
On the Secure Obfuscation of Deterministic Finite Automata

W. Erik Anderson

Sandia National Laboratories⋆ Albuquerque, NM 87185-0785
weander@sandia.gov

Abstract. In this paper, we show how to construct secure obfuscation for Deterministic Finite Au-
tomata, assuming non-uniformly strong one-way functions exist. We revisit the software protection
approaches originally proposed by [5, 8, 10, 13] and revise them to the current obfuscation setting of
Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some “small” secret
about the original program. Using this secret, we can construct an obfuscator and two-party protocol
that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of
this model retains the strong “virtual black box” property originally proposed in [2] while incorporating
the stronger condition of dependent auxiliary inputs in [12].

Keywords: Obfuscation, deterministic finite automata, state machines, authenticated encryption,
oracle machines, provable security, game-playing.

1 Introduction

Program obfuscation, if possible and practical, would have a considerable impact on the way we
protect software systems today. It would be instrumental in protecting intellectual property, pre-
venting software piracy, and managing use-control applications. The work of Barak et al. [2] initiated
the first formal study of obfuscation. They define an obfuscator O to be an efficient, probabilistic
compiler that takes a program P and transforms it into a functionally equivalent yet unintelligible
program O(P). Unintelligible is defined in the strictest sense, to imply that the program O(P)
behaves ideally like a “virtual black box”. That is, whatever can be efficiently extracted from the
obfuscated program can also be extracted efficiently when given only oracle access to P .

Unfortunately, in [2] it was proven that obfuscation in general is impossible. Namely, there exist
a family of functions that are unobfuscatable under the “virtual black box” notion of security. This
would seem to suggest that having physical access to the program is a much stronger capability
than having only access to its input and output behavior. In addition to this main impossibility
result, the authors also prove that if secure symmetric key encryption schemes exist, pseudorandom
functions exist, or message authentication schemes exist, then so do unobfuscatable versions of each.
The authors conclude that the “virtual black box” property is inherently flawed, and if we hope
for any positive obfuscation results, then either this model needs to be abandoned or we need to
accept that many programs are not obfuscatable [2].

Numerous other impossibility results have also shed light on the problem of obfuscation. For
example, Goldwasser et al. [12] showed that many natural circuit classes are unobfuscatable when
auxiliary inputs are added to the obfuscation model. Auxiliary inputs provide for a more robust
model of obfuscation, since the adversary is assumed to have some a priori information about the

⋆ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

SAND2008-3520C

Unobfuscated

Code

Obfuscated

Code

Oracle

Communication

Link

Remove

Code

Protected Volume

Compiler

Fig. 1. Obfuscation with respect to oracle machines

underlying program. This additional layer of security is useful in practice, since it is likely that the
obfuscated code will be utilized in a large system, and the system may reveal partial information
about the functionality of the obfuscated code.

In spite of the numerous impossibility results, other works such as Lynn et al. [14] have examined
alternative models of obfuscation in the hope of achieving meaningful possibility results. Under the
random oracle model of obfuscation, they assume that both the obfuscator and obfuscated code
have access to a public random oracle. Under this assumption, they are able to show that both
point functions and complex access control schemes are obfuscatable. Similar results were obtained
by [6, 7, 15] under a slightly weaker notion of “virtual black box” obfuscation (without random
oracles). For example, Wee showed in [15] that point functions are (weakly) obfuscatable, provided
that strong one-way permutations exist.

In this paper, we introduce a new model of obfuscation that has wide and meaningful possibility
results beyond those described above. To demonstrate the utility of this model, we show that
deterministic finite automata are securely obfuscatable, provided non-uniformly strong one-way
functions exist. In fact with a simple modification these same results can be extended to the
obfuscation of Turing machines and hence all programs. For a more detailed discussion on this
extension along with composition results see the extended abstract [1]. We call this model of
obfuscation obfuscation w.r.t. oracle machines.

Unlike the “virtual black box” model of obfuscation, where we assume an adversary has full
access to the obfuscated code, we instead consider the case where a small portion of the computation
remains hidden and is only accessible via a black box oracle. See Figure 1 for an illustration. A
compiler in this case takes a program P and returns two outputs, the obfuscated code O(P)
which is given to the adversary, and a small secret which is given to the oracle. An execution of the
obfuscated code takes an input x and computes O(P)(x), via a two-party protocol. To avoid certain
trivialities, we impose restrictions on the oracle’s computational resources. Namely, we will consider
only the case when the oracle’s space resources are asymptotically smaller than the program itself.
In practice, the oracle may be implemented as a computationally limited device, such as a smart
card or crypto processor.

1.1 Notation

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine. If A is
a PPT, B an oracle, and x an input to A, then by AB(x) we mean the algorithm that runs on

input x using oracle access to B. We will often refer to A as a PPT oracle machine. When writing
x ⇐ A we mean the value x is returned by A. Additionally, A(1k) implies A is given the value
k. In our algorithm descriptions, we make use of the statements return y and Return z. When
using the syntax return, we imply that the value y is returned internally to the algorithm (such
as the output of a function call), while by using Return, we imply that the value z is written to
the output tape. As usual, we use the notation {0, 1}k to denote the set of all k-bit binary strings,

and by x
$
← {0, 1}k we mean x is uniformly chosen from {0, 1}k . We also use the conventional

notation of ‖ and ⊕ to denote the string operators concatenate and exclusive or. Unless explicitly
stated otherwise, we will assume all references to log are based 2. A function µ : N→ R

+ is said to
be negligible, if for any positive polynomial p there exists an integer N such that for any k > N ,
µ(k) < 1/p(k). We will sometimes use the notation neg(·) to denote an arbitrary negligible function.
A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is called non-uniformly strong one-
way if for every non-uniform PPT A there is a negligible function neg(·) such that for sufficiently
large k, Pr

x
$
←{0,1}k

[f−1(f(x)) ∋ y ← A(f(x), 1k)] ≤ neg(k).

2 Obfuscation with respect to Oracle Machines

In this section we introduce the framework for obfuscating w.r.t. oracle machines. Under this frame-
work we model obfuscation as a two-party protocol, where one party represents the obfuscated code
and the other an oracle containing some “small” secret. The communication between the two par-
ties is characterized using interactive Turing machines introduced by [11]. Under this model, we
assume the adversary has complete control over both the obfuscated code and message scheduling.
We further assume the adversary is malicious, and may deviate from the protocol in any way. This
allows the adversary to adaptively query the oracle with messages of its own choice.

Oracle Model. The obfuscation oracle R is modeled as an interactive Turing machine with one
additional read-and-write tape called internal state. The tape internal state has a unique feature
called persistence that distinguishes it from the other tapes in the oracle. We say a tape is persistent
if the tape’s contents are preserved between each successive execution of R. The other internal
working tapes do not share this property and are assumed to be blank after each execution. Given
a particular input and internal state, the oracle R computes an output (which may be ⊥) on its
outgoing communication tape along with a new internal state, internal state′.

(output , internal state′)←R(input , internal state)

We will assume that the oracle’s input and persistent tape are polynomial bounded by some poly-
nomial s(k), for each k ∈ N. In this framework, we will consider only the non-trivial case when
s(k) = o(f(k)),1 where the device’s resources are asymptotically smaller than the program itself. In
the special case when s(k) = O(k), we will say that the oracle maintains a “small” internal state.

Definition 1. (Obfuscation w.r.t. Oracle Machines) A probabilistic polynomial time algo-
rithm O and oracle R are said to comprise an obfuscator of the family F = {Fk}k∈N w.r.t.
polynomial-time bounded oracle machines, if the following three conditions hold:

1 The size of each M ∈ Fk is polynomial bounded by f(k).

• (Approximate Functionality) There exists a negligible function µ such that for all k and M ∈ Fk,
OR(M, 1k) describes an ITM that computes the same function as M with probability at least
1− µ(k).
• (Polynomial Slowdown) The description length and running time of OR(M, 1k) is at most poly-

nomial larger than that of M . That is, there exists a polynomial p such that for all k and
M ∈ Fk, |O(M, 1k)| ≤ p(k) and if M takes t time steps on an input x, then OR(M, 1k) takes
at most p(k + t) time steps on x.
• (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function ν

such that, for all k and M ∈ Fk, and every polynomial q with bounded auxiliary input z of size
q(k), we have

∣

∣

∣
Pr[AR(OR(M, 1k), 1k, z) = 1]− Pr[SM (1|M |, 1k, z) = 1]

∣

∣

∣
≤ ν(k).

2.1 Non-Resettable Deterministic Finite Automata

We define a Deterministic Finite Automaton (DFA) as a machine Ψ = (Q,Σ, δ, s0, G) with a finite
set of states Q, finite alphabet Σ, transition function δ, initial state s0 ∈ Q, and accepting states
G. The structure of the DFA is determined by its transition function δ, which maps each state and
a given input symbol to a new state. The output function (which imitates black box behavior) of
the DFA Ψ is defined as

Ψ(s, α) :=

{

1 if δ(s, α) ∈ G
0 if δ(s, α) /∈ G

where the “user”-selectable input is α, and s is the current “internal” state. We note that the user
does not have control of the state input. Rather Ψ must internally maintain the state over each
execution. We will often write just Ψ(α).

When modeling DFAs, it is often convenient (unless stated otherwise) to assign a reset capability,
which allows the DFA to transition back to its initial state. In practice, having a reset capability
is not always a desired characteristic, especially when developing software use-control applications,
such as subscription policies and digital rights management. To differentiate between DFAs that
have a reset capability and those that don’t, we define a non-resettable DFA to be a deterministic
finite automaton that is not resettable. We note that we can always build in resettability if we add
an additional reset symbol to every state.

3 DFA Obfuscation

Following the framework described in Section 2, we show how to construct a DFA obfuscator that
is secure with respect to dependent auxiliary inputs. Our goal is to develop a compact, yet very
efficient DFA obfuscator that is not only of theoretical interest, but useful in practice as well. To
obtain our results, we use a simple authenticated encryption scheme to hide the structure of the
DFA and authenticate the execution of the protocol.

Representation. We model each DFA Ψ as a polynomial-time Turing machine MΨ with an addi-
tional persistent read-and-write tape, called internal state. The internal state maintains a record of
the values needed to compute the DFA. Each MΨ is represented by a table where, ∀ α ∈ Σ, ∀ s ∈ Q,
there is a table entry containing α, s, δ(s, α), and acpt (which equals 1 iff δ(s, α) ∈ G). Without

any loss of functionality, we compress the table by employing an injective map that encodes each
α ∈ Σ to a string in {0, 1}⌈log |Σ|⌉. Using the table described, we can create a program MΨ that
simulates Ψ ’s output behavior. The program consists of the DFA table, high-level code, and two
persistent variables current state and current acpt . The high-level code describes the programming
language used, table lookup algorithm, alphabet Σ, and function calls that manipulate the per-
sistent variables. The program MΨ works as follows: On user input α, the table lookup algorithm
searches each table entry for the pair α, current state . If a match is found, the acpt bit is updated
and δ(current state, α) is recorded temporarily. The program continues to search the rest of the
table for a match. At the end of the table search, the user is given the recorded acpt bit, and the
variable current state ← δ(current state, α) is updated. After the acpt bit has been returned, the
DFA is ready to accept its next input.

Following this description, our next goal is to define an encoding scheme of MΨ . Our choice of
encoding is important for several reasons. First, it allows us to calculate the size of |MΨ |, which is
needed for evaluating the polynomial slowdown property. And second, depending on our choice of
encoding, the size of |MΨ | may drastically affect the simulator’s ability to simulate the obfuscated
code. We formalize our encoding scheme as follows.

Encoding. We begin our encoding by splitting up the description of MΨ into its individual com-
ponents: high-level code and DFA table (which is further broken down by individual table entries).
We create a parsing scheme that takes the bit description of each component and adds a trailing bit
of a 1 or 0 to the end of each individual bit. The trailing bit allows the parser to recognize the end
of a component’s description. For example if the high-level code has a bit description h0 . . . hm then
its new bit description is h00h10 . . . hm1. Adopting this encoding scheme, we can find a t ≥ 0 such
that the size of each table entry satisfies 2t ≤ |table entry| < 2t+1. Given t, we pad each table entry
with the string 00 . . . 01 (which is a multiple of two in length) until its length is exactly 2t+1. If the
number of tables entries is even, we pad the last table entry with an additional 2t+1 bits of the form
00 . . . 01 and add a single 1 bit value on the end. If, on the other hand, the number of table entries is
already odd, then we do nothing. For convenience we denote the number of edges in Ψ as |E(Ψ)|. By
prefixing the parser to the encoded MΨ , it follows that |MΨ | = |Parser|+ |High-level code|+ |Table|,
where |Table| = 2t+1|E(Ψ)| if the number of table entries is odd and 2t+1(|E(Ψ)| + 1) + 1 if the
number of table entries is even.

Since both the size of the parser and the high-level code are public, it follows that knowing
the size of |MΨ | implies that one also knows the size of |Table|. But one can efficiently extract the
number of edges |E(Ψ)| based on our encoding above. We use this deduction later in the proof of
Proposition 1 to swap the simulator’s input 1|MΨ | with 1|E(Ψ)|.

Based on the encoding scheme above, we define the family FDFA := {Fk}k∈N to be the set of
all polynomial bounded MΨ satisfying

Fk := {MΨ | |MΨ | ≤ f(k) and 2 log |States(Ψ)|+ log |Σ|+ 1 < k} 2

2 The condition 2 log |States(Ψ)|+ log |Σ|+ 1 < k may be removed by modifying the encryption scheme in Figure 3
to have more than one call to FK per table entry. This is a relatively easy fix since we need at most m =
⌈(2t log(ck) + 1)/k⌉ constant calls to FK given |MΨ | ≤ f(k) ≤ ckt some fixed c, t > 0. This condition was added
to simplify the obfuscation algorithm.

Setup(MΨ , k):

Input: MΨ , 1k

Key Generation:

K ← K(k)

Generate State Table:

StateTable(Ψ) :
s← 0
|m|∗ ← ⌈log2 |Σ|⌉+ 2⌈log2 |Q|⌉+ 1
for state ← 0 to |Q| − 1 do

for symbol ← 0 to |Σ| − 1 do

sα ← αsymbol

sstate ← state

sδ(state,α) ← δ(state , αsymbol)
sacpt ← 1 iff sδ(state,α) ∈ G, 0 else
T

∗
state [s]←
sα‖sstate‖sδ(state,α)‖sacpt‖0

k−|m|∗

s← s + 1
|Table|∗ ← s
return (|m|∗, |Table|∗, T∗

state)

Encrypt State Table Entries:

EFK
(T∗

state) :

X1 ← 1k

Auth← FK(X1)
for s← 0 to |Table |∗ − 1 do

X0 ← s‖0
Y ← FK(X0)
T

∗
C [s]← Y ⊕ Tstate [s]

X1 ← Auth⊕ T
∗
C [s]

Auth← FK(X1)
Auth∗ ← Auth
return T

∗
C‖Auth∗

Return (K, |m|∗, |Table|∗, T∗
C , Auth∗)

Algorithm O(|Table|∗, T∗
C , Auth∗):

Input: |Table |∗, T∗
C , Auth∗

Initialization:

|Table| ← |Table|∗

TC ← T
∗
C

Auth← Auth∗

State ← Transition Query

State Transitions:

Case(State)

Transition Query:

α← scan input

Query oracle R with α
State ← State Update

State Update:

for s← 0 to |Table | − 1 do

if s 6= |Table| − 1 then

Query oracle R with TC [s]
if s = |Table| − 1 then

Query oracle R with TC [s]‖Auth

if acpt ⇐R
Return acpt

State ← Transition Query

if auth fail ⇐R
State ← Transition Query

Fig. 2. Algorithm Setup and O.

for some fixed polynomial f(k). The parameter k is called the security parameter.

Obfuscation. To simplify our description of the DFA obfuscator, we split the obfuscation into
three separate algorithms, Setup, O, and R. The Setup algorithm, shown in Figure 2, takes a
DFA encoding MΨ and generates inputs for both the obfuscated code and oracle. Without loss of
generality, we view our encoding of MΨ to be the DFA state transition table of Ψ . The parsing
operation and high-level code was left out for simplicity.

The obfuscated code O, also shown in Figure 2, can be described as a protocol template.
The template takes as input the encrypted table TC , authentication tag Auth, and table size
|Table| returned by the Setup algorithm. During the Transition Query phase the obfuscated code
scans in the user’s input α, queries the oracle R, and enters a new phase called State Update.

Algorithm R(K, |m|∗, |Table|∗):

Input: K, |m|∗, |Table|∗

Initialization:

|Table| ← |Table|∗

|m| ← |m|∗

acpt ← ⊥
current state ← 0
Auth′ ← ⊥
tempα ← ⊥
tempcs ← ⊥
s ← ⊥
State ← Transition Query

State Transitions:

Case(State)

Transition Query:

On query α do

tempα ← α
s← 0
X1 ← 1k

Auth′ ← FK(X1)
State ← State Update

State Update:

On query TC [s] or TC [s]‖Auth do

State Authentication:

X1 ← Auth′ ⊕ TC [s]
Auth′ ← FK(X1)
if s = |Table| − 1 and Auth′ 6= Auth

then

Return auth fail

State ← Transition Query

Compare Table Entries:

X0 ← s‖0
Y ← FK(X0)
Ms ← Y ⊕ TC [s]
sα‖sstate‖sδ(state,α)‖sacpt ←Ms[k−1:k−|m|]

if sstate = current state and sα = tempα

then

tempcs ← sδ(state,α)

acpt ← sacpt

Update Oracle State & Counter:

if s = |Table| − 1 then

current state ← tempcs

Return acpt

State ← Transition Query

s ← s + 1

Fig. 3. Oracle R.

During State Update, the obfuscated code submits the table TC along with the authentication
tag Auth. The oracle processes TC one table entry at a time and verifies the table’s integrity. If the
authentication passes, the oracle returns an accept value corresponding to whether the new state
is an accept state.

The oracle R, shown in Figure 3, describes the oracle’s behavior. Just like the obfuscated code
O, the oracle is nothing more than a protocol with a symmetric key and a few additional variables.
Other than the padding length |m|, table size |Table|, and current state, the oracle maintains no
information about the DFA.

Proposition 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are
obfuscatable with respect to oracle machines.

Proof: Let f(k) be some positive polynomial and consider the family FDFA defined over f(k). We
will assume without loss of generality for the remainder of the proof that k is sufficiently large so
that the inequality 2 log |States(Ψ)|+log |Σ|+1 < k is satisfied for every MΨ ∈ Fk. This assumption
follows from the fact that every MΨ ∈ Fk is polynomial bounded, and therefore there exists a fixed
t > 0 with |MΨ | ≤ kt for every k sufficiently large. Thus |States(Ψ)||Σ| < |MΨ | ≤ kt implies
log |States(Ψ)| + log |Σ| < t log k whence 2 log |States(Ψ)| + log |Σ| + 1 ≤ 2t log k + 1 < k for k
sufficiently large. This last restriction was added to guarantee that the size of each table entry is
no larger than the size of the pseudorandom function’s output length.

To prove that the obfuscator in Figure 2 and 3 obfuscates non-resettable DFAs, we need to show
that the aforementioned three conditions hold: Approximate Functionality, Polynomial Slowdown,
and Virtual Black Box. The Approximate Functionality and Polynomial Slowdown conditions are
fairly straightforward and are left out in this proof. For details see the extended abstract.

Virtual Black Box: To simplify the notation in the proof we omit the input 1k. We also replace the
simulator input 1|MΨ | with 1|E(Ψ)| which can be extracted (based on our encoding of MΨ). This
reduces the virtual black box inequality to Equation (1).

We begin our analysis by breaking up Equation (1) into four separate equations, each equation
representing the indistinguishability of obfuscating with different oracles. Other than the first oracle
RFK

we do not place any computational assumptions on the others. This allows them to maintain
a much larger internal state.

∣

∣

∣
Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ (1|E(Ψ)|, z) = 1]

∣

∣

∣
(1)

≤
∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (2)

+
∣

∣

∣
Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]

∣

∣

∣
(3)

+
∣

∣

∣
Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]− Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]

∣

∣

∣
(4)

+
∣

∣

∣
Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]− Pr[SΨ (1|E(Ψ)|, z) = 1]

∣

∣

∣
. (5)

In Equation (2) we introduce the oracle RFun in order to measure the pseudorandomness of
RFK

. Both RFun and RFK
have the same description, except every call to FK in RFK

is replaced
with a similar call to a random function (independent of z) with the same input and output length.
For convenience we refer to this random function as Fun. Using algorithms E and V shown in
Figure 6, we can reduce the distinguishability of Equation (2) to the distinguishability of the pair
of oracles (EFk

,VFk
) and (EFun,VFun). We base this reduction on adversary BA,Ψ given in Figure 4.

In our description of BA,Ψ , we use the parameter Ψ to indicate the hardwiring of B’s oracle query
to E (which is dependent on StateTable(Ψ)). BA,Ψ uses E ’s response to construct the obfuscated
code, which is given to A. Using A, BA,Ψ simulates A’s query-response interaction with the oracle.
The distinguishing bit b returned by BA,Ψ is the same bit returned by A. Therefore Equation (6)
reduces to Equation (7). If we replace every oracle call to E and V with multiple calls to either
FK or Fun then we can reduce Equation (7) even further. We denote this simulation by BA,Ψ

′ to
distinguish itself from BA,Ψ . Therefore Equation (7) reduces to Equation (8). But this last equation
is just the pseudorandom distinguishability of FK given auxiliary input z. Using our assumption
that non-uniformly strong one-way functions exist, we can use the Goldreich et al. construction
in [9] to generate a pseudorandom function that is secure against non-uniform PPT adversaries
(denoted as prf-nu). If the adversary A makes no more than qv distinct3 State Update queries,
then the total number of queries made to FK or Fun by BA,Ψ

′ is no more than (qv + 2)|E(Ψ)|+ 1.

3 Each qv represents a complete chain of State Update queries (i.e., the user has submitted the entire encrypted
table with Auth tag).

Setup of BA,Ψ :

Input: 1k, z

Generate State Table:

(|m|, |Table|, Tstate)← StateTable(Ψ)

Encrypt State Table Entries:

Query oracle E with Tstate

(TC , Auth)⇐ E(Tstate)

A⇐ O(|Table|, TC , Auth), z

Simulation of Oracle R:

Input: 1k, |m|, |Table |, Tstate , TC , Auth

Initialization:

current state ← 0
acpt ← ⊥
tempα ← ⊥
tempcs ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)
Transition Query:

When A makes a query α do

tempα ← α
flagauth ← false

C ← ⊥
s ← 0
State ← State Update

State Update:

When A makes a query T
′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′
C [s]

if T
′
C [s] 6= TC [s] or (s = |Table| − 1 and

Auth′ 6= Auth) then

flagauth ← true

if s = |Table| − 1 and flagauth = true then

Query oracle V with (C, Auth′)
if 0⇐ V(C, Auth′) then

A⇐ auth fail

State ← Transition Query

Compare Table Entries:

M ′
s ← T

′
C [s]⊕ (TC [s]⊕ Tstate [s])

sα‖sstate‖sδ(state,α)‖sacpt ←M ′
s[k−1:k−|m|]

if sstate = current state and sα = tempα then

tempcs ← sδ(state,α)

acpt ← sacpt

Update Oracle State:

if s = |Table| − 1 then

current state ← tempcs

A⇐ acpt

State ← Transition Query

s← s + 1

Fig. 4. Adversary BA,Ψ .

Therefore Equation (6) reduces to Equation (10), which is negligible following our assumption.

∣

∣Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[ARFun(ORFun(Ψ), z) = 1]
∣

∣ (6)

=
∣

∣

∣
Pr[B

EFK
,VFK

A,Ψ (z) = 1]− Pr[BEFun,VFun
A,Ψ (z) = 1]

∣

∣

∣
(7)

=
∣

∣

∣
Pr[BFK

A,Ψ

′
(z) = 1]− Pr[BFun

A,Ψ

′
(z) = 1]

∣

∣

∣
(8)

= Advprf
FK ,BA,Ψ

′(k, z) (9)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1). (10)

For Equation (3), we would like to perform a similar reduction as performed for Equation (8)
except, instead of measuring the pseudorandomness of FK , we would like to measure the unforge-
ability provided by the verifier V. To do this, we introduce the oracle R∗Fun. Internally, the oracle
R∗Fun looks identical to RFun except during the state authentication process. Instead of computing

a partial authentication tag for each State Update query, as is done in Figure 3, it collectively
gathers all of the ciphertext queries and final authentication tag and submits them to a verifier
V∗. To do this, R∗Fun stores the values (TC , Auth) returned by the initial Setup(MΨ , k) algorithm.
During the State Update phase, the oracle checks to see if the table entries queried by the user
are the same entries as those in TC . If any of the table entries are incorrect, including the final
authentication tag, or if they are queried in a different order, the oracle R∗Fun returns auth fail .
Reusing BA,Ψ we can reduce Equation (3) to inequality (11) by simulating the distinguishability
with oracles (EFun,VFun) and (EFun,V∗). We call this advantage IND-VERF, since it measures the
indistinguishability between the two verifiers. Therefore

∣

∣

∣
Pr[ARFun(ORFun(Ψ), z) = 1]− Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[BEFun,VFun

A,Ψ (z) = 1]− Pr[BEFun,V∗

A,Ψ (z) = 1]
∣

∣

∣

= Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv , z). (11)

with qe = 1 denoting the number of encryption queries and ηe = ηv − 1 = |E(Ψ)| the maximum
number of k-bit blocks each encryption or verification query may have. We claim this advantage is
bounded above by the INT-CTXT-m security of SEFun. See Appendix A.1 for more details on the
security definition of INT-CTXT-m.

Claim. Advind-verf
SEFun,BA,Ψ

(k, qe, qv, ηe, ηv, z) ≤ Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv, z)

See the extended abstract [1] for a proof of this claim. Now that we have bounded Equation (3) by
the INT-CTXT-m security of SEFun we are now ready to move onto Equation (4).

In Equation (4) we measure the chosen plaintext distinguishability between encrypting with
either EFun or ERand, where ERand(M) is a random string of length |M |. The oracles R∗Rand and
R∗Fun are identical except for their calls to EFun or ERand. As before we will use the ∗ in R∗Rand to
denote that verifier V∗ is used. We define B∗A,Ψ to be the algorithm BA,Ψ that uses V∗ as its verifier
(which can be easily simulated given the output of E). Therefore Equation (4) reduces to inequality
(12)

∣

∣

∣
Pr[AR

∗
Fun(OR

∗
Fun(Ψ), z) = 1]− Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[B∗ EFun

A,Ψ (z) = 1]− Pr[B∗ERand
A,Ψ (z) = 1]

∣

∣

∣

= Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z). (12)

with qe = 1 and ηe = |E(Ψ)|.
In the final Equation (5), we introduce the simulator S, which as you recall has only black box

access to Ψ . In order for S to properly simulate A’s view, it needs to know the number of edges
|E(Ψ)|. This can be easily extracted knowing just the size of MΨ based on our encoding. Given the
number of edges |E(Ψ)|, S can easily simulate A’s view of the obfuscated code by giving A a copy of
O(|E(Ψ)|, TC , Auth), where TC is a random table of the appropriate size (dependent on |E(Ψ)| and
k) and Auth a k-bit random string. Using its oracle access to Ψ , S can simulate A’s interaction with
R∗Rand using the values |E(Ψ)|, TC , and Auth. Therefore, the entire simulation, which we denote by
SA, consists of passing A the obfuscated code O(|E(Ψ)|, TC , Auth) and simulating the interaction
between R∗Rand and A using oracle Ψ . The full description of simulator SA is given in Figure 5.

Setup of SA:

Input: 1k, 1|E(Ψ)|, z

Generate State Table:

for s← 0 to |E(Ψ)| − 1 do

Tstate [s]← 0k

Encrypt State Table Entries:

Query ERand with Tstate

(TC , Auth)⇐ ERand(Tstate)

A⇐ O(|E(Ψ)|, TC , Auth), z

Simulation of Oracle R∗
Rand:

Input: |E(Ψ)|, TC , Auth

Initialization:

acpt ← ⊥
tempα ← ⊥
flagauth ← ⊥
C ← ⊥
s← ⊥
State ← Transition Query

Case(State)
Transition Query:

When A makes a query α do

tempα ← α
flagauth ← false

C ← ⊥
s ← 0
State ← State Update

State Update:

When A makes a query T
′
C [s] or

T
′
C [s]‖Auth′ do

State Authentication:

C ← C‖T′
C [s]

if T
′
C [s] 6= TC [s] or (s = |E(Ψ)| − 1 and

Auth′ 6= Auth) then

flagauth ← true

if s = |E(Ψ)| − 1 and flagauth = true then

Query V∗ with (C, Auth′)
if 0⇐ V∗(C, Auth′) then

A⇐ auth fail

State ← Transition Query

Query DFA Oracle:

if s = |E(Ψ)| − 1 then

Query oracle Ψ with tempα

acpt ← Ψ(tempα)

Update Oracle State:

if s = |E(Ψ)| − 1 then

A⇐ acpt

State ← Transition Query

s← s + 1

Fig. 5. Simulator SA.

To help with the analysis, we model adversary AR
∗
Rand(OR

∗
Rand(Ψ), z) as we did in Equation (4) by

replacing it with B∗ERand
A,Ψ (z). From this we have Pr[AR

∗
Rand(OR

∗
Rand(Ψ), z) = 1] = Pr[B∗ ERand

A,Ψ (z) =
1]. Notice that during the State Update phase of B∗A,Ψ , in order for the final query to reach
Update Oracle State and return an output other than auth fail , R∗Rand must pass the verifier
V∗. This implies that the adversary submits the table TC free of modifications. Hence the operations
under Compare Table Entries may be completely replaced with a simulated oracle call to the
DFA in much the same way simulator SA does. Replacing this code, we obtain a new B∗A,Ψ

′ which is
functionally equivalent to B∗A,Ψ . Since the variables current state and temp

cs
are no longer needed as

they are used in the simulation of oracle Ψ , we can remove them. Finally, observe that an oracle call
to ERand in Encrypt State Table Entries returns random strings regardless of the particular
input. Therefore encrypting with the real state table Tstate or one containing all zeroes provides a
random output that is of the same size. Hence it follows B∗A,Ψ

′ and SA have a distinguishability of
0.

Using the bounds derived in Appendix A with qe = 1 and ηe = ηv − 1 = |E(Ψ)|, we have the
following result

∣

∣

∣
Pr[ARFK (ORFK (Ψ), z) = 1]− Pr[SΨ (1|E(Ψ)|, z) = 1]

∣

∣

∣
(13)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1)

+Advint-ctxt-m
SEFun,(BA,Ψ)ctxt

(k, qe, qv, ηe, ηv, z) + Advind$-cpa
SEFun,B∗

A,Ψ
(k, qe, ηe, z)

≤ Advprf-nu
FK

(k, (qv + 2)|E(Ψ)| + 1)

+qv(4|E(Ψ)|2 + |E(Ψ)|)2−k +
1

2
(3|E(Ψ)|2 + |E(Ψ)|)2−k.

The amount of persistent state needed to obfuscate the DFA in the above Proposition is in fact
quite small. In the next Proposition we show that we need at most O(k)-bits. This is especially
ideal if the oracle is implemented on a computationally limited device with a minimal amount of
tamper protection.

Corollary 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are ob-
fuscatable with respect to oracle machines with small internal state.

Proof: In Proposition 1 we used the Goldreich et al. construction in [9] to generate a pseudo-
random function that is secure against non-uniform PPT adversaries. The key generated for this
construction is the same size as the security parameter k. But this implies that the size of the
oracle’s persistent internal state is no more than O(log |State(Ψ)| + log |Σ|+ k) = O(k), following
our definition of Fk.

References

1. W. E. Anderson “On the Secure Obfuscation of Deterministic Finite Automata: Extended Abstract”, Crypto

ePrint Archive, 2008/184.
2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang “On the (Im)possibility of

Obfuscating Programs”, in Advances in Cryptology - CRYPTO 2001. LNCS, vol. 2139 (Springer, Berlin, 2001),
pp. 1-18.

3. M. Bellare, O. Goldreich, A. Mityagin “The Power of Verification Queries in Message Authentication and
Authenticated Encryption”, Crypto ePrint Archive, 2004/309.

4. M. Bellare, P. Rogaway “The Security of Triple Encryption and a Framework for Code-Bases Game-Playing
Proofs”, in Advances in Cryptology - EUROCRYPT 2006, LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 409-426.

5. R. Best “Microprocessor for Executing Encrypted Programs”, US Patent 4,168,396. Issued September 1979.
6. R. Canetti “Towards Realizing Random Oracles: Hash Functions that Hide all Partial Information”, in Advances

in Cryptology - CRYPTO 1997, LNCS, vol. 1294 (Springer, Berlin, 1997), pp. 455-469.
7. R. Canetti, D. Micciancio, O. Reingold “Perfectly One-way Probabilistic Hash Function”, in Proceedings 30th

ACM - STOC 1998, pp. 131-140.
8. O. Goldreich “Towards a Theory of Software Protection and Simulation by Oblivious RAMS”, in Proceedings

19th ACM - STOC 1987, pp. 182-194.
9. O. Goldreich, S. Goldwasser, S. Micali, “How to Construct Random Functions”, in J. of the ACM, vol. 33, no.

4, 1986, pp. 792-807.
10. O. Goldreich, R. Ostrovsky “Software Protection and Simulation on Oblivious RAMs”, in J. of the ACM vol.

43, no. 3, 1996, pp. 431-473.

11. S. Goldwasser, S. Micali, C. Rackoff “The Knowledge Complexity of Interactive Proof Systems”, in SIAM

Journal on Computing, vol. 18, no. 1, 1989, pp. 186-208.

12. S. Goldwasser, Y. Tauman Kalai “On the Impossibility of Obfuscation with Auxiliary Input”, in Proceedings

46th IEEE - FOCS 2005, pp. 553-562.

13. S.T. Kent “Protecting Externally Supplied Software in Small Computers”, Ph.D. Thesis, MIT/LCS/TR-255
1980.

14. B. Lynn, M. Prabhakaran, A. Sahai “Positive Results and Techniques for Obfuscation”, in Advances in Cryp-

tology - EUROCRYPT 2004, LNCS, vol. 3027, (Springer, Berlin, 2004), pp. 20-39.

15. H. Wee “On Obfuscating Point Functions”, in Proceedings 37th ACM - STOC 2005, pp. 523-532.

A Supplementary Proofs

In this appendix we review the security definitions of INT-CTXT and IND$-CPA and prove the
bounds used in inequality 13. All of the results proven below are based on the authenticated
encryption scheme shown in Figure 6.

Algorithm Eρ(M) Algorithm Vρ(C′‖Auth′)

C ← ⊥ C0
′‖ . . . ‖Ct−1

′ ← C′

M0‖ . . . ‖Mt−1 ←M , |Mi| = k X−1
1 ← 1k

X−1
1 ← 1k Auth← ρ(X−1

1)
Auth← ρ(X−1

1) for s← 0 to t− 1 do

for s← 0 to t− 1 do Xs
1
′ ← Auth⊕ Cs

′

Xs
0 ← s‖0 Auth← ρ(Xs

1)
Y ← ρ(Xs

0) if Auth = Auth′ and

Cs ← Y ⊕Ms sizeC = |C′| then

C ← C‖Cs Return 1, else Return 0.
Xs

1 ← Auth⊕ Cs

Auth← ρ(Xs
1)

sizeC ← |C|
Return (C‖Auth).

Fig. 6. Encryption and Verification Schemes.

A.1 Integrity Awareness

In Proposition 1 we showed that the distinguishing advantage between the verifiers VFun and V∗

(with the adversary also having access to EFun) is bounded above by the strong unforgeability of
the ciphertexts. We state the security definition formally below.

Definition 2. (Integrity Awareness w.r.t. Auxiliary Input): Let SEFun be the symmetric
encryption scheme in Figure 6 using random functions and Actxt a PPT adversary with access to
two oracles, EFun and VFun. Consider the following experiment with k ∈ N and z ∈ {0, 1}q(k) for
some polynomial q

Experiment Expint-ctxt-m
SEFun,Actxt

(k, z)

Fun
$
← Fun(k)

If AEFun,VFun
ctxt (k, z) makes a query C to

the oracle VFun such that
- VFun(C) = 1
- C was never a response to EFun

then Return 1 else Return 0.

We denote the winning probability in adversary Actxt breaking INT-CTXT-m as

Advint-ctxt-m
SEFun,Actxt

(k, z) := Pr[Expint-ctxt-m
SEFun,Actxt

(k, z) = 1]

The INT-CTXT-m advantage over all PPT adversaries Actxt is defined as the maximum

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv , z) := max
Actxt

{Advint-ctxt-m
SEFun,Actxt

(k, z)}

where qe and qv denote the maximum number of oracle calls to EFun and VFun, while ηe and ηv

denote the maximum number of k-bit blocks per encryption and verification query. The scheme
SEFun is said to be INT-CTXT-m secure w.r.t. auxiliary input if the advantage Advint-ctxt-m

SEFun
is

negligible over all PPT adversaries (with time-complexity polynomial bounded in k) given arbitrary
auxiliary input.

In the special case where we allow only a single verification query qv = 1, we define the advantage
as INT-CTXT-1. It was shown by Bellare et al. in [3] that if an encryption scheme SE is INT-CTXT-
1 secure (without an auxiliary input), then it is also INT-CTXT-m secure. Adding auxiliary inputs
is a trivial modification to the original proof. Since we will be using this result to simplify our
analysis, we state it in the following lemma.

Lemma 1. (INT-CTXT-1⇒ INT-CTXT-M [3]) Let SE be any symmetric encryption scheme
and z any polynomial bounded string in k with k ≥ 1. Then

Advint-ctxt-m
SE (k, qe, qv, ηe, ηv, z) ≤ qv ·Advint-ctxt-1

SE (k, qe, ηe, ηv, z)

In the following Proposition we prove the scheme in Figure 6 is INT-CTXT-m secure when
qe = 1. This result is used to help facilitate the proof in Proposition 1.

Proposition 2 Let SEFun be the scheme given in Figure 6. Let z be any polynomial bounded string
in k with qe = 1, ηv = ηe + 1, and qv, k ≥ 1. Then

Advint-ctxt-m
SEFun

(k, qe, qv, ηe, ηv, z) ≤ qv(4η
2
e + ηe)2

−k

Proof: To prove the above inequality holds, we will use the game-playing techniques introduced
by Bellare and Rogaway in [4]. Our goal is to incrementally construct a chain of games using
simple transformation techniques so that the terminal game is bounded above by a negligible
factor. To simplify our analysis we use the result of Lemma 1 and derive an upperbound for INT-
CTXT-1. Once we have found a bound for INT-CTXT-1, the more general INT-CTXT-m bound
will follow. For the sake of this proof, we will also assume that our adversary A is computationally

unbounded and therefore deterministic (since it may deterministically choose its queries to maximize
its advantage). The only restrictions we place on A is the number of queries it can make.

We begin our analysis by giving a description of game G1 shown in Figure 8. Notice that the
scheme SEFun is not stateful and therefore not IND-CPA secure. Having IND-CPA security is not
essential to proving the claim since qe = 1. Also observe that we removed the checking of sizeC in
game G1 since the adversary does not gain an advantage by submitting a ciphertext authentication
pair of a different length. We will instead assume without loss of generality that the pair submitted
for verification is the same size as the pair returned by the encryption query. Let ρ be a randomly
(independent of z) chosen function from the set Fun(k). Observe that game G1 has only two queries
in its description: an encryption query and a verification query. The single encryption query (qe = 1)
simulates obfuscating a single DFA while the verification query (qv = 1) is the result of restricting
our analysis to INT-CTXT-1. Based on the description of game G1 it follows that

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) = Pr[Game G1 sets bad]

with qe = 1 and ηe = ηv − 1 = t.

To transform game G1→ G2, we add additional settings of bad in lines 208, 214, and 224. We
also observe that during the second query, the Auth value after the first index i where Ci

′ 6= Ci

is just ρ(Xi−1
1). Therefore, the modifications made in lines 219 through 225 are a direct result of

this observation. Since the functionality of game G1 and G2 are equivalent with the exception of
additional settings of bad it follows that Pr[Game G1] ≤ Pr[Game G2].

To go from game G2 → G3, we unroll the for loops in line 205 and 221 and postpone the
recordings of the variable Xs

1 in Dom(ρ). We also swap the assignment of the variable Xs
1 ←

Auth⊕ Cs with a random sampling Xs
1

$
← {0, 1}k , since the Auth variable used in the assignment

of Xs
1 is randomly sampled during s − 1. Finally, the assignments occurring after the setting of

bad ← true are removed. Therefore, the changes made from game G2 to G3 are conservative (i.e.
Pr[Game G2] = Pr[Game G3]).

For the final game G3→ G4 we begin by first swapping the random-assignment in line 305 with

line 308 by replacing Y
$
← {0, 1}k and Cs ← Y ⊕Ms with Cs

$
← {0, 1}k and Y ← Cs ⊕Ms. Since

the variable Y is no longer used, we may eliminate it from the game. Similarly, since the values
recorded for ρ(Xs

1) and ρ(Xs
0) are never reused, they may be arbitrarily renamed as defined. The

only prerecorded variable that is reused is Xi
1 on line 413. Given the above swapping it is easy

to see that both C and Auth are random. Using the derandomization technique4 we may replace
them with constants C‖Auth. Since adversary A is deterministic, there exist queries M0‖ . . . ‖Mt−1

and C
′‖Auth′ corresponding to output C‖Auth. By hardwiring these query-responses into game G4,

we may bound the probability of setting bad as the maximum over all the possible query-responses
(thus removing the adaptivity of the adversary). It is not difficult to see that this maximum occurs
when t = ηe, and the adversary submits a t+1-block authentication query with the first ciphertext
block changed. Since there are t + 1 non-random variables Xs=0,...,t−1

0 ,X−1
1 that do not collide

with one another and 2t − 1 independent random variables Xs=0,...,t−1
1 ,Xs=1,...,t−1

1

′
with a single

dependent random variable X0
1
′
= X0

1 ⊕ δ some fixed δ 6= 0 recorded in Dom(ρ), it follows that the

4 Derandomization Technique: If a game G chooses a variable X
$
← X and never redefines it, we may derandomize

the variable by choosing a constant X to replace it. Given any adversary A, it follows that Pr[Game GA sets bad] ≤
maxX Pr[Game G

X

A sets bad].

Game G1

100 On first query M0‖ . . . ‖Mt−1

101 C ← ⊥
102 X−1

1 ← 1k

103 Auth
$
← {0, 1}k

104 ρ(X−1
1)← Auth

105 for s← 0 to t− 1 do

106 Xs
0 ← s‖0

107 Y
$
← {0, 1}k

108 if Xs
0 ∈ Dom(ρ) then Y ← ρ(X0)

109 ρ(Xs
0)← Y

110 Cs ← Y ⊕Ms

111 C ← C‖Cs

112 Xs
1 ← Auth⊕ Cs

113 Auth
$
← {0, 1}k

114 if Xs
1 ∈ Dom(ρ) then Auth← ρ(Xs

1)
115 ρ(Xs

1)← Auth
116 Return C‖Auth

117 On second query C′‖Auth′

118 C0
′‖ . . . ‖Ct−1

′ ← C′

119 Auth← ρ(X−1
1)

120 for s← 0 to t− 1 do

121 Xs
1
′ ← Auth⊕ Cs

′

122 Auth
$
← {0, 1}k

123 if Xs
1
′ ∈ Dom(ρ) then Auth← ρ(Xs

1
′)

124 ρ(Xs
1
′)← Auth

125 b← 0
126 if Auth = Auth′ then bad ← true , b← 1
127 Return b

Game G2

200 On first query M0‖ . . . ‖Mt−1

201 C ← ⊥
202 X−1

1 ← 1k

203 Auth
$
← {0, 1}k

204 ρ(X−1
1)← Auth

205 for s← 0 to t− 1 do

206 Xs
0 ← s‖0

207 Y
$
← {0, 1}k

208 if Xs
0 ∈ Dom(ρ) then bad ← true , Y ← ρ(Xs

0)
209 ρ(Xs

0)← Y
210 Cs ← Y ⊕Ms

211 C ← C‖Cs

212 Xs
1 ← Auth⊕ Cs

213 Auth
$
← {0, 1}k

214 if Xs
1 ∈ Dom(ρ) then bad ← true,

Auth← ρ(Xs
1)

215 ρ(Xs
1)← Auth

216 Return C‖Auth

217 On second query C′‖Auth′

218 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C′

219 i← min{s | Cs
′ 6= Cs}

220 Auth← ρ(Xi−1
1)

221 for s← i to t− 1 do

222 Xs
1
′ ← Auth⊕Cs

′

223 Auth
$
← {0, 1}k

224 if Xs
1
′ ∈ Dom(ρ) then bad ← true ,

Auth← ρ(Xs
1
′)

225 ρ(Xs
1
′)← Auth

226 b← 0
227 if Auth = Auth′ then bad ← true , b← 1
228 Return b

Fig. 7. INT-CTXT-1 Games G1-G2.

setting of bad based on these variables is

Pr[Variables in Dom(ρ) set bad] ≤

{(

3t + 1

2

)

−

(

t + 1

2

)

− 1

}

2−k

which holds for any computationally unbounded adversary. Therefore, given qe = 1, ηv = ηe + 1,
and Pr[Auth sets bad in line 423] = 2−k we have

Advint-ctxt-1
SEFun

(k, qe, ηe, ηv, z) ≤ Pr[Game G4 sets bad]

≤ Pr[Variables in Dom(ρ) set bad]

+Pr[Auth sets bad in line 423]

≤

{(

3ηe + 1

2

)

−

(

ηe + 1

2

)}

2−k

= (4η2
e + ηe)2

−k.

Game G3

300 On first query M0‖ . . . ‖Mt−1

301 C ← ⊥
302 X−1

1 ← 1k

303 for s← 0 to t− 1 do

304 Xs
0 ← s‖0

305 Y
$
← {0, 1}k

306 if Xs
0 ∈ Dom(ρ) then bad ← true

307 ρ(Xs
0)← Y

308 Cs ← Y ⊕Ms

309 C ← C‖Cs

310 Xs
1

$
← {0, 1}k

311 Auth← Xs
1 ⊕ Cs

312 ρ(Xs−1
1)← Auth

313 if Xs
1 ∈ Dom(ρ) then bad ← true

314 Auth
$
← {0, 1}k

315 ρ(Xt−1
1)← Auth

316 Return C‖Auth

317 On second query C′‖Auth′

318 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C′

319 i← min{s | Cs
′ 6= Cs}

320 Auth← ρ(Xi−1
1) = Xi

1 ⊕ Ci

321 Xi
1
′
← Auth⊕ C′

i

322 if Xi
1
′
∈ Dom(ρ) then bad ← true

323 if i < t− 1 then

324 for s← i + 1 to t− 1 do

325 Xs
1
′ $
← {0, 1}k

326 Auth← Xs
1
′ ⊕ Cs

′

327 ρ(Xs−1
1

′
)← Auth

328 if Xs
1
′ ∈ Dom(ρ) then bad ← true

329 Auth
$
← {0, 1}k

330 ρ(Xt−1
1

′
)← Auth

331 if Auth = Auth′ then bad ← true

332 Return 0

Game G4

400 Given M0‖ . . . ‖Mt−1

401 X−1
1 ← 1k

402 for s← 0 to t− 1 do

403 Xs
0 ← s‖0

404 if Xs
0 ∈ Dom(ρ) then bad ← true

405 ρ(Xs
0)← defined

406 Xs
1

$
← {0, 1}k

407 ρ(Xs−1
1)← defined

408 if Xs
1 ∈ Dom(ρ) then bad ← true

409 ρ(Xt−1
1)← defined

410 Given C
′‖Auth′

411 C0‖ . . . ‖Ci−1‖Ci
′‖ . . . ‖Ct−1

′ ← C′

412 i← min{s | Cs
′ 6= Cs}

413 Auth← Xi
1 ⊕ Ci

414 Xi
1
′
← Auth⊕ C′i = Xi

1 ⊕ δ, some δ 6= 0
415 if Xi

1
′
∈ Dom(ρ) then bad ← true

416 if i < t− 1 then

417 for s← i + 1 to t− 1 do

418 Xs
1
′ $
← {0, 1}k

419 ρ(Xs−1
1

′
)← defined

420 if Xs
1
′ ∈ Dom(ρ) then bad ← true

421 Auth
$
← {0, 1}k

422 ρ(Xt−1
1

′
)← defined

423 if Auth = Auth
′ then bad ← true

Fig. 8. INT-CTXT-1 Games G3-G4.

A.2 Indistinguishable from Random

In Proposition 1, we measured the indistinguishability between the schemes EFun and ERand under
chosen plaintext attacks. The randomized scheme ERand as you recall took any message M that was
a multiple of k-bits (k the security parameter) say t and returned a random string of (t + 1)k-bits.
Formally we define ERand as

Algorithm ERand(M)
M0‖ . . . ‖Mt−1 ←M , |Mi| = k

Rand
$
← {0, 1}(t+1)k

Return Rand.

For the definition of indistinguishable from random to make sense in our setting, we give the
adversary an additional auxiliary input.

Definition 3. (Indistinguishable from Random): Let SEFun be the symmetric encryption
scheme in Figure 6 using random functions and Acpa a PPT adversary with access to two ora-
cles, EFun and ERand. Consider the following experiment with k ∈ N and z ∈ {0, 1}q(k) for some
polynomial q

Experiment Expind$-cpa
SEFun,Acpa

(k, z)

Fun
$
← Fun(k)

b← AEFun,ERand
cpa

Return b

We denote the winning probability in the adversary breaking IND$-CPA as

Advind$-cpa
SEFun,Acpa

(k, z) := Pr[Expind$-cpa
SEFun,Acpa

(k, z) = 1]

with the maximum over all possible PPT adversaries as

Advind$-cpa
SEFun

(k, qe, ηe, z) := max
Acpa

{Advind$-cpa
SEFun,Acpa

(k, z)}

where qe denotes the maximum number of oracle calls to EFun or ERand, and ηe the maximum
number of k-bit blocks per encryption query.

Proposition 3 Let SEFun be the authenticated encryption scheme given in Figure 6 using random
functions and z any polynomial bounded string in k with qe = 1, and k ≥ 1. Then

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤
1

2
(3η2

e + ηe)2
−k

Proof: We can bound the IND$-CPA advantage using game G2 in Figure 7 if we remove the sin-
gle authentication query. This simulates both SEFun and SERand, which are identical until bad is
set. Therefore, using the Fundamental Lemma of Game-Playing we have Advind$-cpa

SEFun
(k, qe, ηe, z) ≤

Pr[Game 2 sets bad]. Following the same arguments as used in Proposition 2 (including the assump-
tion that A is deterministic and computationally unbounded), we may transform game G2 to G4.
Since for any fixed chain of queries there are at most ηe +1 non-random variables X−1

1 ,Xs=0,...,ηe−1
0 ,

that do not collide with one another and ηe independent random variables Xs=0,...,ηe−1
1 , in Dom(ρ),

it follows that the setting of bad in game G4 is bounded above by

Pr[Game G4 sets bad] ≤

{(

2ηe + 1

2

)

−

(

ηe + 1

2

)}

2−k

which holds for any computationally unbounded adversary. Therefore, it follows that

Advind$-cpa
SEFun

(k, qe, ηe, z) ≤ Pr[Game G4 sets bad]

≤

{(

2ηe + 1

2

)

−

(

ηe + 1

2

)}

2−k

=
1

2
(3η2

e + ηe)2
−k.

