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Abstract. In this paper, we show how to construct secure obfuscation for Deterministic Finite Au-
tomata, assuming non-uniformly strong one-way functions exist. We revisit the software protection
approaches originally proposed by [5,8,10,13] and revise them to the current obfuscation setting of
Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some “small” secret
about the original program. Using this secret, we can construct an obfuscator and two-party protocol
that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of
this model retains the strong “virtual black box” property originally proposed in [2] while incorporating
the stronger condition of dependent auxiliary inputs in [12].
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1 Introduction

Program obfuscation, if possible and practical, would have a considerable impact on the way we
protect software systems today. It would be instrumental in protecting intellectual property, pre-
venting software piracy, and managing use-control applications. The work of Barak et al. [2] initiated
the first formal study of obfuscation. They define an obfuscator O to be an efficient, probabilistic
compiler that takes a program P and transforms it into a functionally equivalent yet unintelligible
program O(P). Unintelligible is defined in the strictest sense, to imply that the program O(P)
behaves ideally like a “virtual black box”. That is, whatever can be efficiently extracted from the
obfuscated program can also be extracted efficiently when given only oracle access to P.

Unfortunately, in [2] it was proven that obfuscation in general is impossible. Namely, there exist
a family of functions that are unobfuscatable under the “virtual black box” notion of security. This
would seem to suggest that having physical access to the program is a much stronger capability
than having only access to its input and output behavior. In addition to this main impossibility
result, the authors also prove that if secure symmetric key encryption schemes exist, pseudorandom
functions exist, or message authentication schemes exist, then so do unobfuscatable versions of each.
The authors conclude that the “virtual black box” property is inherently flawed, and if we hope
for any positive obfuscation results, then either this model needs to be abandoned or we need to
accept that many programs are not obfuscatable [2].

Numerous other impossibility results have also shed light on the problem of obfuscation. For
example, Goldwasser et al. [12] showed that many natural circuit classes are unobfuscatable when
auxiliary inputs are added to the obfuscation model. Auxiliary inputs provide for a more robust
model of obfuscation, since the adversary is assumed to have some a priori information about the
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Fig. 1. Obfuscation with respect to oracle machines

underlying program. This additional layer of security is useful in practice, since it is likely that the
obfuscated code will be utilized in a large system, and the system may reveal partial information
about the functionality of the obfuscated code.

In spite of the numerous impossibility results, other works such as Lynn et al. [14] have examined
alternative models of obfuscation in the hope of achieving meaningful possibility results. Under the
random oracle model of obfuscation, they assume that both the obfuscator and obfuscated code
have access to a public random oracle. Under this assumption, they are able to show that both
point functions and complex access control schemes are obfuscatable. Similar results were obtained
by [6,7,15] under a slightly weaker notion of “virtual black box” obfuscation (without random
oracles). For example, Wee showed in [15] that point functions are (weakly) obfuscatable, provided
that strong one-way permutations exist.

In this paper, we introduce a new model of obfuscation that has wide and meaningful possibility
results beyond those described above. To demonstrate the utility of this model, we show that
deterministic finite automata are securely obfuscatable, provided non-uniformly strong one-way
functions exist. In fact with a simple modification these same results can be extended to the
obfuscation of Turing machines and hence all programs. For a more detailed discussion on this
extension along with composition results see the extended abstract [1]. We call this model of
obfuscation obfuscation w.r.t. oracle machines.

Unlike the “virtual black box” model of obfuscation, where we assume an adversary has full
access to the obfuscated code, we instead consider the case where a small portion of the computation
remains hidden and is only accessible via a black box oracle. See Figure 1 for an illustration. A
compiler in this case takes a program P and returns two outputs, the obfuscated code O(P)
which is given to the adversary, and a small secret which is given to the oracle. An execution of the
obfuscated code takes an input x and computes O(P)(z), via a two-party protocol. To avoid certain
trivialities, we impose restrictions on the oracle’s computational resources. Namely, we will consider
only the case when the oracle’s space resources are asymptotically smaller than the program itself.
In practice, the oracle may be implemented as a computationally limited device, such as a smart
card or crypto processor.

1.1 Notation

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine. If A is
a PPT, B an oracle, and z an input to A, then by A®(z) we mean the algorithm that runs on



input x using oracle access to B. We will often refer to A as a PPT oracle machine. When writing
r < A we mean the value z is returned by A. Additionally, A(1¥) implies A is given the value
k. In our algorithm descriptions, we make use of the statements return y and Return z. When
using the syntax return, we imply that the value y is returned internally to the algorithm (such
as the output of a function call), while by using Return, we imply that the value z is written to
the output tape. As usual, we use the notation {0,1}* to denote the set of all k-bit binary strings,

and by z & {0,1}* we mean = is uniformly chosen from {0,1}¥. We also use the conventional
notation of || and @ to denote the string operators concatenate and ezxclusive or. Unless explicitly
stated otherwise, we will assume all references to log are based 2. A function p : N — R is said to
be negligible, if for any positive polynomial p there exists an integer N such that for any & > N,
wu(k) < 1/p(k). We will sometimes use the notation neg(-) to denote an arbitrary negligible function.
A polynomial-time computable function f : {0,1}* — {0,1}* is called non-uniformly strong one-
way if for every non-uniform PPT A there is a negligible function neg(-) such that for sufficiently

large k, Pr_s (71 @) 3y — A (2).19)] < neg (k).

2 Obfuscation with respect to Oracle Machines

In this section we introduce the framework for obfuscating w.r.t. oracle machines. Under this frame-
work we model obfuscation as a two-party protocol, where one party represents the obfuscated code
and the other an oracle containing some “small” secret. The communication between the two par-
ties is characterized using interactive Turing machines introduced by [11]. Under this model, we
assume the adversary has complete control over both the obfuscated code and message scheduling.
We further assume the adversary is malicious, and may deviate from the protocol in any way. This
allows the adversary to adaptively query the oracle with messages of its own choice.

Oracle Model. The obfuscation oracle R is modeled as an interactive Turing machine with one
additional read-and-write tape called internal_state. The tape internal_state has a unique feature
called persistence that distinguishes it from the other tapes in the oracle. We say a tape is persistent
if the tape’s contents are preserved between each successive execution of R. The other internal
working tapes do not share this property and are assumed to be blank after each execution. Given
a particular input and internal_state, the oracle R computes an output (which may be 1) on its
outgoing communication tape along with a new internal state, internal_state’.

(output, internal_state') « R(input, internal_state)

We will assume that the oracle’s input and persistent tape are polynomial bounded by some poly-
nomial s(k), for each k € N. In this framework, we will consider only the non-trivial case when
s(k) = o(f(k)),! where the device’s resources are asymptotically smaller than the program itself. In
the special case when s(k) = O(k), we will say that the oracle maintains a “small” internal state.

Definition 1. (Obfuscation w.r.t. Oracle Machines) A probabilistic polynomial time algo-
rithm O and oracle R are said to comprise an obfuscator of the family F = {Fj}lren w.r.t.
polynomial-time bounded oracle machines, if the following three conditions hold:

! The size of each M € F}, is polynomial bounded by f(k).



o (Approzimate Functionality) There exists a negligible function u such that for all k and M € Fy,
OR(M, 1) describes an ITM that computes the same function as M with probability at least
1 — u(k).

e (Polynomial Slowdown) The description length and running time of O™ (M, 1¥) is at most poly-
nomial larger than that of M. That is, there exists a polynomial p such that for all k and
M € Fy, |O(M,1%)| < p(k) and if M takes t time steps on an input x, then O (M, 1) takes
at most p(k +t) time steps on x.

o (Virtual Black Box) For every PPT A, there is a PPT simulator S and a negligible function v
such that, for all k and M € Fy., and every polynomial q with bounded auziliary input z of size
q(k), we have

Pr[AR(OR(M,1%),1F 2) = 1] — Pr[sM (1M 1% 2) = 1]| < w(k).

2.1 Non-Resettable Deterministic Finite Automata

We define a Deterministic Finite Automaton (DFA) as a machine ¥ = (Q, X, §, so, G) with a finite
set of states @, finite alphabet Y| transition function 4, initial state so € @), and accepting states
G. The structure of the DFA is determined by its transition function ¢, which maps each state and
a given input symbol to a new state. The output function (which imitates black box behavior) of
the DFA ¥ is defined as | i8(s,a) € C

1 S, ) €
U(s, ) = {o i 5(s,0) ¢ G

where the “user”-selectable input is «, and s is the current “internal” state. We note that the user
does not have control of the state input. Rather ¥ must internally maintain the state over each
execution. We will often write just ¥ ().

When modeling DFAs, it is often convenient (unless stated otherwise) to assign a reset capability,
which allows the DFA to transition back to its initial state. In practice, having a reset capability
is not always a desired characteristic, especially when developing software use-control applications,
such as subscription policies and digital rights management. To differentiate between DFAs that
have a reset capability and those that don’t, we define a non-resettable DFA to be a deterministic
finite automaton that is not resettable. We note that we can always build in resettability if we add
an additional reset symbol to every state.

3 DFA Obfuscation

Following the framework described in Section 2, we show how to construct a DFA obfuscator that
is secure with respect to dependent auxiliary inputs. Our goal is to develop a compact, yet very
efficient DFA obfuscator that is not only of theoretical interest, but useful in practice as well. To
obtain our results, we use a simple authenticated encryption scheme to hide the structure of the
DFA and authenticate the execution of the protocol.

Representation. We model each DFA ¥ as a polynomial-time Turing machine My with an addi-
tional persistent read-and-write tape, called internal_state. The internal_state maintains a record of
the values needed to compute the DFA. Each My is represented by a table where, Vo € X,V s € Q,
there is a table entry containing «, s, d(s,«), and acpt (which equals 1 iff §(s, ) € G). Without



any loss of functionality, we compress the table by employing an injective map that encodes each
a € X to a string in {0, 1}“0g|2H. Using the table described, we can create a program My that
simulates ¥’s output behavior. The program consists of the DFA table, high-level code, and two
persistent variables current_state and current_acpt. The high-level code describes the programming
language used, table lookup algorithm, alphabet X, and function calls that manipulate the per-
sistent variables. The program My works as follows: On user input «, the table lookup algorithm
searches each table entry for the pair «, current_state. If a match is found, the acpt bit is updated
and d(current_state, ) is recorded temporarily. The program continues to search the rest of the
table for a match. At the end of the table search, the user is given the recorded acpt bit, and the
variable current_state < §(current_state, ) is updated. After the acpt bit has been returned, the
DFA is ready to accept its next input.

Following this description, our next goal is to define an encoding scheme of My. Our choice of
encoding is important for several reasons. First, it allows us to calculate the size of |My/|, which is
needed for evaluating the polynomial slowdown property. And second, depending on our choice of
encoding, the size of |[My| may drastically affect the simulator’s ability to simulate the obfuscated
code. We formalize our encoding scheme as follows.

Encoding. We begin our encoding by splitting up the description of My into its individual com-
ponents: high-level code and DFA table (which is further broken down by individual table entries).
We create a parsing scheme that takes the bit description of each component and adds a trailing bit
of a 1 or 0 to the end of each individual bit. The trailing bit allows the parser to recognize the end
of a component’s description. For example if the high-level code has a bit description hg . .. h,, then
its new bit description is hg0h10. .. h,,1. Adopting this encoding scheme, we can find a ¢ > 0 such
that the size of each table entry satisfies 2¢ < |table entry| < 2!+1. Given t, we pad each table entry
with the string 00...01 (which is a multiple of two in length) until its length is exactly 2/*1. If the
number of tables entries is even, we pad the last table entry with an additional 2/ bits of the form
00...01 and add a single 1 bit value on the end. If, on the other hand, the number of table entries is
already odd, then we do nothing. For convenience we denote the number of edges in ¥ as |E(¥)|. By
prefixing the parser to the encoded My, it follows that |My| = |Parser|+ |High-level code|+ |Table|,
where |Table| = 2!%1|E(¥)| if the number of table entries is odd and 21 (|E(¥)| + 1) + 1 if the
number of table entries is even.

Since both the size of the parser and the high-level code are public, it follows that knowing
the size of |My| implies that one also knows the size of |Table|. But one can efficiently extract the
number of edges |E(¥)| based on our encoding above. We use this deduction later in the proof of
Proposition 1 to swap the simulator’s input 11M#| with 1121,

Based on the encoding scheme above, we define the family Fppa := {Fi}ren to be the set of
all polynomial bounded My satisfying

Fir = {My | |My| < f(k) and 2log|States(¥)| + log | X| + 1 < k}2

2 The condition 2log |States(¥)| 4 log || 4+ 1 < k may be removed by modifying the encryption scheme in Figure 3
to have more than one call to Fx per table entry. This is a relatively easy fix since we need at most m =
[(2tlog(ck) + 1)/k] constant calls to Fx given |[My| < f(k) < ck' some fixed c,t > 0. This condition was added
to simplify the obfuscation algorithm.



Setup(My, k):
INPUT: My, 1%

KEY GENERATION:
K — K(k)

GENERATE STATE TABLE:
STATETABLE(Y) :
s« 0
Iml* — [log, | 2] + 2log, |Q[] + 1
for state < 0 to |Q| — 1 do
for symbol «— 0 to |X| —1 do
Sa < Usymbol
Sstate < State
S§(state,a) < 5(state, a5y77Lbol)
Sacpt + 1 iff S5(state,a) € G, 0 else
T:mta [S] —
Sa”sstatcHSé(state,a)|‘5acpt|‘0k7‘m‘*
s«—s+1
| Table|* «— s
return (|m|*,|Table|™, T5ate)

ENCRYPT STATE TABLE ENTRIES:
gFK (T:tate) :
X «— 1F
Auth «— Fg(X1)
for s — 0 to |Table|* — 1 do
Xo < s/|0
Y «— Fg(Xo)
T&[s] < Y @ Tatate[s]
X1 — Auth ® Tgs]
Auth — Fg(X1)
Auth® «— Auth
return T¢ || Auth”

Return (K, |m|*, | Table|*, T¢, Auth™)

Algorithm O(|Table|", T¢, Auth™):

INpUT: |Table|*, T¢, Auth”

INITIALIZATION:
| Table| «— | Table|*
Te « T¢
Auth «— Auth”
State — Transition_Query

STATE TRANSITIONS:
Case(State)

Transition_Query:
« «— scan_input
Query oracle R with «
State — State_Update

State_Update:
for s < 0 to | Table| — 1 do
if s # | Table| — 1 then
Query oracle R with T¢|s]
if s = | Table| — 1 then
Query oracle R with Tc|s]||Auth

if acpt <« R

Return acpt

State < Transition_Query
if auth_fail < R

State < Transition_Query

Fig. 2. Algorithm Setup and O.

for some fixed polynomial f(k). The parameter k is called the security parameter.

Obfuscation. To simplify our description of the DFA obfuscator, we split the obfuscation into
three separate algorithms, Setup, O, and R. The Setup algorithm, shown in Figure 2, takes a
DFA encoding My and generates inputs for both the obfuscated code and oracle. Without loss of
generality, we view our encoding of My to be the DFA state transition table of ¥. The parsing
operation and high-level code was left out for simplicity.

The obfuscated code O, also shown in Figure 2, can be described as a protocol template.
The template takes as input the encrypted table T¢, authentication tag Auth, and table size
| Table| returned by the Setup algorithm. During the Transition_Query phase the obfuscated code
scans in the user’s input «, queries the oracle R, and enters a new phase called State_Update.



Algorithm R(K, |m/|*,|Table|™): STATE AUTHENTICATION:
X1 « Auth’ ® T¢|s]

INpuUT: K, |m|*, | Table|* Auth' — Fg(X1)
if s = | Table| — 1 and Auth’ # Auth

INITIALIZATION: then

| Table| — | Table|® Return auth_fail

Im| « |m| State +— Transition_Query

acpt «— L

current_state — 0 COMPARE TABLE ENTRIES:

Auth’ — 1 Xo — s]|0

temp, «— L Y — Fi(Xo)

temp ., — L M, «Y @ Tcls]

§— L

L. Sa||Sstatel||Ss s Sacpt — Mspp—1:5—
State — Transition_Query ollsstate [|$5(state, ) | Sacy s[ |ml]

if ssiate = current_state and so = temp,,
STATE TRANSITIONS: then

Case(State) temp ., < Ss(state,a)

. acpt < Sacpt
Transition_Query:

On query a do UPDATE ORACLE STATE & COUNTER:
temp, — a if s = | Table| — 1 then
s 0 & current_state < temp
X1 - 1 Return acpt
Auth” — Fre(X1) State +— Transition_Query
State <+ State_Update s s+ 1

State_Update:
On query T¢ls| or T¢[s]||Auth do

Fig. 3. Oracle R.

During State_Update, the obfuscated code submits the table T along with the authentication
tag Auth. The oracle processes T one table entry at a time and verifies the table’s integrity. If the
authentication passes, the oracle returns an accept value corresponding to whether the new state
is an accept state.

The oracle R, shown in Figure 3, describes the oracle’s behavior. Just like the obfuscated code
O, the oracle is nothing more than a protocol with a symmetric key and a few additional variables.
Other than the padding length |m/|, table size | Table|, and current_state, the oracle maintains no
information about the DFA.

Proposition 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are
obfuscatable with respect to oracle machines.

Proof: Let f(k) be some positive polynomial and consider the family Fppa defined over f(k). We
will assume without loss of generality for the remainder of the proof that k is sufficiently large so
that the inequality 2log |States(¥)|+log |X|+1 < k is satisfied for every My € Fj.. This assumption
follows from the fact that every My € Fj, is polynomial bounded, and therefore there exists a fixed
t > 0 with |[Myg| < k' for every k sufficiently large. Thus |States(¥)||X| < |[My| < k' implies
log |States(¥)| + log | X| < tlogk whence 2log |States(¥)| + log |X| + 1 < 2tlogk + 1 < k for k
sufficiently large. This last restriction was added to guarantee that the size of each table entry is
no larger than the size of the pseudorandom function’s output length.



To prove that the obfuscator in Figure 2 and 3 obfuscates non-resettable DFAs, we need to show
that the aforementioned three conditions hold: Approzimate Functionality, Polynomial Slowdown,
and Virtual Black Box. The Approximate Functionality and Polynomial Slowdown conditions are
fairly straightforward and are left out in this proof. For details see the extended abstract.

Virtual Black Boz: To simplify the notation in the proof we omit the input 1¥. We also replace the
simulator input 11M#| with 1P which can be extracted (based on our encoding of My). This
reduces the virtual black box inequality to Equation (1).

We begin our analysis by breaking up Equation (1) into four separate equations, each equation
representing the indistinguishability of obfuscating with different oracles. Other than the first oracle
R F, we do not place any computational assumptions on the others. This allows them to maintain
a much larger internal state.

Pr[ARFic (ORFic (0), 2) = 1] — Pr[S? (1IE@) 2y = 1]( 1
< [Pr[ARFx (OR7x (), 2) = 1] — Pr[ARF (ORran (), 2) = 1]| 2
+ ‘Pr[ARF““(ORF“"(W), z) = 1] — Pr[ARFu (ORFun (9), 2) = 1]‘

4 ‘pr[ ARbun (ORbun (B), 2) = 1] — Pr[ARkana (ORkana (¥), 2) = 1]‘

+ ‘Pr[ARﬁand(ORﬁand(W), 2) = 1] — Pr[S¥(1IE®I ) = 1]( .

In Equation (2) we introduce the oracle Rpy, in order to measure the pseudorandomness of
RFy. Both Rpun and Rp, have the same description, except every call to Fx in R, is replaced
with a similar call to a random function (independent of z) with the same input and output length.
For convenience we refer to this random function as Fun. Using algorithms £ and V shown in
Figure 6, we can reduce the distinguishability of Equation (2) to the distinguishability of the pair
of oracles (€r,, Vr,) and (Epun, Viun). We base this reduction on adversary B g given in Figure 4.

In our description of B4 w, we use the parameter ¥ to indicate the hardwiring of B’s oracle query
to £ (which is dependent on STATETABLE(Y¥)). B4 w uses £’s response to construct the obfuscated
code, which is given to A. Using A, B4y simulates A’s query-response interaction with the oracle.
The distinguishing bit b returned by B4y is the same bit returned by A. Therefore Equation (6)
reduces to Equation (7). If we replace every oracle call to & and V with multiple calls to either
Fi or Fun then we can reduce Equation (7) even further. We denote this simulation by B A,W, to
distinguish itself from B4 y. Therefore Equation (7) reduces to Equation (8). But this last equation
is just the pseudorandom distinguishability of Fx given auxiliary input z. Using our assumption
that non-uniformly strong one-way functions exist, we can use the Goldreich et al. construction
in [9] to generate a pseudorandom function that is secure against non-uniform PPT adversaries
(denoted as prf-nu). If the adversary A makes no more than g, distinct® State_Update queries,
then the total number of queries made to F or Fun by B4y’ is no more than (g, + 2)|E(¥)| + 1.

3 Each ¢, represents a complete chain of State_Update queries (i.e., the user has submitted the entire encrypted
table with Auth tag).



Setup of Ba,w:
InpuT: 1%, 2

(GENERATE STATE TABLE:
(Jml, | Table|, Tstare) < STATETABLE(¥)

ENCRYPT STATE TABLE ENTRIES:
Query oracle £ with Tsaze
(TC7 Auth) <~ g(TSt(Lte)

A <= O(|Table|, Tc, Auth), z

Simulation of Oracle R:

INPUT: 1%, |m|, | Table|, Tstate, Te, Auth

INITIALIZATION:
current_state «— 0
acpt — L
temp, «— L
temp,, — L
flag g, — L
C— 1
s— L
State < Transition_Query

Case(State)
Transition_Query:
When A makes a query a do
temp, — «
1109 g1, — false
C— 1
s«—0
State <+ State_Update

State_Update:
When A makes a query T [s] or
Te[s]||Auth’ do

STATE AUTHENTICATION:
C < C||Tc|s]
if T [s] # Tcls] or (s = |Table| — 1 and
Auth' # Auth) then
fl0g 4 — truc
if s = |Table| — 1 and flag,,,, = true then
Query oracle V with (C, Auth’)
if 0 < V(C, Auth’) then
A < auth_fail
State — Transition_Query

COMPARE TABLE ENTRIES:
M. — To[s] & (Tels] & Tstatels])
Sa Hsst(zte ||56(5tate,a) Hsacpt — Ms,[kfl;kf\m\]
if sstate = current_state and s, = temp, then
tempcs — Sé(state,a)
acpt < Sacpt

UPDATE ORACLE STATE:
if s = |Table| — 1 then
current_state <— temp
A < acpt
State «— Transition_Query
s—s+1

Fig. 4. Adversary Ba,w.

Therefore Equation (6) reduces to Equation (10), which is negligible following our assumption.

|Pr[ARFK (ORFK (W), 2) = 1] — Pr[ARvu (ORran (@), 2) = 1] (6)
= [PelB Y () = 1] = BB () = 1 (7)
= [PrBY(2) = 1] - Pr[BRY (2) = 1] (8)
= Advh" By (F:2) (9)
< AdVRIM(k, (g0 + 2)|E(P)] + 1). (10)

For Equation (3), we would like to perform a similar reduction as performed for Equation (8)
except, instead of measuring the pseudorandomness of Fi, we would like to measure the unforge-
ability provided by the verifier V. To do this, we introduce the oracle Ry, . Internally, the oracle
Ry, looks identical to Ryun except during the state authentication process. Instead of computing



a partial authentication tag for each State_Update query, as is done in Figure 3, it collectively
gathers all of the ciphertext queries and final authentication tag and submits them to a verifier
V*. To do this, Ry, stores the values (T¢, Auth) returned by the initial Setup(My, k) algorithm.
During the State_Update phase, the oracle checks to see if the table entries queried by the user
are the same entries as those in To. If any of the table entries are incorrect, including the final
authentication tag, or if they are queried in a different order, the oracle Ry, returns auth_fail.
Reusing B4y we can reduce Equation (3) to inequality (11) by simulating the distinguishability
with oracles (Epun, Vrun) and (Epun, V*). We call this advantage IND-VERF, since it measures the
indistinguishability between the two verifiers. Therefore

Pr[ARFun (OReun (@), ) = 1] — Pr[ARRun (ORfuw (9), ) = 1]‘
= [PoBSry Y (2) = 1] - Pr{B Y () = 1)
= Adv?gl;ZiffBAy(kyQE7QU77767771)7Z)’ (11)

with ¢. = 1 denoting the number of encryption queries and n. = 7, — 1 = |E(¥)| the maximum
number of k-bit blocks each encryption or verification query may have. We claim this advantage is
bounded above by the INT-CTXT-m security of S€pu,. See Appendix A.1 for more details on the
security definition of INT-CTXT-m.

. ind-verf int-ctxt-
Clalm' Adv?gFZir,BA,g, (ka q€7 QU7 7767 771)7 Z) S Advglg;u:,(gl&g,)ctxt (k7 QE7 QU7 7767 771)7 Z)

See the extended abstract [1] for a proof of this claim. Now that we have bounded Equation (3) by
the INT-CTXT-m security of S€p,, we are now ready to move onto Equation (4).

In Equation (4) we measure the chosen plaintext distinguishability between encrypting with
either Epyn or ERand, Where Erand(M) is a random string of length |M|. The oracles Ry, 4 and
Ry, are identical except for their calls to Epuyn Or Erand. As before we will use the x in Ry, 4 to
denote that verifier V* is used. We define BZ,W to be the algorithm B4 ¢ that uses V* as its verifier
(which can be easily simulated given the output of £). Therefore Equation (4) reduces to inequality
(12)

‘Pr[AR;‘un(OR;‘un (W)7 Z) = 1] — Pr[ARl*%and (ORl*%and (W)7 Z) = 1]
= [PrB3 (2) = 1] = Pr{BA (2) = 1]

= Adve P (K, ge,ne, 2). (12)

with g = 1 and n. = |E(¥)|.

In the final Equation (5), we introduce the simulator S, which as you recall has only black box
access to ¥. In order for S to properly simulate A’s view, it needs to know the number of edges
|E(%)|. This can be easily extracted knowing just the size of My based on our encoding. Given the
number of edges |E(¥)|, S can easily simulate A’s view of the obfuscated code by giving A a copy of
O(|E(W)|,T¢e, Auth), where T¢ is a random table of the appropriate size (dependent on |E(¥)| and
k) and Auth a k-bit random string. Using its oracle access to ¥, S can simulate A’s interaction with
R ana Using the values |E(¥)|, Tc, and Auth. Therefore, the entire simulation, which we denote by
S, consists of passing A the obfuscated code O(|E(¥)|, T¢, Auth) and simulating the interaction
between Ry, 4 and A using oracle ¥. The full description of simulator S, is given in Figure 5.



Setup of Su:
INpUT: 17, 11FDI

(GENERATE STATE TABLE:
for s — 0 to |E(¥)|— 1 do
Tstutc [3] — Ok

ENCRYPT STATE TABLE ENTRIES:

Query ERrand With Tsate
(TC7 AUth) ~ gRand (Tstate)

A = O(|E(W)|, Te, Auth), »

State_Update:
When A makes a query T [s] or
Te[s]||Auth’ do

STATE AUTHENTICATION:

C < C||Tc|s]

if T [s] # Tels] or (s = |E(¥)| — 1 and
Auth' # Auth) then
f10g 4, — truc

if s =|E(W)| — 1 and flag,,,;, = true then
Query V* with (C, Auth’)
if 0 < V*(C, Auth') then

A < auth_fail

State — Transition_Query
Simulation of Oracle Rianag:

QUERY DFA ORACLE:
if s=|E(¥)| —1 then
Query oracle ¥ with temp,,
acpt «— W (temp,,)

INpuT: |E(¥)], T, Auth

INITIALIZATION:
acpt «— L

temp  «— L
Pa UPDATE ORACLE STATE:

Jg“iﬂuih -+ if s = |[E(¥)| — 1 then
s | A < acpt
State < Transition_Query

State < Transition_Query s s+1
Case(State)
Transition_Query:
When A makes a query a do
temp, — «
1109 g1, — false
C—1
s«—0
State <+ State_Update

Fig. 5. Simulator Sa.

To help with the analysis, we model adversary ARRand (Okana (@), 2) as we did in Equation (4) by
replacing it with ij;a“d (2). From this we have Pr[ARRand (ORkana (¥), 2) = 1] = Pr[BZgga“d(z) =
1]. Notice that duriflg the State_Update phase of B}y, n order for the final querif to reach
UPDATE ORACLE STATE and return an output other than auth_fail, Ry, 4 must pass the verifier
V*. This implies that the adversary submits the table T¢ free of modifications. Hence the operations
under COMPARE TABLE ENTRIES may be completely replaced with a simulated oracle call to the
DFA in much the same way simulator S4 does. Replacing this code, we obtain a new BZ,&P/ which is
functionally equivalent to B} . Since the variables current_state and temp ., are no longer needed as
they are used in the simulation of oracle ¥, we can remove them. Finally, observe that an oracle call
t0 ERand In ENCRYPT STATE TABLE ENTRIES returns random strings regardless of the particular
input. Therefore encrypting with the real state table Ty or one containing all zeroes provides a
random output that is of the same size. Hence it follows BZ’J,' and S4 have a distinguishability of
0.



Using the bounds derived in Appendix A with ¢c = 1 and 1. = 1, — 1 = |E(¥)|, we have the
following result

Pr[ARm (ORri (), z) = 1] — Pr[S¥ (1P0)] 2) = 1] (13)
< AdVR Mk, (g0 +2)[E(9)] + 1)
FAQVEESTR, (0o )+ AQVEESTS (1 g, )
rf-nu
< Advi ™k, (g +2)|E(W)] + 1)

+ao(4EW)]* + |B(@))27" + %(3IE(¢’)I2 +|EW@))27*.

O

The amount of persistent state needed to obfuscate the DFA in the above Proposition is in fact
quite small. In the next Proposition we show that we need at most O(k)-bits. This is especially
ideal if the oracle is implemented on a computationally limited device with a minimal amount of
tamper protection.

Corollary 1 If non-uniformly strong one-way functions exist, then non-resettable DFAs are ob-
fuscatable with respect to oracle machines with small internal state.

Proof: In Proposition 1 we used the Goldreich et al. construction in [9] to generate a pseudo-
random function that is secure against non-uniform PPT adversaries. The key generated for this
construction is the same size as the security parameter k. But this implies that the size of the
oracle’s persistent internal state is no more than O(log |State(¥)| + log |X| + k) = O(k), following
our definition of F. O
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Supplementary Proofs

In this appendix we review the security definitions of INT-CTXT and IND$-CPA and prove the
bounds used in inequality 13. All of the results proven below are based on the authenticated
encryption scheme shown in Figure 6.

Al

Algorithm &,(M) Algorithm V,(C'|| Auth’)
C<—J_ COIH...||Ct71/<—C/
Mol ... ||[Mi—1 — M, |M;| =k X7tk
X7tk Auth «— p(X7h)

Auth — p(X;h) for s<—0tot—1do
for s—0tot—1do X;' — Auth @ C/
X5 < s]|0 Auth — p(X7)
Y « p(X§) if Auth = Auth’ and
Cs —Y @ M, sizec = |C’| then
C — C|Cs Return 1, else Return 0.
X5 — Auth @ C,
Auth — p(X7)
sizec «— |C|
Return (C||Auth).

Fig. 6. Encryption and Verification Schemes.

Integrity Awareness

In Proposition 1 we showed that the distinguishing advantage between the verifiers Vg, and V*
(with the adversary also having access to Epyn) is bounded above by the strong unforgeability of
the ciphertexts. We state the security definition formally below.

Definition 2. (Integrity Awareness w.r.t. Auxiliary Input): Let Sy be the symmetric
encryption scheme in Figure 6 using random functions and Acxy o PPT adversary with access to
two oracles, Epyn and Vpu,. Consider the following experiment with k € N and z € {0, 1}q(k) for
some polynomial q



Experlment Expiictxtm (. 2)

gFun Actxt
Fun & Fun(k)
If AftF;('t“’vF““(k z) makes a query C to
the oracle Vmun such that
- VFun(C ) =1
- C was never a response to Epun
then Return 1 else Return 0.

We denote the winning probability in adversary Aciyx¢ breaking INT-CTXT-m as

Ad 1nt ctxt m (k’ Z) — PI’[EXpmt Ctxt m (k‘, Z) — 1]

Fun ctxt gFun yActxt

The INT-CTXT-m advantage over all PPT adversaries Actxt is defined as the maximum

int-ctxt- t-ctxt-
AdvglgFCu: m(k7 Ges Qv Tes Ty Z) = glaX{AdVglchu:, l’cnt)(t (k Z)}
ctxt

where ¢g. and ¢, denote the maximum number of oracle calls to Epyn and Vi, while 7. and n,
denote the maximum number of k-bit blocks per encryption and verification query. The scheme
SEfun is said to be INT-CTXT-m secure w.r.t. auxiliary input if the advantage Adv”1t ctxt-m g
negligible over all PPT adversaries (with time-complexity polynomial bounded in k) given arbltrary
auxiliary input.

In the special case where we allow only a single verification query ¢, = 1, we define the advantage
as INT-CTXT-1. It was shown by Bellare et al. in [3] that if an encryption scheme S€& is INT-CTXT-
1 secure (without an auxiliary input), then it is also INT-CTXT-m secure. Adding auxiliary inputs
is a trivial modification to the original proof. Since we will be using this result to simplify our

analysis, we state it in the following lemma.

Lemma 1. (INT-CTXT-1 = INT-CTXT-M [3]) Let SE be any symmetric encryption scheme
and z any polynomial bounded string in k with k > 1. Then

Ad 1nt ctxt- m(k,Qea(IUa"?ea"?Ua ) < Qo - Ad 1nt ctxt- l(k,qeane,nvyz)

In the following Proposition we prove the scheme in Figure 6 is INT-CTXT-m secure when
ge = 1. This result is used to help facilitate the proof in Proposition 1.

Proposition 2 Let SEpu be the scheme given in Figure 6. Let z be any polynomial bounded string
m k with ge =1, 9y =ne + 1, and q,,k > 1. Then

Advg'lc‘f' outs m(k ey Quy Nes Mv, 2 ) < %}(4772 + 776)2_k

Proof: To prove the above inequality holds, we will use the game-playing techniques introduced
by Bellare and Rogaway in [4]. Our goal is to incrementally construct a chain of games using
simple transformation techniques so that the terminal game is bounded above by a negligible
factor. To simplify our analysis we use the result of Lemma 1 and derive an upperbound for INT-
CTXT-1. Once we have found a bound for INT-CTXT-1, the more general INT-CTXT-m bound
will follow. For the sake of this proof, we will also assume that our adversary A is computationally



unbounded and therefore deterministic (since it may deterministically choose its queries to maximize
its advantage). The only restrictions we place on A is the number of queries it can make.

We begin our analysis by giving a description of game G1 shown in Figure 8. Notice that the
scheme SEpu, is not stateful and therefore not IND-CPA secure. Having IND-CPA security is not
essential to proving the claim since g. = 1. Also observe that we removed the checking of sizec in
game G1 since the adversary does not gain an advantage by submitting a ciphertext authentication
pair of a different length. We will instead assume without loss of generality that the pair submitted
for verification is the same size as the pair returned by the encryption query. Let p be a randomly
(independent of z) chosen function from the set Fun(k). Observe that game G1 has only two queries
in its description: an encryption query and a verification query. The single encryption query (g, = 1)
simulates obfuscating a single DFA while the verification query (g, = 1) is the result of restricting
our analysis to INT-CTXT-1. Based on the description of game G1 it follows that

Adv?gﬁft'l(k,qe,ne,m, z) = Pr[Game G1 sets bad]
with g =1 and n. =1, — 1 =t.

To transform game G1 — G2, we add additional settings of bad in lines 208, 214, and 224. We
also observe that during the second query, the Auth value after the first index i where C;’ # C;
is just p(Xf_l). Therefore, the modifications made in lines 219 through 225 are a direct result of
this observation. Since the functionality of game G1 and G2 are equivalent with the exception of
additional settings of bad it follows that Pr[Game G1] < Pr[Game G2].

To go from game G2 — G3, we unroll the for loops in line 205 and 221 and postpone the
recordings of the variable X7 in Dom(p). We also swap the assignment of the variable X7 «

Auth @ Cs with a random sampling X7 & {0,1}*, since the Auth variable used in the assignment
of X7 is randomly sampled during s — 1. Finally, the assignments occurring after the setting of
bad «— true are removed. Therefore, the changes made from game G2 to G3 are conservative (i.e.
Pr[Game G2] = Pr[Game G3]).

For the final game G3 — G4 we begin by first swapping the random-assignment in line 305 with
line 308 by replacing Y & {0,1}* and C, « Y @ M, with C, & {0,1}* and Y « C, @ M,. Since
the variable Y is no longer used, we may eliminate it from the game. Similarly, since the values
recorded for p(X7) and p(X{) are never reused, they may be arbitrarily renamed as defined. The
only prerecorded variable that is reused is X! on line 413. Given the above swapping it is easy
to see that both C' and Auth are random. Using the derandomization technique* we may replace
them with constants C||Auth. Since adversary A is deterministic, there exist queries Mgl| ... ||[M¢—1
and C'||Auth’ corresponding to output C||[Auth. By hardwiring these query-responses into game G4,
we may bound the probability of setting bad as the maximum over all the possible query-responses
(thus removing the adaptivity of the adversary). It is not difficult to see that this maximum occurs
when t = 7., and the adversary submits a ¢ + 1-block authentication query with the first ciphertext

block changed. Since there are ¢t + 1 non-random variables XSZO"“’t_l,Xl_ ! that do not collide
with one another and 2t — 1 independent random variables szo"“’t_l,Xlszl""’t_ll with a single

dependent random variable X9 = X 9@ § some fixed § # 0 recorded in Dom(p), it follows that the

4 Derandomization Technique: If a game G chooses a variable X & X and never redefines it, we may derandomize
the variable by choosing a constant X to replace it. Given any adversary A, it follows that Pr[Game G4 sets bad] <
maxy Pr[Game G% sets bad].



Game G1

100 On first query Mo|| ... || Mi—1
101 C«— L

102 X' 1k

103 Auth < {0,1}*

104 p(X;h) « Auth

105 for s« 0tot—1do

106 X < s]|0

107 Y& {01}k

108 if X§ € Dom(p) then Y — p(Xo)
100 p(X3) — Y

110 Cs —Y & M,

111 C—C||Cs

12 X5 — Autha® C,

113 Auth & {0,1}*

114 if X{ € Dom(p) then Auth — p(X7)
115 p(X3) — Auth

116 Return C||Auth

117 On second query C'||Auth’

118 O()/H...Hct71l<—cl

119 Auth — p(X; 1)

120 for s« 0tot—1do

121 X3 — Auth® C/

122 Auth & {0,1}F

123 if X7’ € Dom(p) then Auth «— p(X3')
124 p(X7') — Auth

125 b+0

126 if Auth = Auth’ then bad «— true, b — 1
127 Return b

Game G2

200
201
202

203
204
205
206

207
208
209
210
211
212

213
214

215
216

217
218
219
220
221
222

223
224

225
226
227
228

On first query Mo||...
C—1
X7tk
Auth & {0, 1}*
p(X7 1) — Auth
for s« 0tot—1do
X5 < s||0
v & fo, 11
if X§ € Dom(p) then bad «— true, Y «— p(X{)
p(X5) =Y
Cs —Y D M,
C —C|Cs
X3 — Auth @ Cs
Auth & {0, 1}*
if X7 € Dom(p) then bad «— true,
Auth — p(X7)
p(X7) «— Auth
Return C||Auth

[| M1

On second query C’||Auth’
Coll... |Ci—1||IC]| - . - ||C=r" = C"
i < min{s | Cs' # Cs}
Auth — p(Xi71)
for s —itot—1do
X' — Auth @ C,'
Auth & {0, 1}*
if X7’ € Dom(p) then bad — true,
Auth «— p(X7')
p(X7') « Auth
b0
if Auth = Auth’ then bad «— true, b« 1
Return b

Fig. 7. INT-CTXT-1 Games G1-G2.

setting of bad based on these variables is

Pr[Variables in Dom(p) set bad] < {(

S A LR AN
2 2

which holds for any computationally unbounded adversary. Therefore, given ¢. = 1, 1, = 1. + 1,
and Pr[Auth sets bad in line 423] = 27% we have

Adv?gﬁft'l(/ﬁ,qe,ne,nv, z) < Pr[Game G4 sets bad)]
< Pr[Variables in Dom(p) set bad]

{(

+Pr[Auth sets bad in line 423]

3776+1 _ 776+1 2—k
2 2

= (4n? +me)27F.




Game G3 Game G4

300 On first query Mo||...|M¢—1 400 Given Mo|| ... ||Mi—1

301 C«— L 401 X7t 1k

302 X' e 1k 402 for s—0tot—1do

303 for s—O0tot—1do 403 X5 < s]|0

304 X5 < s||0 404 if X; € Dom(p) then bad «— true
305 y & {0, 1}k 405 p(X§) < defined

306 if X§ € Dom(p) then bad «— true 406 X5 & {0,1}F

307 p(X§) — Y 407 p(X?71) « defined

308 Cs —Y & M, 408 if X7 € Dom(p) then bad «— true
309  C «— C|Cs 409  p(Xt71) « defined

310 X7 {0,1}*

311 Auth — Xi @ C, 410 Given C'HAuth'

312 p(X:Y) — Auth 411 Col| ... [ICi—1[[Ci/[| ... [[Ce—1" «C’
313 if X{ € Dom(p) then bad «— true 412 i — min{s | C," # C,}

413 Auth — Xi @ ¢y

414 XV — Auwth®C, = X! @ 6, some § # 0
415 if Xi' € Dom(p) then bad — true

416 ifi <t —1 then

317 On second query C'||Auth’ AT for s <_$Z tltot—1do

s/ k
318  Col|...[|Cimt]|C]|...[|Ceera’ « C” 418 xi' & 0,1y

314 Auth & {0,1}*
315 p(XI7Y) — Auth
316 Return C||Auth

319 i« min{s | C.' # C.} 419 {J(stjl’) « defined

320 Auth — p(Xi™') = Xi & C; 420 if X7’ € Dom(p) then bad — true
321 Xi — Auth® C! 421 Auth & {0,1}*

322 if X{' € Dom(p) then bad — true 422 p(Xt7Y) — defined

323 ifi<t—1 then 423 if Auth = Auth’ then bad «— true

324 for s—i+1tot—1do

325 X3 & 0,14k

326 Auth — X3’ @ C/

327 p(X:7YY — Auth

328 if X;' € Dom(p) then bad «— true

329 Auth & {0,1}

330 p(X!Y) — Auth

331 if Auth = Auth’ then bad «— true
332 Return 0

Fig. 8. INT-CTXT-1 Games G3-G4.

A.2 Indistinguishable from Random

In Proposition 1, we measured the indistinguishability between the schemes gy, and Erang under
chosen plaintext attacks. The randomized scheme Erang as you recall took any message M that was
a multiple of k-bits (k the security parameter) say t and returned a random string of (¢ + 1)k-bits.
Formally we define Egang as

Algorithm Erang(M)
Myl ... ||My_1 — M, |M;| =k
Rand < {0,1}(+1Dk
Return Rand.

For the definition of indistinguishable from random to make sense in our setting, we give the
adversary an additional auxiliary input.




Definition 3. (Indistinguishable from Random): Let SEp,, be the symmetric encryption
scheme in Figure 6 using random functions and Acpa a PPT adversary with access to two ora-
cles, Epun and Erang. Consider the following experiment with k € N and z € {0, 1}q(k) for some
polynomial q

Experiment Expglgf;ipcha(k, z)

Fun & Fun(k)
b - A‘gIF)‘;ngand
Return b

We denote the winning probability in the adversary breaking IND$-CPA as

Advglgf;i?cha(k‘, z) = Pr[Expiggf;fjcpa(k, z) =1]

with the maximum over all possible PPT adversaries as

ind$- ind$-
AQVEEP (1 g, 2) o= ma { AAVEESTS (1))
cpa
where ¢. denotes the maximum number of oracle calls to Epyn Or Erand, and 7. the maximum
number of k-bit blocks per encryption query.

Proposition 3 Let SEpuy be the authenticated encryption scheme given in Figure 6 using random
functions and z any polynomial bounded string in k with gqo =1, and k > 1. Then

_— ' )
Adv e ™ (k, e, e, 2) < 5 (302 + )27

Proof: We can bound the IND$-CPA advantage using game G2 in Figure 7 if we remove the sin-
gle authentication query. This simulates both S€py, and SERand, Which are identical until bad is
set. Therefore, using the Fundamental Lemma of Game-Playing we have Advglgf;ipa(k, QesNe, 2) <
Pr[Game 2 sets bad]. Following the same arguments as used in Proposition 2 (including the assump-
tion that A is deterministic and computationally unbounded), we may transform game G2 to G4.
Since for any fixed chain of queries there are at most 7. + 1 non-random variables X~ L XSZO""’"e_l,
that do not collide with one another and 7, independent random variables X7 :0"“’"6_1, in Dom(p),
it follows that the setting of bad in game G4 is bounded above by

Pr[Game G4 sets bad] < {<277@2+ 1> - (77@;- 1> } ok

which holds for any computationally unbounded adversary. Therefore, it follows that

Ad"glgf;ipa(kﬂeﬂle, z) < Pr[Game G4 sets bad|

e

1 _
= 5(377? + )2 k.



