR Arnoldi)

 Block Davidson

 Locally Optimal Block-Preconditioned CG (LOBPCG)

 Implicit Riemannian Trust Region solvers

 Developers: Heidi Thornquist, Mike Heroux, Chris Baker,

 Rich Lehoucq, Ulrich Hetmaniuk, Mark Hoemmen

42

NOX: Nonlinear Solvers

 Suite of nonlinear solution methods

Implementation

• Parallel

• OO-C++

• Independent of the

linear algebra

package!

Jacobian Estimation

• Graph Coloring

• Finite Difference

• Jacobian-Free

Newton-Krylov

MB f xc  Bcd+=

Broyden’s Method

Newton’s Method

 MN f xc  Jc d+=

 Tensor Method

 MT f xc  Jcd
1

2
---Tcdd+ +=

Globalizations

Trust Region
Dogleg

Inexact Dogleg

Line Search
Interval Halving

Quadratic

Cubic

More’-Thuente

http://trilinos.sandia.gov/packages/nox

Developers: Tammy Kolda, Roger Pawlowski

43

LOCA

 Library of continuation algorithms

 Provides

 Zero order continuation

 First order continuation

 Arc length continuation

 Multi-parameter continuation (via Henderson's MF Library)

 Turning point continuation

 Pitchfork bifurcation continuation

 Hopf bifurcation continuation

 Phase transition continuation

 Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

44

MOOCHO & Aristos

 MOOCHO: Multifunctional Object-Oriented arCHitecture

for Optimization

 Large-scale invasive simultaneous analysis and design

(SAND) using reduced space SQP methods.

 Aristos: Optimization of large-scale design spaces

 Invasive optimization approach

 Based on full-space SQP methods

 Efficiently manages inexactness in the inner linear solves

Developer: Denis Ridzal

Developer: Roscoe Bartlett

45

Solver collaborations:

Abstract interfaces

and applications

Trilinos Strategic Goals

• Scalable Computations: As problem size and processor counts increase,

the cost of the computation will remain nearly fixed.

• Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the problem
fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

• Grand Universal Interoperability: All Trilinos packages, and important
external packages, will be interoperable, so that any combination of packages
and external software (e.g., PETSc, Hypre) that makes sense algorithmically
will be possible within Trilinos.

• Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web, and
from the desktop to the latest scalable systems.

• Universal Solver RAS: Trilinos will be:

– Reliable: Leading edge hardened, scalable solutions for each of these
applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Algorithmic
Goals

Software
Goals

47

Categories of Abstract Problems

and Abstract Algorithms

· Linear Problems:

· Linear equations:

· Eigen problems:

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

· Transient Nonlinear Problems:

· DAEs/ODEs:

· Optimization Problems:

· Unconstrained:

· Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Aristos

Rythmos

MOOCHO

48

 Abstract Numerical Algorithms

 An abstract numerical algorithm (ANA) is a numerical algorithm that can be

expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product

<x,y> defined by

vector space

vector-vector

operations

linear operator

applications

scalar operations

Types of operations Types of objects Linear Conjugate Gradient Algorithm

• ANAs can be very mathematically sophisticated!

• ANAs can be extremely reusable!

49

ANA Linear

Operator

Interface

Solver Software Components

and Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations,

preconditioners)

ANA

APP

ANA/APP

Interface

ANA Vector

Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear

solvers, stability analysis, uncertainty quantification, transient solvers,

optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:

• Belos (linear solvers)

• Anasazi (eigensolvers)

• NOX (nonlinear equations)

• Rhythmos (ODEs,DAEs)

• MOOCHO (Optimization)

• …

Example Trilinos Packages:

• Epetra/Tpetra (Mat,Vec)

• Ifpack, AztecOO, ML (Preconditioners)

• Meros (Preconditioners)

• Pliris (Interface to direct solvers)

• Amesos (Direct solvers)

• Komplex (Complex/Real forms)

• …
Types of Software Components

Thyra

ANA Interfaces to

Linear Algebra

FEI/Thyra

APP to LAL Interfaces Custom/Thyra

LAL to LAL

Interfaces

Thyra::Nonlin

Examples:

• SIERRA

• NEVADA

• Xyce

• Sundance

• …

LAL

Matrix Preconditioner

Vector

Introducing Stratimikos

• Stratimikos created Greek words "stratigiki“ (strategy) and "grammikos“ (linear)

• Defines class Thyra::DefaultLinearSolverBuilder.

• Provides common access to:

• Linear Solvers: Amesos, AztecOO, Belos, …

• Preconditioners: Ifpack, ML, …

• Reads in options through a parameter list (read from XML?)

• Accepts any linear system objects that provide

• Epetra_Operator / Epetra_RowMatrix view of the matrix

• SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects)

• Provides uniform access to linear solver options that can be leveraged across multiple

applications and algorithms

Key Point:

• Stratimikos is an important building

block for creating more sophisticated

linear solver capabilities!

Stratimikos Parameter List and Sublists

<ParameterList name=“Stratimikos”>

 <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>

 <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>

 <ParameterList name="Linear Solver Types">

 <ParameterList name="Amesos">

 <Parameter name="Solver Type" type="string" value="Klu"/>

 <ParameterList name="Amesos Settings">

 <Parameter name="MatrixProperty" type="string" value="general"/>

 ...

 <ParameterList name="Mumps"> ... </ParameterList>

 <ParameterList name="Superludist"> ... </ParameterList>

 </ParameterList>

 </ParameterList>

 <ParameterList name="AztecOO">

 <ParameterList name="Forward Solve">

 <Parameter name="Max Iterations" type="int" value="400"/>

 <Parameter name="Tolerance" type="double" value="1e-06"/>

 <ParameterList name="AztecOO Settings">

 <Parameter name="Aztec Solver" type="string" value="GMRES"/>

 ...

 </ParameterList>

 </ParameterList>

 ...

 </ParameterList>

 <ParameterList name="Belos"> ... </ParameterList>

 </ParameterList>

<ParameterList name="Preconditioner Types">

 <ParameterList name="Ifpack">

 <Parameter name="Prec Type" type="string" value="ILU"/>

 <Parameter name="Overlap" type="int" value="0"/>

 <ParameterList name="Ifpack Settings">

 <Parameter name="fact: level-of-fill" type="int" value="0"/>

 ...

 </ParameterList>

 </ParameterList>

 <ParameterList name="ML"> ... </ParameterList>

 </ParameterList>

</ParameterList>

L
in

e
a

r S
o

lv
e

rs

P
re

c
o

n
d

itio
n

e
rs

Sublists passed

on to package

code!

Top level parameters

Every parameter

and sublist is

handled by Thyra

code and is fully

validated!

52

Getting started: “How do I…?”

“How do I…?”

 Build my application with Trilinos?

 Learn about common Trilinos programming idioms?

 Download / find an installation of Trilinos?

 Find documentation and help?

53

Building your app with Trilinos

If you are using Makefiles:

 Makefile.export system

If you are using CMake:

 CMake FIND_PACKAGE

54

Using CMake to build with Trilinos

 CMake: Cross-platform build system

 Similar function as the GNU Autotools

 Trilinos uses CMake to build

 You don’t have to use CMake to build with Trilinos

 But if you do:

 FIND_PACKAGE(Trilinos …)

 Example CMake script in hands-on demo

 I find this much easier than hand-writing Makefiles

55

Export Makefile System

Once Trilinos is built, how do you link against the application?

There are a number of issues:

• Library link order:

• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

• Consistent compilers:

• g++, mpiCC, icc…

• Consistent build options and package defines:

• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

Answer: Export Makefile system

Why Export Makefiles are Important

• Trilinos has LOTS of packages

• As package dependencies (especially optional ones) are
introduced, more maintenance is required by the top-level
packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

NOX either must:

• Account for the new libraries in it’s configure script (unscalable)

• Depend on direct dependent packages to supply them through

export Makefiles

New Library New Library

Export Makefiles in Action

A Makefile that your application can use if you want to build with Epetra.

(Excerpt from $(TRILINOS_INSTALL_DIR)/include/Makefile.client.Epetra.)

Include the Trilinos export Makefile from package=Epetra.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Epetra

Add the Trilinos installation directory to the library and header search paths.
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib
INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

Set the C++ compiler and flags to those specified in the export Makefile.
This ensures your application is built with the same compiler and flags
with which Trilinos was built.
CXX = $(EPETRA_CXX_COMPILER)
CXXFLAGS = $(EPETRA_CXX_FLAGS)

Add the Trilinos libraries, search path, and rpath to the
linker command line arguments
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \
 $(EPETRA_LIBRARIES) \
 $(EPETRA_TPL_LIBRARIES) \
 $(EPETRA_EXTRA_LD_FLAGS)

Rules for building executables and objects.

%.exe : %.o $(EXTRA_OBJS)
 $(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.o : %.cpp
 $(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<

59

Software interface idioms

Idioms: Common “look and feel”

 Lower-level programming idioms

 Provided by the Teuchos utilities package

 Hierarchical “input deck” (ParameterList)

 Memory management classes (RCP, ArrayRCP)

• Safety: Manage data ownership and sharing

• Performance: Avoid copies, control memory placement

 Performance counters (e.g., TimeMonitor)

 Higher-level algorithmic idioms

 Petra distributed object model

• Provided by Epetra and Tpetra

• Common “language” shared by many packages

60

ParameterList: Trilinos’ “input deck”
 Simple key/value pair database, but nest-able

 Naturally hierarchical, just like numerical algorithms or

software

 Communication protocol between application layers

 Reproducible runs: save to XML, restore configuration

 Can express constraints and dependencies

 Optional GUI (Optika): lets novice users run your app

61

Teuchos::ParameterList p;

p.set(“Solver”, “GMRES”);

p.set(“Tolerance”, 1.0e-4);

p.set(“Max Iterations”, 100);

Teuchos::ParameterList& lsParams = p.sublist(“Solver Options”);

lsParams.set(“Fill Factor”, 1);

double tol = p.get<double>(“Tolerance”);

int fill = p.sublist(“Solver Options”).get<int>(“Fill Factor”);

Memory management classes
 Scientific computation: Lots of data, big objects

 Avoid copying and share data whenever possible

 Who “owns” (deallocates) the data?

 Manual memory management (void*) not an option

 Results in buggy and / or conservative code

 Reference-counted pointers and arrays

 RCP resp. ArrayRCP

 You don’t have to deallocate memory explicitly

 Objects deallocated when nothing points to them anymore

 Important for multicore CPU and hybrid CPU/GPU!

 Custom (de)allocators for GPU device memory

 Avoid unnecessary data movement, preserve locality

• CPU – GPU data transfers are expensive

• Important for multicore CPU too (e.g., NUMA)

62

Teuchos::RCP Technical Report

SAND2007-4078

http://trilinos.sandia.gov/documentation.html

Trilinos/doc/RCPbeginnersGuide

http://trilinos.sandia.gov/documentation.html

“But I don’t want RCPs!”

 They do add some keystrokes:

 RCP<Matrix> instead of Matrix*

 ArrayRCP<double> instead of double[]

 Run-time cost is none or very little

 We have automated performance tests

 Debug build  useful error checking

 More than Boost’s / C++0x’s shared_ptr

 Not every Trilinos package exposes them

 Some packages hide them behind handles or typedefs

 Python “skin” hides them; Python is garbage-collected

 Manual memory management not an option

64

TimeMonitor

 Timers that keep track of:

 Runtime

 Number of calls

 Time object associates a string name to the timer:
RCP<Time> stuffTimer =

 TimeMonitor::getNewCounter (“Do Stuff”);

 TimeMonitor guard controls timer in scope-safe way
{

 TimeMonitor tm (*stuffTimer);

 doStuff ();

}

 Automatically takes care of recursive / nested calls

 Scalable, safe parallel timer statistics summary
 TimeMonitor::summarize ();

65

66

Petra Distributed Object Model

Typical Petra Object

Construction Sequence

Construct Comm

Construct Map

Construct x Construct b Construct A

• Any number of Comm objects can exist.

• Comms can be nested (e.g., serial within MPI).

• Maps describe parallel layout.

• Maps typically associated with more than one comp

object.

• Two maps (source and target) define an export/import

object.

• Computational objects.

• Compatibility assured via common map.

68

Petra Implementations

 Epetra (Essential Petra):

 Current production version

 Uses stable core subset of C++ (circa 2000)

 Restricted to real, double precision arithmetic

 Interfaces accessible to C and Fortran users

 Tpetra (Templated Petra):

 Next-generation version

 Needs a modern C++ compiler (but not C++0x)

 Supports arbitrary scalar and index types via templates

• Arbitrary- and mixed-precision arithmetic

• 64-bit indices for solving problems with >2 billion unknowns

 Hybrid MPI / shared-memory parallel

• Supports multicore CPU and hybrid CPU/GPU

• Built on Kokkos manycore node library

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams

// Header files omitted…

int main(int argc, char *argv[]) {

 MPI_Init(&argc,&argv); // Initialize MPI, MpiComm

 Epetra_MpiComm Comm(MPI_COMM_WORLD);

A Simple Epetra/AztecOO Program

 // ***** Create x and b vectors *****

 Epetra_Vector x(Map);

 Epetra_Vector b(Map);

 b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

 Epetra_CrsMatrix A(Copy, Map, 3);

 double negOne = -1.0; double posTwo = 2.0;

 for (int i=0; i<NumMyElements; i++) {

 int GlobalRow = A.GRID(i);

 int RowLess1 = GlobalRow - 1;

 int RowPlus1 = GlobalRow + 1;

 if (RowLess1!=-1)

 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);

 if (RowPlus1!=NumGlobalElements)

 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);

 A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

 }

A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

 int NumMyElements = 1000 ;

 Epetra_Map Map(-1, NumMyElements, 0, Comm);

 int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************

 cout << "Solver performed " << solver.NumIters()

 << " iterations." << endl

 << "Norm of true residual = "

 << solver.TrueResidual()

 << endl;

 MPI_Finalize() ;

 return 0;

}

 // ***** Create/define AztecOO instance, solve *****

 AztecOO solver(problem);

 solver.SetAztecOption(AZ_precond, AZ_Jacobi);

 solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****

 Epetra_LinearProblem problem(&A, &x, &b);

// Header files omitted…

int main(int argc, char *argv[]) {

Epetra_SerialComm Comm();

Perform redistribution of distributed objects:

• Parallel permutations.

• “Ghosting” of values for local computations.

• Collection of partial results from remote processors.

Petra Object

Model

Abstract Interface to Parallel Machine

• Shameless mimic of MPI interface.

• Keeps MPI dependence to a single class (through all of Trilinos!).

• Allow trivial serial implementation.

• Opens door to novel parallel libraries (shmem, UPC, etc…)

Abstract Interface for Sparse All-to-All Communication

• Supports construction of pre-recorded “plan” for data-driven communications.

• Examples:

• Supports gathering/scatter of off-processor x/y values when computing y = Ax.

• Gathering overlap rows for Overlapping Schwarz.

• Redistribution of matrices, vectors, etc…

Describes layout of distributed objects:

• Vectors: Number of vector entries on each processor and global ID

• Matrices/graphs: Rows/Columns managed by a processor.

• Called “Maps” in Epetra.

Dense Distributed Vector and Matrices:

• Simple local data structure.

• BLAS-able, LAPACK-able.

• Ghostable, redistributable.

• RTOp-able.

Base Class for All Distributed Objects:

• Performs all communication.

• Requires Check, Pack, Unpack methods from derived class.

Graph class for structure-only computations:

• Reusable matrix structure.

• Pattern-based preconditioners.

• Pattern-based load balancing tools. Basic sparse matrix class:

• Flexible construction process.

• Arbitrary entry placement on parallel machine.

Details about Epetra Maps

 Note: Focus on Maps (not BlockMaps).

 Getting beyond standard use case…

 Note: All of the concepts presented here for

Epetra carry over to Tpetra!

1-to-1 Maps

 A map is 1-to-1 if…

 Each global ID appears only once in the map

 (and is thus associated with only a single processor)

 Certain operations in parallel data repartitioning

require 1-to-1 maps:

 Source map of an import must be 1-to-1.

 Target map of an export must be 1-to-1.

 Domain map of a 2D object must be 1-to-1.

 Range map of a 2D object must be 1-to-1.

2D Objects: Four Maps

 Epetra 2D objects:
 CrsMatrix, FECrsMatrix

 CrsGraph

 VbrMatrix, FEVbrMatrix

 Have four maps:
 RowMap: On each processor, the global IDs of the rows

that processor will “manage.”

 ColMap: On each processor, the global IDs of the columns
that processor will “manage.”

 DomainMap: The layout of domain objects
 (the x (multi)vector in y = Ax).

 RangeMap: The layout of range objects
 (the y (multi)vector in y = Ax).

Must be 1-to-1

maps!!!

Typically a 1-to-1 map

Typically NOT a 1-to-1 map

Sample Problem

2 1 0

1 2 1

0 1 2

 
 
 
 
  

1

2

3

x

x

x

 
 
 
  

=

1

2

3

y

y

y

 
 
 
  

y A x

Case 1: Standard Approach

 RowMap = {0, 1}

 ColMap = {0, 1, 2}

 DomainMap = {0, 1}

 RangeMap = {0, 1}

1 1

22

2 1 0
,... ,...

1 2 1

y x
y A x

xy

    
      

     

 First 2 rows of A, elements of y and elements of x, kept on PE 0.

 Last row of A, element of y and element of x, kept on PE 1.

PE 0 Contents

     3 3,... 0 1 2 ,...y y A x x   

PE 1 Contents

 RowMap = {2}

 ColMap = {1, 2}

 DomainMap = {2}

 RangeMap = {2}

Notes:

 Rows are wholly owned.

 RowMap=DomainMap=RangeMap (all 1-to-1).

 ColMap is NOT 1-to-1.

 Call to FillComplete: A.FillComplete(); // Assumes
2 1 0

1 2 1

0 1 2

 
 
 
 
  

1

2

3

x

x

x

 
 
 
  

=
1

2

3

y

y

y

 
 
 
  

y A x

Original Problem

1

2

3

x

x

x

 
 
 
  

1

2

3

y

y

y

 
 
 
  

Case 2: Twist 1

 RowMap = {0, 1}

 ColMap = {0, 1, 2}

 DomainMap = {1, 2}

 RangeMap = {0}

  2

1

3

2 1 0
,... ,...

1 2 1

x
y y A x

x

   
     

    

 First 2 rows of A, first element of y and last 2 elements of x, kept on PE 0.

 Last row of A, last 2 element of y and first element of x, kept on PE 1.

PE 0 Contents

   2

1

3

,... 0 1 2 ,...
y

y A x x
y

 
    
 

PE 1 Contents

 RowMap = {2}

 ColMap = {1, 2}

 DomainMap = {0}

 RangeMap = {1, 2}
Notes:

 Rows are wholly owned.

 RowMap is NOT = DomainMap

 is NOT = RangeMap (all 1-to-1).

 ColMap is NOT 1-to-1.

 Call to FillComplete:

A.FillComplete(DomainMap, RangeMap);

2 1 0

1 2 1

0 1 2

 
 
 
 
  

=

y A x

Original Problem

Case 2: Twist 2

 RowMap = {0, 1}

 ColMap = {0, 1}

 DomainMap = {1, 2}

 RangeMap = {0}

  2

1

3

2 1 0
,... ,...

1 1 0

x
y y A x

x

   
     

   

 First row of A, part of second row of A, first element of y and last 2 elements of x,
kept on PE 0.

 Last row, part of second row of A, last 2 element of y and first element of x, kept on
PE 1.

PE 0 Contents

 2

1

3

0 1 1
,... ,...

0 1 2

y
y A x x

y

   
     

  

PE 1 Contents

 RowMap = {1, 2}

 ColMap = {1, 2}

 DomainMap = {0}

 RangeMap = {1, 2}

Notes:

 Rows are NOT wholly owned.

 RowMap is NOT = DomainMap

 is NOT = RangeMap (all 1-to-1).

 RowMap and ColMap are NOT 1-to-1.

 Call to FillComplete:

A.FillComplete(DomainMap, RangeMap);

2 1 0

1 2 1

0 1 2

 
 
 
 
  

=

y A x

Original Problem

1

2

3

x

x

x

 
 
 
  

1

2

3

y

y

y

 
 
 
  

What does FillComplete do?

 Signals you’re done defining matrix structure

 Does a bunch of stuff

 e.g., create import/export objects (if

needed)for distributed sparse matrix-vector

multiply:

 If ColMap ≠ DomainMap, create Import object

 If RowMap ≠ RangeMap, create Export object

 A few rules:

 Non-square matrices will always require:
A.FillComplete(DomainMap,RangeMap);

 DomainMap and RangeMap must be 1-to-1

79

How do I learn more?

80

How do I learn more?

 Documentation:
 Trilinos tutorial: http://trilinos.sandia.gov/Trilinos10.6Tutorial.pdf

 Per-package documentation: http://trilinos.sandia.gov/packages/

 Trilinos Wiki with more examples:
https://code.google.com/p/trilinos/wiki/

 E-mail lists:
 http://trilinos.sandia.gov/mail_lists.html

 Annual user meetings and tutorials:
 DOE ACTS Tutorial (here we are!)

 Trilinos User Group (TUG) meeting and tutorial
• First week of November at SNL / NM

• Talks available for download (slides and video):
– http://trilinos.sandia.gov/events/trilinos_user_group_2010

– http://trilinos.sandia.gov/events/trilinos_user_group_2009

– http://trilinos.sandia.gov/events/trilinos_user_group_2008

 NEW! “EuroTUG” (in Europe)
• Planned for the first week of June 2012

http://trilinos.sandia.gov/Trilinos10.6Tutorial.pdf
http://trilinos.sandia.gov/packages/
https://code.google.com/p/trilinos/wiki/
http://trilinos.sandia.gov/mail_lists.html
http://trilinos.sandia.gov/events/trilinos_user_group_2010
http://trilinos.sandia.gov/events/trilinos_user_group_20109
http://trilinos.sandia.gov/events/trilinos_user_group_2008

81

How do I get Trilinos?

 Current release (10.6) available for download:
 http://trilinos.sandia.gov/download/trilinos-10.6.html

 Source tarball with sample build scripts

 Cray packages recent releases of Trilinos
 http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/

 $ module load trilinos

 LGPL or BSD license (depending on the package)

http://trilinos.sandia.gov/download/trilinos-10.6.html
http://trilinos.sandia.gov/download/trilinos-10.6.html
http://trilinos.sandia.gov/download/trilinos-10.6.html
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/
http://www.nersc.gov/users/software/programming-libraries/math-libraries/trilinos/

82

Hands-on tutorial

 Trilinos Wiki
 https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial

 Example codes: https://code.google.com/p/trilinos/w/list

 All examples are working codes
• Tested with Trilinos 10.4 and 10.7 (development branch)

 Web interface to Trilinos
 https://www.users.csbsju.edu/trilinos/WebTrilinosMPI/c++/index.ht

ml

 Development branch of Trilinos (10.7)

 Need username and password (will give these out later)

 All you need is a web browser!
• Copy, paste, and edit code examples in box

 Trilinos is also installed on NERSC machines

 If there is interest, I’ll help install it on your machine too

https://code.google.com/p/trilinos/wiki/TrilinosHandsOnTutorial
https://code.google.com/p/trilinos/w/list
https://www.users.csbsju.edu/trilinos/WebTrilinosMPI/c++/index.html
https://www.users.csbsju.edu/trilinos/WebTrilinosMPI/c++/index.html

83

Extra Slides

External Visibility
 Awards: R&D 100, HPC SW Challenge (04).

 www.cfd-online.com:

 Industry Collaborations: Various.

 Linux distros: Debian, Mandriva, Ubuntu, Fedora.

 SciDAC TOPS-2 partner, EASI (with ORNL, UT-Knoxville, UIUC, UC-Berkeley).

 Over 10,000 downloads since March 2005.

 Occasional unsolicited external endorsements such as the following two-person exchange on
mathforum.org:

 > The consensus seems to be that OO has little, if anything, to offer

 > (except bloat) to numerical computing.

 I would completely disagree. A good example of using OO in numerics is

 Trilinos: http://software.sandia.gov/trilinos/

Trilinos
A project led by Sandia to develop an object-oriented software framework for scientific

computations. This is an active project which includes several state-of-the-art solvers

and lots of other nice things a software engineer writing CFD codes would find useful.

Everything is freely available for download once you have registered. Very good!

http://software.sandia.gov/trilinos/rd100_2004.html

85

Trilinos / PETSc Interoperability

 Epetra_PETScAIJMatrix class

 Derives from Epetra_RowMatrix

 Wrapper for serial/parallel PETSc aij matrices

 Utilizes callbacks for matrix-vector product, getrow

 No deep copies

 Enables PETSc application to construct and call virtually any
Trilinos preconditioner

 ML accepts fully constructed PETSc KSP solvers as smoothers

 Fine grid only

 Assumes fine grid matrix is really PETSc aij matrix

 Complements Epetra_PETScAIJMatrix class
 For any smoother with getrow kernel, PETSc implementation should be

much faster than Trilinos

 For any smoother with matrix-vector product kernel, PETSc and Trilinos
implementations should be comparable

Linear System Solves

AztecOO

Aztec is the previous workhorse solver at Sandia:

 Extracted from the MPSalsa reacting flow code.

 Installed in dozens of Sandia apps.

AztecOO leverages the investment in Aztec:

 Uses Aztec iterative methods and preconditioners.

AztecOO improves on Aztec by:

 Using Epetra objects for defining matrix and RHS.

 Providing more preconditioners/scalings.

 Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:

 Continued use of Aztec for functionality.

 Introduction of new solver capabilities outside of Aztec.

 Belos is coming along as alternative.

 AztecOO will not go away.

 Will encourage new efforts and refactorings to use Belos.

AztecOO Extensibility

 AztecOO is designed to accept externally defined:

 Operators (both A and M):

• The linear operator A is accessed as an Epetra_Operator.

• Users can register a preconstructed preconditioner as an

Epetra_Operator.

 RowMatrix:

• If A is registered as a RowMatrix, Aztec’s preconditioners are

accessible.

• Alternatively M can be registered separately as an Epetra_RowMatrix,

and Aztec’s preconditioners are accessible.

 StatusTests:

• Aztec’s standard stopping criteria are accessible.

• Can override these mechanisms by registering a StatusTest Object.

AztecOO understands Epetra_Operator

 AztecOO is designed to

accept externally defined:

 Operators (both A and M).

 RowMatrix (Facilitates use

of AztecOO preconditioners

with external A).

 StatusTests (externally-

defined stopping criteria).

90

Belos and Anasazi

 Next generation linear solver / eigensolver library, written in
templated C++.

 Provide a generic interface to a collection of algorithms for
solving large-scale linear problems / eigenproblems.

 Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:

 e.g.: MultiVecTraits, OperatorTraits

 e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem/
LinearProblem, StatusTest, OrthoManager, OutputManager

 Includes block linear solvers / eigensolvers:

 Higher operator performance.

 More reliable.

 Solves:

 AX = XΛ or AX = BXΛ (Anasazi)

 AX = B (Belos)

91

Why are Block Solvers Useful?

 Block Solvers (in general):

 Achieve better performance for operator-vector products.

 Block Eigensolvers (Op(A)X = LX):

 Block Linear Solvers (Op(A)X = B):

 Reliably determine multiple and/or clustered eigenvalues.

 Example applications: Modal analysis, stability analysis,

 bifurcation analysis (LOCA)

 Useful for when multiple solutions are required for the same

system of equations.

 Example applications:

• Perturbation analysis

• Optimization problems

• Single right-hand sides where A has a handful of small eigenvalues

• Inner-iteration of block eigensolvers

92

Belos and Anasazi are solver libraries that:

1. Provide an abstract interface to an operator-vector products,

scaling, and preconditioning.

2. Allow the user to enlist any linear algebra package for the

elementary vector space operations essential to the

algorithm. (Epetra, PETSc, etc.)

3. Allow the user to define convergence of any algorithm (a.k.a.

status testing).

4. Allow the user to determine the verbosity level, formatting,

and processor for the output.

5. Allow these decisions to be made at runtime.

6. Allow for easier creation of new solvers through “managers”

using “iterations” as the basic kernels.

Linear / Eigensolver

Software Design

Nonlinear System Solves

94

NOX and LOCA are a combined package for solving and
analyzing sets of nonlinear equations.

 NOX: Globalized Newton-based solvers.

 LOCA: Continuation, Stability, and Bifurcation Analysis.

We define the nonlinear problem:

is the residual or function evaluation

is the solution vector

is the Jacobian Matrix defined by:

NOX/LOCA: Nonlinear Solver

and Analysis Algorithms

95

MB f xc  Bcd+=

Broyden’s Method

Newton’s Method

 MN f xc  Jc d+=

 Tensor Method

 MT f xc  Jcd
1

2
---Tcdd+ +=

Iterative Linear Solvers: Adaptive Forcing Terms

Jacobian-Free Newton-Krylov

Jacobian Estimation: Colored Finite Difference

Line Search
Interval Halving

Quadratic

Cubic

More’-Thuente

Curvilinear (Tensor)

Homotopy
Artificial Parameter Continuation

Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations

Nonlinear Solver Algorithms

Stopping Criteria
(Status Test)

Example: Newton’s Method for F (x) = 0

 Choose an initial guess x0

 For k = 0,1,2,...

 Compute Fk = F (xk)

 Compute Jk where

(Jk)ij = F i(xk)/x j

 Let dk = -Jk
-1 Fk

 (Optional) Let lk be a

calculated step length

 Set xk+1 = xk + lkdk

 Test for Convergence or

Failure

Calculating
the Direction

Damping or
Line Search

Iterate Control
(Solver)

Building Blocks of NOX

Stopping Criteria
(StatusTests)

Highly Flexible Design: Users build a convergence test hierarchy and

registers it with the solver (via solver constructor or reset method).

– Norm F: {Inf, One, Two} {absolute, relative}

– Norm Update DX: {Inf, One, Two}

– Norm Weighted Root Mean Square (WRMS):

– Max Iterations: Failure test if solver reaches max # iters

– FiniteValue: Failure test that checks for NaN and Inf on

– Stagnation: Failure test that triggers if the convergence rate

fails a tolerance check for n consecutive iterations.

– Combination: {AND, OR}

– Users Designed: Derive from NOX::StatusTest::Generic

Building a Status Test

• Fail if value of becomes Nan or Inf

NOX::StatusTest::FiniteValue finiteValueTest;

FiniteValue: finiteValueTest

• Fail if we reach maximum iterations

• Converge if both:

MaxIters: maxItersTest

NOX::StatusTest::MaxIters maxItersTest(200);

normFTest

NOX::StatusTest::NormF normFTest();

normWRMSTest

NOX::StatusTest::NormWRMS normWRMSTest();

Combo(AND): convergedTest

NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND);

Combo(OR)

allTests

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::OR);

allTests.addStatusTest(finiteValueTest);

allTests.addStatusTest(maxItersTest);

allTests.addStatusTest(convergedTest);

convergedTest.addStatusTest(normFTest);

convergedTest.addStatusTest(normWRMSTest);

Status Tests Continued

User Defined are Derived from NOX::StatusTest::Generic
NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem)

NOX::StatusTest::StatusType
checkStatusEfficiently(const NOX::Solver::Generic &problem,
 NOX::StatusTest::CheckType checkType)

NOX::StatusTest::StatusType getStatus() const

ostream& print(ostream &stream, int indent=0) const

-- Status Test Results --

**...........OR Combination ->

 **...........AND Combination ->

 **...........F-Norm = 5.907e-01 < 1.000e-08

 (Length-Scaled Two-Norm, Absolute Tolerance)

 **...........WRMS-Norm = 4.794e+01 < 1

 (Min Step Size: 1.000e+00 >= 1)

 (Max Lin Solv Tol: 1.314e-15 < 0.5)

 **...........Finite Number Check (Two-Norm F) = Finite

 **...........Number of Iterations = 2 < 200

-- Final Status Test Results --

Converged....OR Combination ->

 Converged....AND Combination ->

 Converged....F-Norm = 3.567e-13 < 1.000e-08

 (Length-Scaled Two-Norm, Absolute Tolerance)

 Converged....WRMS-Norm = 1.724e-03 < 1

 (Min Step Size: 1.000e+00 >= 1)

 (Max Lin Solv Tol: 4.951e-14 < 0.5)

 ??...........Finite Number Check (Two-Norm F) = Unknown

 ??...........Number of Iterations = -1 < 200

100

NOX Interface

Group Vector

computeF() innerProduct()

computeJacobian() scale()

applyJacobianInverse() norm()

update()

NOX solver methods are ANAs, and are implemented in terms
of group/vector abstract interfaces:

NOX solvers will work with any group/vector that implements
these interfaces.

Four concrete implementations are supported:
1. LAPACK
2. EPETRA
3. PETSc
4. Thyra (Release 8.0)

NOX Interface

Solver

Layer

Abstract Vector & Abstract Group
Abstract

Layer

Solvers
- Line Search
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

• Don’t need to directly access the vector or matrix entries, only

manipulate the objects.

• NOX uses an abstract interface to manipulate linear algebra objects.

• Isolate the Solver layer from the linear algebra implementations used by

the application.

• This approach means that NOX does NOT rely on any specific linear

algebra format.

• Allows the apps to tailor the linear algebra to their own needs!

– Serial or Parallel

– Any Storage format: User Defined, LAPACK, PETSc, Epetra

NOX Framework

Solver

Layer

Abstract Vector & Abstract Group
Abstract

Layer

Linear

Algebra

Interface

Implementations
- EPetra
- PETSc

- LAPACK
- USER DEFINED

EPetra Dependent Features
- Jacobian-Free Newton-Krylov
- Preconditioning
- Graph Coloring / Finite Diff.

Solvers
- Line Search
- Trust Region Directions

- e.g., Newton
Line Searches
- e.g., Polynomial

Status Tests
- e.g., Norm F

Application

Interface

Layer

User Interface
- Compute F
- Compute Jacobian
- Compute Preconditioner

The Epetra “Goodies”

• Matrix-Free Newton-Krylov Operator

• Derived from Epetra_Operator

• Can be used to estimate Jacobian action on a

vector

• NOX::Epetra::MatrixFree

• Finite Difference Jacobian

• Derived from an Epetra_RowMatrix

• Can be used as a preconditioner matrix

• NOX::Epetra::FiniteDifference

• Graph Colored Finite Difference Jacobian

• Derived from NOX::Epetra::FiniteDifference

• Fast Jacobian fills – need connectivity/coloring

graph

• (NOX::Epetra::FiniteDifferenceColoring)

• Full interface to AztecOO using NOX parameter list

• Preconditioners: internal AztecOO, Ifpack, User defined

• Scaling object

Jy
F x y+  F x –


---=

Jj

F x e
j

+  F x –


---=

104

Trilinos Awards

 2004 R&D 100 Award

 SC2004 HPC Software Challenge Award

 Sandia Team Employee Recognition Award

 Lockheed-Martin Nova Award Nominee

105

EpetraExt: Extensions to Epetra

 Library of useful classes not needed by everyone

 Most classes are types of “transforms”.

 Examples:

 Graph/matrix view extraction.

 Epetra/Zoltan interface.

 Explicit sparse transpose.

 Singleton removal filter, static condensation filter.

 Overlapped graph constructor, graph colorings.

 Permutations.

 Sparse matrix-matrix multiply.

 Matlab, MatrixMarket I/O functions.

 Most classes are small, useful, but non-trivial to write.

Developer: Robert Hoekstra, Alan Williams, Mike Heroux

