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Project Overview

® Develop software tools for the numerical solution of the reactive Euler
equations with a general equation of state and various reaction rate models.

Include...
® AMR to resolve contacts/shocks/detonations with numerical efficiency
® Sub-CFL time step resolution of fast chemical reactions

® Opverlapping grids to handle complex two- and three-dimensional
moving geometries

® Parallel processing and three-dimensional moving geometry (in progress)

® Study detonation dynamics in homogeneous and heterogeneous explosives.
For example...

® Explore paths to detonation of reactive samples at critical conditions
subject to an initial stimuli

® Explore detonation interactions with rigid and compliant boundaries and
with moving rigid (and deformable) objects

® Explore features and limitations of existing models, e.g. ignition & growth,
explore new models, e.g. multiphase, and multi-material flows (in progress).



Compressible Multi-Material Flows

Non-reactive case:
e.g. shock-bubble interaction
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Reactive case:
e.g. explosive rate stick
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Governing Equations

Multi-material reactive Euler equations (2-D):
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Mixture rules:
e=p[(1—Nes+ Aeg] + (1 — pe;
v=p[(1—=XNvs + Avg| + (1 — p)v;

Closure assumptions:
P =Ds = DPg = Di
T=T,=T,=T,



Reaction/EOS Models

Pressure-dependent rate law:

R =0(1=2)"(p — Pign)"

where
o = prefactor v = depletion exponent

Pign = 1gnition pressure n = pressure exponent

Mixture ideal-gas EOS:
Fr=2,=0

which gives

{ 1[(1 =N Co.s + ACy o] + (1 — p)Chy s
e = pv
v [(1 — )\)C’U,Sws + )\C’U,gwg] + (1 - M)Cv,iwi

} +u(l = AAQ
where

Cy . = specific heat .
A() = heat release =5,0,1

W =7 — 1



Ignition-and-growth rate law (Lee & Tarver, 1980):

R:RI—I_RG:[ +RG2

where
Rr=1(1— \)°’(max{p — pr,0})® if A < A1 (hot spot ignition)
Ra, = G1(1 — \)XdpY if A <A@y max (rapid growth)
Ra, = Ga(1 — M) N\Ip? if A > Ag, min (slow growth)
Mixture JWL EOS:

wr Ry wr  Rag
v

Zk(V) = Ak (—) exp (—Rl,kV) + Bk <—) exp (—R2 kV)
Wk Wi

Remarks:
e internal energy e(p, p, u, A) defined implicitly
e rate and EOS parameters fit to data (e.g. the explosive PBX 9502)

e EOS parameters for the inert chosen to model strong or weak confinement



Numerical Method

Summary:

® Godunov-type, shock-capturing scheme on a domain discretized using composite
overlapping grids (overset grids).

® Riemann problems handled using Roe approximate Riemann solvers (extended to
handle the equation of state for the mixture).

® Reaction source term is handled with a Runge-Kutta error-control scheme.

® AMR is used to locally increase grid resolution near shocks, detonations and the
material interface.

® An energy correction term is added (at the level of the truncation error) to suppress
numerical errors in the pressure near the material interface.

Sample AMR grid and solution:

720

Pressure

.38



Basic time-stepping algorithm:

ReactiveEulerSolver (G, tgpa1)

{
t:=0; n:=0;
u" := applylInitial Condition (G);
while t < tﬁnal
if (n mod Nyegria == 0) // rebuild the AMR grid
e := estimateError(G, u");
G* :=regrid(g,e);
u* := interpolateToNewGrid (u", G, G*);
g:=Gg*; u":=u*;
end
At := computeTimeStep (G, u");
u™*! ;= advanceSolution(G, u™, At); /] reactive Euler time step
interpolate(G, u"™!);
applyBoundaryConditions(G, u" 1, ¢t + At);
t:=t+At; n:=n+l;

end



Adaptive mesh refinement (AMR):

For each component grid at a fixed time...

Sample refinement
near grid overlap:

compute error estimate e; ; based on second differences of the components
of the solution and on the reaction rate

m

€ij =) sk (|A3Ui<,l;)| + |A§U¢(,l;)|) + SRr|Ti,jl
k=1

smooth e; ; and interpolate to the overlap (if any) from neighboring com-
ponent grids

build refined (child) grid patches that cover all cells with e; ; > tol

interpolate solution from the coarse (parent) grid or copy solution from
old child grids, if they exist

A
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Component grid time step:

Overlapping grid...

G={Gy}, g=1,...,N  Includes base grids + AMR grids

Mapping...
x = Gy(r, 1), x = physical space, r € [0,1]* = computational space

Mapped equations...

fi =asofi(u) —arofa(u), fo=a;1f(u)—az;fi(u), (mapped fluxes)

B 87“j ’

3(331,552)
(9(7“1, 7“2)

ai,j (metrics and jacobian are given by G,)

7-|

Fractional-step scheme...

UM = S, (At/2) Sy (At) Sh(At/2) U, U* = cell average of u at ry, t,

1



Convective term update: U;" = Sy(At) U;

Godunov schemes (e.g. 1D)...

~ At _ AN 2.
U*:UZ— Fz—Fz_ U*:UZ— Fz—Fz_
' JAr ( ) ! JAr ( )
(standard Godunov) (adjusted for uniform pressure-velocity flow)
v U
Ar *
At Fi—l. Fi—l Fi‘Fi
Uiq U; Uin

i1 < W, p) ——> Uy

Energy correction...
AES = pie(piybi + Apiy fliy i) — piéi, Ap; = p; — D;
Update...

U =UF +AG;,  where AGI=[0,0, AE;, 0,0]"



Energy-corrected scheme: test cases
1D Riemann problem...

(pLa ur,PL, /’LL) — (01387 057 107 ]-O)
for v < 0.4 at t = 0 (helium on the left)
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Solution at t=0.1: black = exact, blue = Godunov w/out correction, red = Godunov w/ correction



2D shock-bubble interaction...
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Refrigerant-filled bubble in air: numerical schlieren (left) and pressure (right).



2D explosive rate stick...
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Numerical Results

The numerical method has been used to study a number of problems involving
both reactive and nonreactive flow, including...

* Shock interaction with curved gas inhomogeneities.

* Interface interaction with rigid confinements.

* Detonation diffraction in expanding and converging geometries.

* Detonation failure and re-birth in various expanding configurations.

* Detonation interactions with compliant boundaries.

Focus on 2 problems...

* Impulsive motion of a two-fluid system in a rigid vessel (nonreactive).

* Detonation diffraction at a 90 degree corner (reactive).



Two-fluid system in a rigid vessel:

Initial geometry and base grid...
rigid cylindrical

/ vessel \

—1> overlapping grid

EOS model...
ideal gas: v = 1.4, C, = 0.720 for air, and v = 1.67, C,, = 3.11 for helium.

AMR...
up to 2 AMR grid levels with refinement factor=4



Solution behavior (early times)...
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Two-fluid system in a rigid vessel: numerical schlieren (left) and pressure (right).



Solution behavior (late times)...
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Two-fluid system in a rigid vessel: numerical schlieren (left) and pressure (right).



Grid convergence...

hegt = ho = .0025 hett = ho /2 heit = ho /4



Detonation diffraction at a 90-degree corner:

Motivation: Corner-turning experiments...

Edge of

Attachment to |
Detonation
Wave =
Leading Edge ﬁ}ailing Edge
of Deadzone of Deadzone

rate-stick charges.

Model geometry...

booster axis of symmetry

__;/L __________________________ —

donor charge

inert material acceptor charge

Base grid + AMR...

up to 2 AMR grid levels with refinement factor=4

Corner
Turning
Distance

Volume density image.

Eric N. Ferm, et al.

Proton Radiography Examination
of Unburnt Regions in PBX 9502
Corner-Turning Experiments

Reaction/EOS model...

Ignition-and-growth model
with reaction rate and EOS
parameters calibrated to the
explosive PBX 9502.

(Tarver & McGuire, 2002)



Steady pre-diffraction detonation...

weak
confinement

strong
confinement




Post-diffraction detonation, weak confinement...




Post-diffraction detonation, weak confinement...




Concluding Remarks

™ An accurate computational framework has been developed for the
exploration of continuum models of high-speed reactive flow.

™ Overlapping grid approach is used to handle complex geometries.

™ Present computational study has illustrated the capability to handle multi-
material flows and the associated material interface accurately.

™ Ongoing work includes an analysis of multi-phase and multi-scale models

of reactive flow and the development of parallel-AMR-overlapping grid
techniques for their numerical solution.

Full details of the present work appear in...

J. Banks, D. Schwendeman, A. Kapila and W. Henshaw, A high-resolution Godunov
method for compressible multi-material flow on overlapping grids, ]. Comput. Phys.

J. Banks, et al., A Study of Detonation Propagation and Diffraction with Compliant
Confinement, Combust. Theory and Modeling (preprint).



