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ABSTRACT

Niobium doped Lead Zirconate Titanate (PZT) with a Zr/Ti ratio of 95/5 (i.e., PZT 95/5-2Nb) is a ferroelectric
with a rhombohedral structure at room temperature. A crystal (or a subdomain within a crystal) exhibits a
spontaneous polarization in any one of eight crystallographically equivalent directions. Such a material becomes
polarized when subjected to a large electric field. When the electric field is removed, a remanent polarization
remains and a bound charge is stored. A displacive phase transition from a rhombohedral ferroelectric phase to
an orthorhombic anti-ferroelectric phase can be induced with the application of a mechanical load. When this
occurs, the material becomes depoled and the bound charge is released. The polycrystalline character of PZT
95/5-2Nb leads to highly non-uniform fields at the grain scale. These local fields lead to very complex material
behavior during mechanical depoling that has important implications to device design and performance.

This paper presents a microstructurally based numerical model that describes the 3D non-linear behavior of
ferroelectric ceramics. The model resolves the structure of polycrystals directly in the topology of the problem
domain and uses the extended finite element method (X-FEM) to solve the governing equations of electromechan-
ics. The material response is computed from anisotropic single crystal constants and the volume fractions of the
various polarization variants (i.e., three variants for rhombohedral anti-ferroelectric and eight for rhomobohedral
ferroelectric ceramic). Evolution of the variant volume fractions is governed by the minimization of internally
stored energy and accounts for ferroelectric and ferroelastic domain switching and phase transitions in response
to the applied loads. The developed model is used to examine hydrostatic depoling in PZT 95/5-2Nb.

1. INTRODUCTION

Solid solutions of Lead Zirconate and Lead Titanate, Pb(T i, Zr)O3 or PZT, have found widespread application
owing to their very desirable piezoelectric properties.1 Depending on the particular solution and the temperature,
PZT exhibits three polar phases – rhombohedral, tetragonal, and orthorhombic. Niobium doped PZT with a
Zr/Ti ratio of 95/5 (PZT 95/5-2Nb) has a rhombohedral structure at room temperature and has a spontaneous
polarization in any one of eight crystallographically equivalent directions (body diagonals). At a hydrostatic pres-
sure of about 250 MPa the material undergoes a displacive phase transition to an orthorhombic anti-ferroelectric
state. This phase transition from a polar to an anti-polar phase makes PZT 95/5-2Nb an excellent candidate for
mechanically actuated power supplies.2

Ferroceramics are polycrystalline in character and a typical grain has regions of uniform polarization, called
domains, that are separated by domain walls. The crystallographic basis of each grain is randomly oriented
which, in combination with anisotropic single crystal behavior, leads to large variations in internal stress and
electric field. Pores and impurities lead to further variation in internal fields.

The technological importance of ferroceramics has lead to extensive research in this area. Great effort over
the last several decades has been expended in developing detailed and accurate understanding of ferroceramics.
Experimental studies3–5 have produced excellent insight into the physical origins of ferroelectric response, and
have further fueled development of models capable of explaining and reproducing observed material behavior.
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A common approach to modeling ferroceramic materials or devices is to enforce the appropriate conservation
laws and kinematic relationships using the finite element method (FEM). Using this approach, ferroelectric
response can be explored for arbitrary sample/device configurations and applied loads/constraints. However,
in order to apply the FEM, the conservation equations and kinematic relationships must be accompanied by a
constitutive model to form a complete and solvable system of equations. Fairly recently, perhaps over the last
decade, many models of varying levels of sophistication have been proposed that attempt to model ferroelectric
response by directly modeling the microscopic origins of the behavior.

Hwang6 was among the first to attempt to model ferroelectric response at the microscale. In that work, the
material structure is modeled explicitly as a mixture of randomly oriented single-domain grains, and an energy
criterion is used to govern domain switching in response to external loading. The polycrystalline behavior is the
average of contributions from each crystal. This approach yields qualitative agreement with observed electrome-
chanical hysteresis phenomena. However, this model assumes single domain grains and neglects interactions
among grains.

Huber et al.7 made use of the similarity between domain switching in polydomain ferroelectric single crystals
and activation of slip systems in ductile metals. The methods of crystal plasticity were employed to track the
kinematics of switching systems. The model accommodates polydomain grains by using the Reuss approximation
which assumes that the stress and electric field are uniform over the grain. This makes it possible to compute
effective material properties from volume fractions of available domain orientations (orientation bins, or just
bins) without knowledge of the actual domain configuration. The volume fractions are allowed to evolve based
on an energy criterion similar to the one used by Hwang.6 Huber’s model predicts the response of a polydomain
crystal but does not directly incorporate the polycrystalline character of ferroceramics.

Kamlah8 applied a modification of Huber’s model in a vector potential finite element formulation9 to perform
2D simulations that directly resolve the polycrystal in the computational grid. Each element in the 10 by 10
grid is considered to be a single polydomain crystal with a random material basis. While this work did not
provide a comparison to experimental data, the model produced expected single crystal and polycrystal results
and provided insight into the behavior of a polycrystalline ferroceramic during poling.

These models, among many others, have provided the ability to analyze complex electromechanical devices
and develop a more in depth understanding of ferroceramics. However, work continues in the pursuit of a
predictive modeling capability and a fundamental physical understanding of these materials. The objective of
this work was to simulate hydrostatic depoling of a polycrystalline ferroceramic sample. The approach used here
is to resolve the microstructure directly in the topology of the problem domain and use the extended finite element
method (X-FEM) to solve the governing equations of electromechanics. Each grain in the polycrystal is modeled
as a single crystal with its own unique and randomly determined material basis. A micro-electromechanical
material model is used that is similar to the one proposed by Huber7 and used by Kamlah.8 While the method
can be generally applied to domain switching and phase transitions in any material, the method is used to
examine mechanical depoling in PZT 95/5-2Nb.

In section 2, the extended finite element method is described and the application of X-FEM to the elec-
tromechanics problem is presented. In section 3, the single crystal material model that is used in the analysis
is described. In section 4, mechanical depoling is examined under hydrostatic loading. Finally, in section 5, the
conclusions of this work are summarized.

2. THE EXTENDED FINITE ELEMENT METHOD FOR ELECTROMECHANICS

The extended finite element method (X-FEM) greatly simplifies the treatment of complex geometries by incor-
porating material interfaces directly in the FEM interpolation.10 In classical finite elements, geometric features
are resolved in a conformal discretization. That is, the mesh must conform to external surfaces and internal
interfaces. In many cases, such as with composite structures and multiple phase materials, it is a formidable
task to create a conformal discretization.

X-FEM is an extension of classical FEM to treat functions with arbitrary discontinuities and discontinuous
derivatives. The interface between materials is captured through a nodal enrichment function that, in this work,
is based on a signed distance function.



Following Ghandi and Hagood,11 the governing equations for the coupled electromechanical system, in both
the strong and weak forms, is presented here. Consider a domain Ω ⊂ ℜ3 with boundary Γ = Γu ∪Γt = Γφ ∪Γq.
The goal is to satisfy the conditions of mechanical and electrical equilibrium in the absence of free charge

∇ · σ = 0 in Ω ∇ · D = 0 in Ω
u = uΓu on Γu φ = φΓφ on Γφ

σ · n = tΓt on Γt D · n = −qΓq on Γq

(1)

where σ is the stress, D is the electric displacement, uΓu and φΓφ are the prescribed displacement and electric
potential, tΓt and qΓq are the prescribed traction and charge, and n is the unit normal. The prescribed boundary
conditions are some function of an independent load parameter, say γ, so that loads can be applied incrementally.
The strain, ǫ, and electric field, E, are expressed in terms of the independent quantities, displacement and
potential, according to

ǫ = ∇su =
1

2
(∇u + u∇) (2)

E = −∇φ. (3)

The principle of virtual work can be expressed in the preceeding terms for the mechanical part as12

∫

Ω

σδǫdΩ =

∫

Γt

tΓtδudΓ (4)

and by observation of the similarity between the mechanical and electrical governing equations, the electrical
analog to equation 4 is

∫

Ω

DδEdΩ =

∫

Γq

qΓqδφdΓ . (5)

A stress field and electric displacement field satisfy the conditions of mechanical and electrical equilibrium if
equations 4 and 5 are satisfied for arbitrary virtual quantities, δu and δφ.

The discrete system of equations is achieved by the approximations

u (x) =
∑

I uINI (x) +
∑

J aJNJ (x) η (x)
φ (x) =

∑

I φINI (x) +
∑

J ρJNJ (x) η (x)
(6)

where NI (x) are the finite element shape functions, and uI and φI are the nodal displacements and potential.10

The first term on the right hand side of equation 6 is the familiar finite element interpolation used in many
conventional finite element codes. The second term is due to the extended finite element method and accounts
for the C0 continuity of an element that is bisected by a material interface. In this term, aJ and ρJ are the
enrichment degrees of freedom and exist only at those nodes whose support is intersected by a material interface.
The scalar valued function, η (x), is referred to as the enrichment function. The enrichment function selected
for this work was proposed by Moes13 and is defined to be

η (x) =
∑

I

|ψI |NI (x) −
∣

∣

∣

∣

∣

∑

I

ψINI (x)

∣

∣

∣

∣

∣

(7)

where ψI are the nodal values of the level set representation of the material boundary. The key feature of this
function, illustrated schematically in figure 1, is that the first derivative is discontinuous. It is this attribute that
makes the enriched interpolation of equation 6 well suited for elements with discontinuous material properties.

In this formulation the discretization takes the form of a structured cartesian grid and the geometry of the
problem is captured by nodal level set values (figure 1). The task is no longer to create a discretization that
conforms to the geometry but to compute the corresponding level set values, a problem that will in general be
much easier.

Recasting the interpolation in equation 6 defines the interpolation matrices, Nu and Nφ such that

u = NuU (8)
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Figure 1. Schematic representation of the enrichment function.

φ = NφΦ (9)

where U and Φ are all nodal displacement and nodal potential degrees of freedom, including enrichment. Applying
the definition of strain and electric field, equations 2 and 3, to the interpolation in equations 6 yields the gradient
matrices, Bu and Bφ such that

ǫ = BuU (10)

E = −BφΦ . (11)

Equations 8 through 11 are substituted into the weak form of the governing equations, equations 4 and 5, to
yield

δU

∫

Ω

Bu
TσdΩ = δU

∫

Γt

Nu
T tΓtdΓ (12)

−δΦ
∫

Ω

Bφ
TDdΩ = δΦ

∫

Γq

Nφ
T qΓqdΓ (13)

where the nodal virtual quantities can be taken outside the integral since they are independent of position. The
nodal forces, R, and nodal charges, Q, will be defined so that the inner product with the virtual quantities yields
the virtual work

Rint =
∫

Ω
Bu

TσdΩ Rext =
∫

Γt
Nu

T tΓtdΓ (14)

Qint = −
∫

Ω
Bφ

TDdΩ Qext =
∫

Γq
Nφ

T qΓqdΓ (15)

and since equations 12 and 13 must be satisfied for arbitrary δU and δΦ the condition for mechanical and
electrical equilibrium becomes

R = Rint − Rext = 0 (16)

Q = Qint − Qext = 0. (17)

The integrals in equations 14 and 15 are evaluated over the volume of each element and then summed to
arrive at the global quantities. Elements that are not intersected by a material interface are integrated using
second order Gauss quadrature. However, elements that are intersected must be integrated carefully to account
for the discontinuous integrand. The approach used for this work is to integrate intersected elements by breaking
the element into continuous subdomains and then further dividing the subdomains into tetrahedra. Finally,
integration is done over the tetrahedra using second order accurate Gauss quadrature.

To accommodate domain switching events without limiting the load step throughout the calculation, an
adaptive load stepping algorithm is used. Zeroth order parameter continuation is used wherein the load step is
a function of a continuation parameter, say γ, that is selected such that a specified condition is satisfied. For an
electrical or mechanical load, this condition states that the maximum change in electric displacement magnitude
or any normal strain component, respectively, cannot exceed a specified limit. This approach has proven very
effective in resolving nonlinear behavior while limiting the total number of load steps.



In terms of generalized degrees of freedom, X , and nodal loads, F, the condition for static equilibrium,
equations 1, can be expressed as

F =

{

R (X )
−Q (X )

}

= 0 (18)

where X = {U Φ}T , and the negative sign on the nodal charges is introduced so that the resulting stiffness
matrix is symmetric.11 The nonlinear system is solved using Newton-Raphson iteration:

K∆X = −F (γt,Xi) (19)

Xi+1 = Xi + ∆X (20)

where the subscript i indicates the current iteration and γt is the current value of the load parameter. The
stiffness matrix, K, is computed using material finite differencing, followed by an assembly operation. Iteration
continues until a convergence criterion is met then the load parameter, γt, is incremented and the nonlinear
iteration begins anew. This process continues until the load parameter reaches a predetermined value.

3. CONSTITUTIVE MODEL

The finite element method described in section 2 is independent of the particular material being studied. The
behavior of the material under consideration must be incorporated with a constitutive model that captures
the salient features of the material response in the expected range of operation. If a ferroelectric ceramic is
subjected to sufficiently large loads, electrical and/or mechanical, the response of the material becomes nonlinear
due to the reorientation of electric dipoles and/or phase transitions. The nonlinearity of the material response
is accomodated by decomposing the strain and electric displacement into their elastic (linear) and inelastic
(nonlinear) parts;

σi = cDijǫ
L
j − hijD

L
j

Ei = −hijǫ
L
j + βǫ

ijD
L
j

(21)

where
ǫi = ǫLi + ǫRi
Di = DL

i +DR
i

, (22)

and the inelastic quantities, ǫRi and DR
i , are a function of the load history. In this paper, the term inelastic

includes remanent quantities associated with domain switching and quantities associated with phase transitions.
Evolution of inelastic strain and inelastic polarization with the applied loads is provided by the nonlinear consti-
tutive model and should implicitly capture the evolution of the underlying domain structure of the polycrystal.

When the stored energy, w, at a material point exceeds a critical energy level, wc, transition systems become
active in order to reduce the internal energy. In the case of ferroelectric switching, domain walls move in order
to realign electric dipoles with the applied field and decrease the stored electrical energy. A ferroelectric to
anti-ferroelectric phase transition brought about by an applied stress is associated with a decrease in specific
volume which decreases the stored mechanical energy.

The evolution of the volume fractions of the polarization and/or phase variants is computed by requiring the
dissipatable energy to be less than or equal to zero,

Π = w − wc ≤ 0 (23)

The dissipatable energy is approximated by a Taylor series in the switching systems, ηα, out to the quadratic
term:

∆Π =
∂Π

∂ηα

∣

∣

∣

∣

ηi

∆ηα +
1

2

∂2Π

∂ηα∂ηβ

∣

∣

∣

∣

ηi

∆ηα∆ηβ . (24)

The minimum occurs when the first derivative of Π is zero,

∂Π

∂ηα
=

∂w

∂ηα

∣

∣

∣

∣

ηi

− ∂wc

∂ηα

∣

∣

∣

∣

ηi

+
∂2w

∂ηα∂ηβ

∣

∣

∣

∣

ηi

∆ηβ = 0. (25)



Solving for the increment of ∆ηβ yields

∆ηβ = −
(

H−1
)αβ

(Gα − Gα
c ) (26)

where

Hαβ = ∂2w
∂ηα∂ηβ

∣

∣

∣

ηi

, Gα = ∂w
∂ηα

∣

∣

∣

ηi

, Gα
c = ∂wc

∂ηα

∣

∣

∣

ηi

, (27)

and it has been assumed that the second derivative of wc is zero. Equation 26 amounts to a Newton-Raphson
scheme when used iteratively according to

ηα
i+1 = ηα

i + ∆ηα (28)

where the subscript on ηα is the iteration index and α includes only those systems for which G − Gc < 0.
Computing ηα in this manner requires the calculation and inversion of H. Alternatively, a steepest descent
method can be used to approximately satisfy the equilibrium condition of equation 25 wherein the increment of
ηα is computed by

∆ηα = −τ (Gα − Gα
c ) . (29)

The scaling parameter is given as τ = (
∑

n Hnn)
−1

, where n includes only active systems. Equation 29 represents
a significant reduction in computational cost per iteration since there is no matrix inversion and it is necessary
to compute only the diagonals of H.

3.1. Effective Crystal Properties

If the material basis is Rm and the crystal basis with respect to the material basis is Ri, the rotation matrix
from crystal variant I to the global frame of reference is R = Rm Ri. Consequently, the fourth order stiffness
tensor, for example, is given in the global frame by

CI
ijkl = RiqRjrRksRltC

Ic
qrst

where CIc
qrst is the stiffness tensor in the crystallographic basis. The effective material constants at a material

point are computed from the present values of the volume fractions, Cijkl = cICI
ijkl , where cI is the volume

fraction of variant I.

3.2. Kinematics

If there are n possible crystal variants, each variant can transition to every other variant, giving a possible n2

transition systems. Using the approach of Huber,7 the rate of change in volume fractions, ċI , is related to the
transition rate, η̇, of active systems by a connectivity matrix,

ċI = AIαη̇α (30)

where the summation on α is implied and ranges from 1 to the number of transition systems, n2. The numbering
of the transition systems proceeds sequentially through the possible transitions from variant N to variant M for
M = 1 . . . n,N = 1 . . . n. The connectivity matrix, A, is n × n2, wherein AIα = 1 if activation of system α
increases cI , AIα = −1 if activation of system α decreases cI , and AIα = 0 if activation of system α has no
effect on cI . The change in inelastic strain and electric displacement is computed according to ǫ̇Rij = ǫRα

ij η̇α and

ḊR
i = DRα

i η̇α where ǫRα
ij and DRα

i are the change in inelastic strain and electric displacement associated with
transition system α.

3.3. Combined Switching and Phase Transformation

In the case of combined electrical and mechanical loading, the stored energy and critical energy are expressed as

w =
1

2
σij

(

ǫij − ǫRij
)

+
1

2
Ei

(

Di −DR
i

)

(31)

wc =
1

2
σc

ij

(

ǫcij − ǫRij
)

+
1

2
Ec

i

(

Dc
i −DR

i

)

(32)



where a subscript or superscript ’c’ indicates a critical value. Equation 31 is combined with equation 21 to yield

w =
1

2
UKUT (33)

in terms of the material compliances,

K =

[

Cijkl −hijk

−hijk βij

]

, (34)

and independent material quantities,
U =

[

ǫLij D
L
i

]

. (35)

Differentiating with respect to the transition systems, ηα, yields

G =
1

2
UK′UT + U ′KUT (36)

H = U ′KU ′T + 2 U ′K′UT (37)

where the first derivatives are
U ′

=
[

−ǫRα
ij −DRα

i

]

(38)

and

K′

=

[

CI
ijklA

Iα −hI
ijkA

Iα

−hI
iklA

Iα βI
ikA

Iα

]

. (39)

The preceding steps are repeated for equation 32 to arrive at an expression for the critical transition energy.
The first term on the right side of equation 36 can be neglected and the second term can be expressed in terms
of a critical stress and electric field, σc

ij and Ec
i , so that the critical energy level required for activation of each

transition system is given by
Gα

c = −σc
ijǫ

Rα
ij − Ec

iD
Rα
i . (40)

Once ηα are computed using equations 27 through 29, the updated values of the bin fractions, cI , inelastic strain,
ǫRij , and inelastic polarization, DR

i , are computed.

To model the domain switching and phase transition behavior of PZT 95/5-2Nb, all of the possible variants
must be accounted for. In specific, there are 8 ferroelectric variants, one for each body diagonal of the rhom-
bohedral unit cell, 12 anti-ferroelectric variants, one for each face diagonal of the orthorhombic unit cell, and 1
for the cubic paraelectric phase for a total of 21 variants and 441 possible transition systems. However, for the
sake of efficiency, anti-ferroelectric variants with the same direction but opposite sense are treated as one. This
simplification neglects anti-ferroelectric switching but reduces the total number of variants to 15 and the possible
transition systems to 225. In addition, anti-ferroelectric variants that occupy the same cell face are combined
to reduce the number of variants and transition systems to 12 and 144, respectively. This is possible because
the orthorhombic lattice constants, a and c, of PZT 95/5-2Nb very nearly satisfy an additional constraint that
c = 2a.

The transition strains and transition polarizations are computed as the respective differences in spontaneous
strain and spontaneous polarization. When a transition occurs from FE to AFE the material point goes from a
polar to anti-polar state and the transition polarization is, for a transition from FE variant [111] to AFE variant
[011] (α = 9) for example,

DR9 = P[011] − P[111]

P[111] = P s
FE

{

1/
√

3 1/
√

3 1/
√

3
}

P[011] =
{

0 0 0
}

(41)

The transition strain for the same system is

xR9 = x[011] − x[111] (42)



Table 1. Rhombohedral material constants for PZT 95/5-2Nb.14–16

Rhombohedral Constants
Elastic stiffness, c11 1.491 × 1011 Pa
c12 7.109 × 1010 Pa
c13 5.347 × 1010 Pa
c33 1.107 × 1011 Pa
c44 2.642 × 1010 Pa
Relative permittivity, ǫ11 145.0
ǫ33 335.0
Piezoelectric constant, h33 3.91 × 108N/C
h31 1.32 × 108N/C
h24 1.41 × 108N/C
Lattice parameter, a 4.148 Å
Lattice parameter, α 1.566
Spontaneous polarization 0.37 C/m2

Table 2. Orthorhombic material constants for PZT 95/5-2Nb.15, 17

Orthorhombic Constants
Elastic stiffness, c11 1.894 × 1011 Pa
c12 9.033 × 1010 Pa
c13 6.794 × 1010 Pa
c33 1.407 × 1011 Pa
c44 3.357 × 1010 Pa
c66 3.357 × 1010 Pa
Relative permittivity, ǫ11 3500
ǫ33 3275
Piezoelectric constant, h33 3.91 × 108N/C
h31 1.32 × 108N/C
h24 1.41 × 108N/C
Lattice parameter, b 4.147 Å
Lattice parameter, c 4.10 Å
Spontaneous polarization 0.45 C/m2

where the spontaneous strains are

x[111] =





0 1
2 cosα 1

2 cosα
1
2 cosα 0 1

2 cosα
1
2 cosα 1

2 cosα 0



 , x[011] =











1
2

(

b2

a2 − 1
)

0 0

0 1
2

(

b2

a2 − 1
)

0

0 0 1
2

(

c2

a2 − 1
)











. (43)

4. HYDROSTATIC DEPOLING

While shock-activated power supplies operate in a decidedly dynamic regime, much understanding can be pro-
vided using static material testing and modeling. Zeuch et al.18 used static testing to examine the ferroelectric
(FE) to anti-ferroelectric (AFE) phase transformation. Montgomery19 proposed a macroscale model that pre-
dicts the hydrostatic phase transformation behavior of porous ceramics and produced good agreement with the
measurements from Zeuch. In this section, hydrostatic depoling is simulated at the microscale, and results are
compared with data from Zeuch.20



Table 3. Transition constants for PZT 95/5-2Nb.15

Transition Constants
Curie temperature 228.0 C
FE to AFE transition pressure 2.53 × 108

FE coercive field 9.3 × 105V/m

The non-linear material model described in section 3 was used within the X-FEM formulation described
in section 2 to simulate the response of fully dense and porous polycrystalline PZT 95/5-2Nb to hydrostatic
loading. A structured cartesian grid with a resolution of 10x10x10 elements was used for the calculations.
Material constants are given in Tables 1 through 3. The porous sample has a single pore located at the origin
and has a porosity of 1.88%. While this is an over-simplification of an actual porous PZT sample, it is sufficient
to get at the nature and extent of the effect of pores on material response. The load step is selected so that the
change in normal strain in a single step doesn’t exceed 5× 10−6. The load step is further limited to fall between
1 × 104 and 1 × 105 MPa.

The polycrystalline structure is modeled using a Voronoi tesselation of a cubic problem domain. The tesse-
lation is achieved by randomly placing a given number of points (grain centers) and then allowing the points to
diffuse to roughly equidistant locations based on simple interaction rules. In the porous case, the points interact
with the surface of the pore so that the points are evenly distributed in the solid region. The net result is a
Voronoi tesselation with grains of roughly equal size. Each grain center is then assigned a random material basis
that will be the basis for anisotropic material constants. The integration points in the finite element formulation
are then assigned the correct material basis according to proximity. Grain boundaries are not modeled exactly
using X-FEM interfaces but are captured approximately by the classic finite element polynomial basis. This is
to avoid nonessential complexity in an already expensive calculation. When voids are present in the problem
domain, X-FEM is used to capture the stronger discontinuity of a free surface. One octant of the porous sam-
ple is modeled to avoid free surface interactions while minimizing the number of required elements. The same
boundary conditions are applied to both configurations for the sake of uniformity.

The displacive phase transformation from ferroelectric (FE) rhombohedral to anti-ferroelectric (AFE) or-
thorhombic produces a compressive volumetric strain.20 When a sample of PZT 95/5-2Nb is hydrostatically
loaded to the transformation pressure, a pronounced decrease in volume occurs. Once the material is fully trans-
formed, linear elastic response resumes in the AFE phase. Figure 2 shows the computed hydrostatic response
for poled and unpoled samples. As expected, the material undergoes a substantial decrease in volume around
the hydrostatic transformation pressure. Based on the lattice constants used for these calculations, the change
in volume of solid PZT 95/5-2Nb should be a decrease of approximately 1.17%, which is observed in the results.

PZT 95/5-2Nb shows a gradual onset of transformation from FE to AFE, and the range of pressure over which
the transformation takes place increases with the porosity of the sample.20 Further, the onset of transformation
begins at a lower pressure as porosity increases. These effects are illustrated in figure 3 which shows the measured
pressure-volume response of PZT 95/5-2Nb with 4% and 10% porosity. The sample with 4% porosity exhibits a
relatively sharp transition and begins to transform at a higher pressure level. Such behavior is predicted by the
numerical results as shown in figure 2.

The porous samples (i.e., poled and unpoled) show similar behavior to the solid samples in that the poled
case has a more gradual onset of the phase transformation than does the unpoled case. However, an important
distinction is that the porous samples transform over a wider range of pressure. That is, the slope of the pressure-
volume response during transformation, which is essentially zero for the solid cases, is non-zero for the porous
cases. The pore introduces a larger degree of non-uniformity to the stress state which yields greater spatial
variation in the phase transition.

Typically, when PZT 95/5-2Nb is unloaded, the material exhibits a partial reverse transformation, leaving the
sample in a mixed FE/AFE phase. This behavior is observed in the porous configuration shown in figure 2. The
non-linear decrease in volume strain that begins when the sample is unloaded to about 50 MPa is produced by a
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Figure 2. Hydrostatic depoling of poled and unpoled PZT 95/5-2Nb.
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Figure 3. Measured pressure-volume response of PZT 95/5-2Nb with 4% and 10% porosity.20

partial reverse transformation. Since PZT 95/5-2Nb can assume a stable mixed phase, the reverse transformation
from FE to AFE only occurs when the FE phase becomes unstable. The wide variation of internal stresses in
the porous case provides such a condition. Figure 4 shows the stress distribution present in the simulations. The
effective stress just prior to fully unloaded (at about 75 MPa applied pressure) is as high as 50 MPa for the poled
solid case and 200 MPa for the porous cases.
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Figure 4. Distribution of internal stresses prior to complete unloading. Solid lines are Gaussian curve fits to assist the
eye.



5. CONCLUSIONS

Ferroceramics represent an important class of active materials that has seen wide use in advanced and technically
demanding applications. These applications require a fundamental understanding of the material response to
a wide range of combined electrical and mechanical loads. Predicting material response, and optimizing such
response, requires detailed knowledge of the microstructural origins of non-linear ferroelectric behavior.

The goal of this work was to develop a numerical approach that directly models microstructural features
of ferroceramics and use this approach to examine the effect of these features on microscale and bulk material
behavior during mechanical depoling. To that end, a microelectromechanically motivated constitutive model was
used based on the methods of micromechanics. In addition to modeling the polarization variants in the ferro-
electric phase, the crystal variants of the anti-ferroelectric phase were included so that simultaneous ferroelectric
switching and phase transformation could be examined.

The porous configuration was treated using X-FEM so that the spherical pore was accommodated implicitly
with a level set field. The grain structure, however, was approximated with the standard FEM polynomial basis.
The reason for this is that accounting for multiple intersecting X-FEM surface is an ongoing area of study in
the numerical methods research community. The goals of this work are nonetheless achieved using X-FEM to
introduce voids in the problem domain, and treating the grain structure with the standard FEM basis.

The polycrystalline structure was approximated by a Voronoi tesselation of the domain. The limiting factor
in accurate modeling of nonlinear material behavior was a unified and physically based treatment of domain
switching and phase transitions, so a simplified representation of the microstructure sufficed. The methods
developed for this work are not limited to this type of representation. Models of the microstructure that are
physically more accurate could be used as a future refinement.

Poled and unpoled samples of solid and porous configurations were mechanically depoled with hydrostatic
loading. The calculations predict that porosity produces a decrease in the pressure level at which phase trans-
formation begins, and that the phase transformation occurs over a wider range of applied pressure. Both effects
are observed in experimental measurements. Further, the calculations suggest that the reverse transformation
that occurs upon unloading is driven by internal stresses, and that porosity produces higher internal stresses,
and therefore a larger degree of reverse transformation, than does the polycrystalline structure. This observation
is supported by measurements that show that samples with higher porosity produce a greater degree of reverse
transformation.
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