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Grand canonical parUUon funcUon  
for a fluid in an external field; X. 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Ω(rN ;µ,T) = −β−1 lnΞµVT
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Z NVµT = drNe−βU N (r N )e−βΩ(r N ;µ,T )∫

Implicit Solvent method = Compute grand free energy, Ω !! 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w(rN ) =UN + [Ωs(rN ) −Ωs(∞)]

1993‐1998 

Frink and van Swol, J.Chem. Phys., 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Complexity 

Clay‐polymer nanocomposites 
(Univ. College London exclaim.org.uk) 

Porous Media 
(www2.bren.ucsb.edu/~keller/micromodels.html)


Colloidal/Amphiphilic systems   
(www.science.duq.edu)


Magainin pore 
Leon4adou et al., 
 JACS, 128, 12156 (2006)  



Problem classes 

Atomic fluids Molecular fluids Polymer Chain fluids 

Simple extended 
surfaces (SFA) atoms & molecules 

Complex extended 
surfaces 

Fluids 

Surfaces 

Equilibrium, Dynamic, Reacting Systems 



State of the Art 
1995 

• 1D applica+ons. 
• Picard itera+ve schemes [one or 
two FE/Newton’s method codes 
(Sabeur and Henderson, H.T. 
Davis)]. 

• Fundamental Measures (FMT) 
approach for atomis+c systems 
emerging. 

• Rich phase transi+ons, but +me 
consuming to study. 

• Theore+cal and apps work 
focused on fluids at surfaces. 

2008 

• Theories more mature (FMT), and s+ll 
improving (bonded systems). 

• 3D applica+ons are possible. 
• State complexity can be studied 
efficiently with con+nua+on/
bifurca+on algorithms. 

• Specialized solver algorithms for DFTs 
developed. 

• Self‐assembled systems more 
accessible for inves+ga+on. 

• Dynamic‐DFTs developed. 

• 3D‐MC‐DFT calcula+ons possible (s+ll 
emerging). 



I.    Math and algorithms (in Tramonto)  

II.  A sampling of applicaUons 

III.  Current acUviUes and direcUons 



Some physics… 

€ 

Ω[ρ(r)] = Fid + Fhs + FvdW + Fc + Fassoc + ρ(r)[V (r) −µ]∫
Ideal 
gas 

Hard 
sphere 

Dispersion 
aIracUons 

AssociaUons 
(H‐bonding) 

Coulomb 
interacUons 

Legendre 
Transform from 
Canonical to  
Grand canonical 
ensemble 

[Applied field] 

HS – volume exclusions 
  ‐ FMT / Rosenfeld 19xx 
  ‐ FMT / Rosenfeld and xxx 
  ‐ FMT  ‐ White Bear 2002 

Pair interacUons (strict mean field) 
  ‐ LJ interacUons 
  ‐ Coulomb interacUons 
  ‐ Yukawa potenUals 

Bonded systems 
  ‐ iSAFT(1) Tripathi/Chapman 
  ‐ iSAFT(2) Jain/Dominik/Chapman 

   

Other implementaUons 
  ‐ Coupled Poisson approach for  
           electrostaUcs (PDE form) 
  ‐ Steady State Diffusion (PDE) 
  ‐ Chandler‐McCoy‐Singer polymer‐DFT 

LimiUng Cases 
  ‐ Ideal gas 
  ‐ Poisson‐Boltzmann electrolyte 
  ‐ (SCFT – not yet) 



numerical methods… 
Picard – 
  ‐ Derive Euler‐Lagrange equaUon 
  ‐ Set up an iniUal guess 
  ‐ iterate by successive subsUtuUon 
  ‐ mix update with “old” soluUon  
  ‐ updates of <1% in some cases 
  ‐ O(100s‐1000s) of iteraUons 1D 

Newton‐Rhapson ‐ 
  ‐ Euler‐Lagrange is the “residual” equaUon to solve 
  ‐ Need gradients of residual (aka second funcUonal derivaUve) 
  ‐ opportunity for “numerical methods” research –  
    ‐ solvers, precondiUoners, parallel compuUng etc. 
    ‐ engineering analysis and opUmizaUon  
  ‐ parUal updates ~20% someUmes needed 
  ‐ O(10s) of iteraUons (1D‐3D) 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FMT 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wi
(γ )(| r − r' |) = Cγδ(| r − r' |−Ri)
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Integral Eqns 
Of Finite Range! 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Two ways to form the matrix problem… 

(1) “second order” in complexity in forming the system of equaUons. 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[A][Δρ] = [b]

(2) Reduced fill complexity. 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Two ways to order the matrix… 

Example: 

Hard‐sphere problem 

Subblock
 Nonzeros


A11
 10,935

A12
 176,932

A21
 353,864

A22
 729


Nodal 
Ordering 

Physics Block 

Ordering  Block Matrix 

Nonzeros 



A numerical perspecUve 
DFT ‐ Integral equaUons of finite range 
          (smaller systems have higher density) 
PDE ‐ matrix density independent of system size. 

DFT‐ Inter‐physics coupling dominates 
PDE ‐ Inter‐nodal coupling dominates 

DFT ‐ Stencils based on physical constants 
PDE ‐ Stencils based on nearest neighbors 

DFT ‐ May have large numbers of DOF per node 
  HS (3D) 10+ 
  Polymer (20 beads) 42+ 
PDE ‐ Usually a few DOFs per node 



Two soluUon strategies 

• Construct A11 so it is easy to invert. 

  A11 = I         then   A11
-1 = I


  A11 = L – I   then   A11
-1 = -L – I 

•  Schur complement on 2‐by‐2 block system. 
  At each iteraUon apply: S = (A22‐A21A11

‐1A12). 

  Solve:                          Sx2=(b2‐A21A11
‐1b1). 

  Apply precondiUoning (e.g. ILU) to S 

DFT op4mized solver 

Out of the box PDE solvers (AztecOO) 

•  Solve Ax=b 
•  Apply preconditioning to A 



Methods ‐ results 
Stats         \Form 
Phase Cost \ 

EXP IMP1 IMP2 IMP2 has 
cost of 

System Dimension 4,913 54,043 4,913 EXP 

Matrix nonzero cnt 5M 15M 15M IMP1 

Condition Number 6E2 1E4 6E2 EXP 

Matrix Preprocessing 105.4 10.8 10.8 IMP1 

Matrix Fill 118.0 4.0 4.0 IMP1 

Solve Time 12.2 145.9 38.4 Both 

Linear Solve Iterations 46 124 45 EXP 

Total Time 
(4 Newton Steps) 

628.3 616.9 186.9 Both 

EXP(ρ): GMRES: A 

IMP1(ρ,n): GMRES: A 

IMP2(ρ,n): Schur/GMRES A22   

*note no precondi4oner was used for these studies. 



Parallel scaling – 2D 



Scaling with Chain Length 



Two helpful algorithms 

Arc Length ConUnuaUon  MulUstate Tracking 



Porous Media 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Porous Media 



Nanocomposite thin films 

polymer 
σ


nanoparticle 
2R 

Experiment:  
PS nanoparUcles go to the surface 
(Krishnan et al., Langmuir, 2005) 

DFT/MD:  
McGarrity, Mackay (MSU),  
Frischknecht (Sandia) 



Nanocomposites 



Lipid Bilayers 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Cut and shiLed Lennard‐Jones 
potenUals … cutoffs = 3.5σ


Define:  
  state point and  
  energy parameters, ε 


1σ 

1.44σ 

1σ 

solvent 

Head groups 

Tail groups 



Comparing MD and DFT 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kT/ε=1.0 

Pσ3/kT=0.5 

Head  Tail  Solvent 

Head  1  0  1 

Tail  0  1  0 

Solvent  1  0  1 

MD  DFT 



State Point 
Biological membranes are zero tension membranes.  The temperature and 
pressure are set by the bulk solvent (water / physiological electrolyte). 

Tcri+cal  Ttriple  T 

H20 (°C)  374  0.01  37 

Model 
(kBT/ε) 

1.015  ~0.55  0.6‐0.7 

P  Pvap(T)  P/Pvap 

H20 (atm)  1  0.0619  16.2 

Model 
(Pσ3/kT) 

0.279  0.00334  16.2 

The mappings are not unique because the law of corresponding states is not true for 
a comparison of LJ fluids and water. 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Par44oning Calcula4ons 
Energy parameters are set to mimic the interacUons of water with hydrocarbon 
tails of lipid chains.  ParUUoning studies of the model system were done on water 
and hexadecane (= 8 “tail” beads).   ΔG/kT=9.69 for water/hexadecane at 40°C 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kT/ε=0.7 
Pσ3/kT=0.28 

Head  Tail  Solvent 

Head  1.42  0.51  1.42 

Tail  0.51  1.38  0.51 

Solvent  1.42  0.51  1.42 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PepUde Assemblies 
Biology 

• Found in bacterial, archaeal, 
eukaryo+c cytoplasmic and 
organellar membranes  

• An+bimicrobial pep+des 

• Ion channels 
• Pore‐forming toxins 

• Viruses 

Nanotechnology 

• Sensors 
• Smart Materials 

S. White Lab: http://blanco.biomol.uci.edu/mp_assembly.html 

magainin pore 

Leon4adou et al., JACS, 128, 
12156 (2006)  



AMPs in membranes 
Barrel‐stave structure 

Toroidal structure 

Yang et al., Biophys. J. 2001  Ludtke et al, Biochemistry, 1996 

Protein inser+on 



~6σ  
(28.5Å) 

~2σ  
(9.5Å) 

9σ  
(42.8Å) 

18σ  
(85.5Å) 

16‐22σ (76‐105Å) 

a 

Cylinder‐lipid interac+ons: 
‐  diameter = 2σ = 9.5 Å 
‐  a=laece constant 
‐  hard (no par+cular molecular preferences) 

Time per solve is ~10‐20 minutes on 
100 procs 3D calcula+ons: 



Toroidal Pore (a=16.6 Å) ‐ cut 2 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Varying ε2s and ε2h  

with ε1t=0 

pore 

No pore 

•  a=14.875Å assembly 
•  Found a first order phase transi4on. 
•  The first converged solu4on was the  
metastable solu4on. 
•  162 data points 





Current Efforts 
SoLware Development  
  ‐ Building New Physics CapabiliUes 
    ‐ Tensor weight funcUons 
    ‐ Dynamics 
    ‐ Bond angle constraints 
    ‐ … 

  ‐ Solvers 
    ‐ GeneralizaUon of Schur Solvers 
    ‐ InvesUgaUon of opUmal soluUon of coupled PDE / DFTs 

  ‐ Usefulness and Accessibility 
    ‐ Build complexity 
    ‐ Parameter input and handling 

  ‐ Tramonto 2.2 is expected this summer 


