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• Develop software tools for the numerical solution of the reactive Euler
equations with a general equation of state and various reaction rate models.

    Include...

• AMR to resolve contacts/shocks/detonations with numerical efficiency

• Sub-CFL time step resolution of fast chemical reactions

• Overlapping grids to handle complex two- and three-dimensional 
moving geometries

• Parallel processing and three-dimensional moving geometry (in progress)

• Study detonation dynamics in homogeneous and heterogeneous explosives.

    For example...

• Explore paths to detonation of reactive samples at critical conditions
subject to an initial stimuli

• Explore detonation interactions with rigid and compliant boundaries and 
with moving rigid (and deformable) objects

• Explore features and limitations of existing models, e.g. ignition & growth, 
explore new models, e.g. multiphase, and multi-material flows (in progress).

Project Overview



Compressible Multi-Material Flows
Non-reactive case:
    e.g. shock-bubble interaction

Mixture state
variables:










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
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

ρ density

(u1, u2) velocity

p pressure

e internal energy

Reactive case:
    e.g. explosive rate stick

Species
variables:















µ mass fraction of
material r

λ mass fraction of
gas products

material “a”

µ=1 (air)

material “b”

µ=0 (freon)

shock

bubble interface

material “r”

µ=1, !=0

(solid explosive)

material “r”

µ=1, !=1

(gas products)

material “i”

µ=0

(inert confiner)

inert shock

interface
detonation
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2), R = reaction rate

Governing Equations

Multi-material reactive Euler equations (2-D):

Mixture EOS:

Mixture rules:                                                     Closure assumptions:

Mechanical: Thermal:

ek =
pkvk

ωk

−Fk

(

vk

vk,0

)

+ Qk pk =
ωk

vk

[

Cv,kTk + Zk

(

vk

vk,0

)]

k = s, g, i

e = µ [(1 − λ)es + λeg] + (1 − µ)ei

v = µ [(1 − λ)vs + λvg] + (1 − µ)vi

p = ps = pg = pi

T = Ts = Tg = Ti



Reaction/EOS Models

Pressure-dependent rate law:

Mixture ideal-gas EOS:

R = σ(1 − λ)ν(p − pign)n

where
σ = prefactor ν = depletion exponent

pign = ignition pressure n = pressure exponent

Fk = Zk = 0

which gives

e = pv

{

µ [(1 − λ)Cv,s + λCv,g] + (1 − µ)Cv,i

µ [(1 − λ)Cv,sωs + λCv,gωg] + (1 − µ)Cv,iωi

}

+ µ(1 − λ)∆Q

where

∆Q = heat release
Cv,k = specific heat

ωk = γk − 1

}

k = s, g, i



Ignition-and-growth rate law (Lee & Tarver, 1980):

Mixture JWL EOS:

R = RI + RG1
+ RG2

where

RI = I(1 − λ)b(max{ρ − ρI , 0})x if λ < λI (hot spot ignition)

RG1
= G1(1 − λ)cλdpy if λ < λG1,max (rapid growth)

RG2
= G2(1 − λ)eλgpz if λ > λG2,min (slow growth)

Fk(V ) = Ak

(

V

ωk

−
1

R1,k

)

exp (−R1,kV ) + Bk

(

V

ωk

−
1

R2,k

)

exp (−R2,kV )

Zk(V ) = Ak

(

V

ωk

)

exp (−R1,kV ) + Bk

(

V

ωk

)

exp (−R2,kV )

Remarks:

• internal energy e(ρ, p, µ, λ) defined implicitly

• rate and EOS parameters fit to data (e.g. the explosive PBX 9502)

• EOS parameters for the inert chosen to model strong or weak confinement



Numerical Method

• Godunov-type, shock-capturing scheme on a domain discretized using composite 
overlapping grids (overset grids).

• Riemann problems handled using Roe approximate Riemann solvers (extended to 
handle the equation of state for the mixture).

• Reaction source term is handled with a Runge-Kutta error-control scheme.

• AMR is used to locally increase grid resolution near shocks, detonations and the 
material interface.

• An energy correction term is added (at the level of the truncation error) to suppress 
numerical errors in the pressure near the material interface.

Summary:

Sample AMR grid and solution:
2.0

.38

Pr
ess
ure



Basic time-stepping algorithm:

ReactiveEulerSolver(G, tfinal)
{

t := 0; n := 0;
un := applyInitialCondition (G);
while t < tfinal

if (n mod nregrid == 0) // rebuild the AMR grid

e := estimateError(G, un);
G∗ := regrid(G, e);
u∗ := interpolateToNewGrid(un,G,G∗);
G := G∗; un := u∗;

end

∆t := computeTimeStep(G, un);

un+1 := advanceSolution(G, un,∆t); // reactive Euler time step

interpolate(G, un+1);
applyBoundaryConditions(G, un+1, t + ∆t);
t := t + ∆t; n := n + 1;

end
}



For each component grid at a fixed time...

Sample refinement
  near grid overlap:

component grid 1
(base level)

AMR grid belonging to 
component grid 1

component grid 2
(base level)

AMR grids belonging to 
component grid 2

interpolation
points

Adaptive mesh refinement (AMR):

• compute error estimate ei,j based on second differences of the components
of the solution and on the reaction rate

ei,j =
m

∑

k=1

sk

(

|∆2
rU

(k)
i,j | + |∆2

sU
(k)
i,j |

)

+ sR|τi,j |

• smooth ei,j and interpolate to the overlap (if any) from neighboring com-
ponent grids

• build refined (child) grid patches that cover all cells with ei,j > tol

• interpolate solution from the coarse (parent) grid or copy solution from
old child grids, if they exist



Overlapping grid...

Mapping...

Mapped equations...

Fractional-step scheme...

Component grid time step:

x = Gg(r, t), x = physical space, r ∈ [0, 1]2 = computational space

G = {Gg}, g = 1, . . . ,N Includes base grids + AMR grids

∂

∂t
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f̂1(u) +
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∂
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f̂2(u) = h(u)

where

f̂1 = a2,2 f1(u) − a1,2 f2(u), f̂2 = a1,1 f2(u) − a2,1 f1(u), (mapped fluxes)

and
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(metrics and jacobian are given by Gg)

Un+1
i

= Sh(∆t/2)Sf (∆t)Sh(∆t/2) Un
i , Un

i = cell average of u at ri, tn



Godunov schemes (e.g. 1D)...

Energy correction...

Update...

Convective term update: U∗

i
= Sf (∆t) Ui

∆E∗

i = ρ̃ie
(

ρ̃i, p̃i + ∆pi, µ̃i, λ̃i

)

− ρ̃iẽi, ∆pi = pi − p̄i

U∗

i = Ũ∗

i + ∆G∗

i , where ∆G∗

i =
[

0, 0, ∆E∗

i , 0, 0
]T

Ui
*

~
Ui
*

_

Ui+1Ui!1 Ui

Fi!1 Fi

Ui!1

_ _
Ui+1

Fi!1 Fi

_ _

(ui , pi)

"r

"t

Ũ
∗

i = Ui −

∆t

J∆r
(Fi − Fi−1) Ū

∗

i = Ui −

∆t

J∆r

(

F̄i − F̄i−1

)

(standard Godunov) (adjusted for uniform pressure-velocity flow)



Energy-corrected scheme: test cases
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species mass fraction

1D Riemann problem...

(ρL, uL, pL, µL) = (0.138, 0.5, 1.0, 1.0) (ρR, uR, pR, µR) = (1.0, 0.5, 1.0, 0.0)

for x < 0.4 at t = 0 (helium on the left) for x ≥ 0.4 at t = 0 (air on the right)

Solution at t=0.1: black = exact, blue = Godunov w/out correction, red = Godunov w/ correction



2D shock-bubble interaction...

2.0

1.0

Pr
ess
ure

Refrigerant-filled bubble in air: numerical schlieren (left) and pressure (right).

2.0

1.0

Pr
ess
ure



2D explosive rate stick...

explosive (region 1)

booster (region 2)

inert (region 3)

0 20

!6

!2

density pressure0.4 13.0 0.0 0.7

Initial state

Downstream 
steady state



• Shock interaction with curved gas inhomogeneities.

• Interface interaction with rigid confinements.

• Detonation diffraction in expanding and converging geometries.

• Detonation failure and re-birth in various expanding configurations.

• Detonation interactions with compliant boundaries.

• Impulsive motion of a two-fluid system in a rigid vessel (nonreactive).

• Detonation diffraction at a 90 degree corner (reactive).

The numerical method has been used to study a number of problems involving 
both reactive and nonreactive flow, including...

Focus on 2 problems...

Numerical Results



up to 2 AMR grid levels with refinement factor=4

air

!0=1.0

p0=1.0

helium

!0=0.138

p0=1.0

U=1

rigid cylindrical

vessel

overlapping grid

Initial geometry and base grid...

EOS model...

AMR...

Two-fluid system in a rigid vessel:

ideal gas: γ = 1.4, Cv = 0.720 for air, and γ = 1.67, Cv = 3.11 for helium.



Solution behavior (early times)...

3.6

.32

Pr
ess
ure

shock

interface

expansion

3.8

.47

Pr
ess
ure

interface

diverging
shock

time = 0.25

time = 0.50

Two-fluid system in a rigid vessel: numerical schlieren (left) and pressure (right).



reflected
shock

2.0

.38

Pr
ess
ure

1.6

.68

Pr
ess
ure

Solution behavior (late times)...

Two-fluid system in a rigid vessel: numerical schlieren (left) and pressure (right).

time = 0.75

time = 1.00



Grid convergence...

heff = h0 = .0025 heff = h0/2 heff = h0/4



up to 2 AMR grid levels with refinement factor=4

Motivation: Corner-turning experiments...

Model geometry...                                                             Reaction/EOS model...

Base grid + AMR...

Detonation diffraction at a 90-degree corner:

PROTON RADIOGRAPHY EXAMINATION OF UNBURNED
REGIONS IN PBX 9502 CORNER TURNING EXPERIMENTS

Eric N Ferm, Christopher L. Morris, John P. Quintana, Peter Pazuchanic, Howard Stacy,
John D. Zumbro, Gary Hogan, and Nick King

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract.  PBX 9502 Corner Turning Experiments have been used with various diagnostics techniques
to study detonation wave propagation and the boosting of the insensitive explosive.  In this work, the
uninitiated region of the corner turning experiment is examined using Proton Radiography.   Seven
transmission radiographs obtained on the same experiment are used to map out the undetonated regions
on each of three different experiments.  The results show regions of high-density material, a few
percent larger than initial explosive density.  These regions persist at nearly this density while
surrounding material, which has reacted, is released as expected. Calculations using Detonation Shock
Dynamics are used to examine the situations that lead to the undetonated regions.

INTRODUCTION

  The PBX 9502 corner turning experiments were
one of many explosive assemblies used to study the
initiation and boosting requirements of insensitive
explosive.  The experiment was able to identify
differences in materials that had subtle particle size
changes in the material.  The experimental
configurations shown in Fig. 1 show two of the
charges used for this work.   Although the charges
from different experimental groups differ in details,
they can be described as consisting of three
sections, an initiation/booster charge, a smaller
diameter donor charge, and a larger diameter
acceptor charge. The most common diagnostic
used on these assemblies was to place a flasher
material along the edge of the acceptor charge and
measure the axial distance from the face of the

acceptor to the first breakout on the cylinder edge1.
With an ideal explosive, first breakout occurs at the
face of the acceptor.  The further down the
acceptor charge the breakout occurred, the more
difficulty the donor had initiating the acceptor.

FIGURE 1.  Corner turning charges used in PRad0067 and
PRad0068 experiments.

Radiographs of planar corner turning
experiments have been taken using the PHERMEX

radiographic machine2.  Radiographs showed
regions of high-density material that did not
appeared to have reacted or expanded significantly.

ANALYSIS

A high-density region is visible in Figure 3,
which appears to emanate out of the detonation
front and widen as it approaches the face of the
acceptor charge.  Analysis of the images indicates
the average density is higher than the initial density
of the explosive, which is confirmed by examining
Figure 2.

The leading edge of the deadzone is radially
expanding about 3.3 mm/µs while the trailing edge
is expanding about 0.9 mm/µs.  The attachment
point to the detonation wave was estimated by
extrapolating the surface leading the deadzone and
the trailing edge back to where it appears to blend
into the detonation front.  The axial position of the
attachment point is entering the charge at 3.mm/µs
and then slows down to near zero. In the 12- and
18-mm donor charges, the attachment point enters
acceptor as deep as 13- and 11-mm respectively.
Radially growth is initially stalled, and then rapidly
increases to more than 6 mm/µs.  During this
period it becomes clear that the detonation wave
has turned the corner, i.e. the detonation wave has
a point that is radially expanding to the wall, and
will be the first breakout point.

MESA calculations using Detonation Shock
Dynamics (DSD) 5 are compared with the
experiment in Figure 4.  DSD as implemented has
no curvature failure criterion.   Without a criterion,
it can easily be seen that the deadzone is not
modeled nor does the calculation reproduce the
corner turning distance.  Although the curvature
slows the wave propagation along the face of the
acceptor it is not sufficient to model the effect.
The existence of the deadzone is required to model
the corner turning effect.

A boundary of the dead zone can be chosen by
connecting up the detonation wave attachment
points found in the experiment.  This region is
about twice as big as the estimated mass of the
dead zones from the radiographs.  When this
boundary is used in the calculation the corner
turning distances is represented much better,
although this is not surprising.

The significant overestimation of the deadzone
mass indicates that there is reaction taking place in

the vicinity of the attachment point.  The size of
dead zone region is influenced by several factors,
including rarefactions coming from acceptor face,
possible shock desensitization, and the length of
time before rarefactions quench shocked explosive.

FIGURE 3.  Volume density image of the 12 mm corner turner
experiment 25.3 µs. The identified regions are used in
describing the deadzone region.

FIGURE 4.  A MESA calculation of density is shown on the
right half of the above image, while the left side is and average
density from the two symmetric sides in figure 3.

rate-stick charges.                       Volume density image.

Eric N. Ferm, et al.
Proton Radiography Examination 
of Unburnt Regions in PBX 9502 
Corner-Turning Experiments

axis of symmetry

donor charge

acceptor chargeinert material

booster

Ignition-and-growth model 
with reaction rate and EOS 
parameters calibrated to the 
explosive PBX 9502.

(Tarver & McGuire, 2002)



Steady pre-diffraction detonation...

weak
confinement

strong
confinement



Post-diffraction detonation, weak confinement...



Post-diffraction detonation, weak confinement...



An accurate computational framework has been developed for the 
exploration of continuum models of high-speed reactive flow.

Overlapping grid approach is used to handle complex geometries.

Present computational study has illustrated the capability to handle multi-
material flows and the associated material interface accurately. 

Ongoing work includes an analysis of multi-phase and multi-scale models 
of reactive flow and the development of parallel-AMR-overlapping grid 
techniques for their numerical solution.

Concluding Remarks

Full details of the present work appear in...

J. Banks, D. Schwendeman, A. Kapila and W. Henshaw, A high-resolution Godunov 
method for compressible multi-material flow on overlapping grids, J. Comput. Phys.

J. Banks, et al., A Study of Detonation Propagation and Diffraction with Compliant 
Confinement, Combust. Theory and Modeling (preprint).


