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Piezoelectric MEMS Filter Research

5th Overtone Dual Mode Filter 
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•• Miniature HighMiniature High--Selectivity Filters and Selectivity Filters and 

Filter Banks not Available in Commodity Filter Banks not Available in Commodity 

Driven Wireless MarketDriven Wireless Market

�� RF Filters in NonRF Filters in Non--Commercial BandsCommercial Bands

�� Miniature SAW IF Filter ReplacementMiniature SAW IF Filter Replacement

�� Filter Banks for Spectrum Analysis Filter Banks for Spectrum Analysis 

and Cognitive Radiosand Cognitive Radios
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•• MEMS FiltersMEMS Filters

�� SmallSmall

�� Many Frequencies on a Single ChipMany Frequencies on a Single Chip

�� Greater Coupling per Area for the Greater Coupling per Area for the 

VHF and a Portion of the UHF BandVHF and a Portion of the UHF Band

� Electrically Coupled Filters

� Dual Mode Filters

� Mechanically Coupled Filters



Filter Architecture and Design
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Piezoelectric Transduction

• Capacitive Resonators
�� High Impedance (20 kHigh Impedance (20 kΩΩ))

�� HighHigh--Q (100k)Q (100k)

�� Force Force ≈≈ VV22

�� Low Power Handling (0.2 Low Power Handling (0.2 µµW)W)

�� PolySi not PostPolySi not Post--CMOS CMOS 

Compatible (High Temp.)Compatible (High Temp.)

• Piezoelectric Resonators
�� Low Impedance (1 kLow Impedance (1 kΩΩ))

�� Lower Q (1000) Lower Q (1000) 

�� Force Force ≈≈ VV

�� High Power Handling (0.5 High Power Handling (0.5 mmW)W)

�� AlN PostAlN Post--CMOS CompatibleCMOS Compatible

Q = 100kQ = 100k

I.L. = 45 dBI.L. = 45 dB

ff00 = 52.2 MHz= 52.2 MHz

PPmaxmax = 0.18 = 0.18 µµWW

VVbiasbias = 5 V= 5 V

52 MHz Capacitive 
PolySi Resonator 

2.1 GHz Piezoelectric 
AlN MEMS Resonator 

Q = 1000Q = 1000

I.L. = 20 dBI.L. = 20 dB

ff00 = 2.1 GHz= 2.1 GHz

PPmaxmax = 0.5 mW= 0.5 mW

VVbiasbias = 0 V= 0 V

155 µm



Measured Results
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Measured Results
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Measured Results

ZTERM = 200 ΩΩΩΩ

ZTERM = 200 ΩΩΩΩ

60 µm

Compare 

Coupling at 2 µm 

(λλλλ/40) and 4 µm 
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Measured Results

ZTERM = 200 ΩΩΩΩ

3λλλλ/4 

Coupling at 4 µm 

(λλλλ/20) and 6 µm 
(3λλλλ/40) offset



Wideband Measured Results

ZTERM = 200 ΩΩΩΩ
I.L. = 13 dB
QFilter = 514
20 dB SF = 2.4

I.L. = 11 dB
QFilter = 1061
20 dB SF = 3.8



Filter Temperature Stability and 
Compensation
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Temperature Stability vs. Oxide 
Thickness
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Temperature Compensation Limits

Metal Electrodes
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� ±±±± 26 ppm across -55 to 125 C



Temperature Stability Filter Impact

N = 6 µm

ZTERM = 50 ΩΩΩΩ



Temperature Stability Filter Impact

N = 6 µm

ZTERM = 50 ΩΩΩΩ

Useable 3dB 

Bandwidth (35-125 C) 
= 181 kHz 

Max. 3dB Bandwidth 

(35-125 C) = 194 kHz 

% Useable Bandwidth 
(35-125 C) = 93.3%

6.7% Bandwidth 
Dedicated to 

Temperature Drift

181.25 kHz99.6937599.6937599.500099.51251.1 
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Scaling to Higher Frequency 
(Overtone Operation)

I.L. = 9 dBI.L. = 9 dB

QQ = 1120 = 1120 

14
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µm

•• Overtone MEMS FiltersOvertone MEMS Filters

�� Previously scaled resonators Previously scaled resonators 

to 1 GHz with low insertion lossto 1 GHz with low insertion loss

�� Use overtone operation to Use overtone operation to 

scale mechanically coupled filtersscale mechanically coupled filters

�� Allows balun and fully Allows balun and fully 

differential operation for differential operation for 

improved outimproved out--ofof--band rejectionband rejection



5th Overtone Filter Measured Results

15λλλλ/4 

Fully Differential Operation Improves Fully Differential Operation Improves 

StopStop--Band Rejection by 23 dBBand Rejection by 23 dB

Higher Than Expected 

Insertion Loss Based 
on Previous Results



Overtone Filter Discussion

•• Filter Insertion LossFilter Insertion Loss

�� Input/Output Input/Output 

Resonators Show Resonators Show 

Strong Coupling Strong Coupling 

and Matched and Matched 

FrequenciesFrequencies

�� QQFilterFilter = 1000  = 1000  

butbut

�� QQResonatorResonator = 495= 495

�� Degraded resonator Q from Degraded resonator Q from 

additional anchorsadditional anchors

�� Coupling occurs only over 1/5Coupling occurs only over 1/5thth

of low velocity coupling locationsof low velocity coupling locations



Conclusions

� VHF Mechanically Coupled Filters
• Filter Architecture and Design 
• Bandwidth Control
• Temperature Drift Reduced for Narrow Bandwidth Filters

� UHF Overtone Mechanically Coupled Filters
• Filter Topology Scaled to 550 MHz
• Unexpected Insertion Loss

• Resonator Q degraded by additional anchors (anchor loss limited)

• Additional Work Needed to Evaluate Overtone Mechanical Coupling 
Efficiency

� MEMS Filter Motivation
• Small Size, Strong Coupling per Area 
• Many Frequencies per Wafer
• Narrow Band Operation
• Filter Banks for Spectrum Analysis and Cognitive Radio
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Transducer Capacitance
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