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Verification

• Code verification deals with identifying:

– Programming mistakes that cause the governing 
equations to be solved incorrectly, or

– Shortcomings of formulations or algorithms that cause 
undesirable behavior in certain situations.

• Code verification involves comparing code output 
with known solutions.

• Solution verification deals with quantifying numerical 
errors in a given solution.



Order Verification

• One thing to verify is consistency: does the discrete 
solution converge to the continuum solution as the 
mesh is systematically refined?

• A more thorough analysis includes order verification: 
does the observed order of accuracy match the 
expected order of accuracy?

• Order verification can be performed via

– the method of exact solutions, for equation sets 
having classical exact solutions or

– the method of manufactured solutions (MMS), also 
known as order verification via the manufactured 
solution procedure (OVMSP).



Comparison to Exact Solutions

1. An exact solution to the governing equations is 
obtained for a given domain and set of 
initial/boundary conditions.

2. Numerical solutions are produced using a series of 
systematically refined spatial and/or time 
discretizations.

3. The error norms of these numerical solutions are 
compared to determine the spatial and/or temporal 
order of accuracy. 



Shortcomings of Using
Classical Exact Solutions

• A classical exact solution may not exist for a given 
equation set.

• Classical exact solutions which do exist may lack 
generality and therefore fail to test all of the terms in 
the governing equations.

• Testing the full suite of boundary conditions may not 
be possible using classical exact solutions.

• Classical exact solutions which do exist may be 
difficult to accurately implement (e.g., solutions 
obtained by Laplace transforms).



The Method of Manufactured Solutions

1. Generate (i.e., manufacture) a solution on the 
domain of interest: it need not satisfy the governing 
equations, but it needs to satisfy certain constraints 
(Knupp & Salari, 2003).

2. Operate on this manufactured solution with the 
differential operator found in the governing 
equation set.

3. Add the resulting expression to the governing 
equation set as a source term.

4. Provide this source term to the code, and then 
proceed with order verification.
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Boundary Condition Issues

• For general boundary conditions (Dirichlet, Neumann, 
etc.), code input can be derived from the conditions 
satisfied by u* on the boundary.

• For specialized boundary conditions (a.k.a. hardwired 
boundary conditions) one way to perform a test is to 
have u* satisfy the boundary conditions in order to 
test their implementation.

• For hyperbolic and parabolic equation sets, only 
constraints corresponding to incoming characteristics 
need to be satisfied.



• Compressible subsonic through hypersonic

• Laminar through turbulent regimes

• Inviscid and viscous flows

• Steady state and transient

• Finite Volume

• Node centered

• Edge Based

• Unstructured Mesh

Premo
premo (Latin) – to squeeze (compress)

Develop simulation capabilities to perform compressible

flow calculations.



Meshes Used with Manufactured Solution
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Coding Errors and Algorithmic Weaknesses

• Coding Errors

– several parallel issues

– indexing error for least squares gradient

– CHAD gradient correction

– several ‘kinks’ in fast-turnaround tests

– other ‘bonus’ finds (bugs found while looking for others)

• Algorithmic Weaknesses

– weak slip and outflow BC formulations

– numerous gradient issues
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RANS w/ Spalart-Allmaras
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Slip Condition
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Fast-Turnaround MMS

• Formal order verification is often viewed as a 
certification that takes place very late in the 
development cycle.

• Once the initial overhead of deriving and 
implementing manufactured solutions is done, new 
tests can be run very quickly.

• This fast-turnaround time allows order verification to 
be used early in the development cycle of new 
capabilities, especially when only one thing differs 
from a previous order verification exercise.



STVD Schemes

• Robustness issues were observed with MUSCL-
based schemes in the edge-based discretization, 
suspected to be the result of limiter issues.

• These issues were improved with the introduction of 
a symmetric, total variation diminishing (STVD) 
scheme, since the limiter is “built-in”.

• Even better robustness was gained from the 
introduction of a collinear-edge-based STVD.

• 24 candidate formulations of these STVD schemes 
were tested in a week.
– verification of correctness complimented other testing

– head-to-head error comparison on manufactured 
solution



Order of Accuracy for STVD Schemes

N

o
b

s
e

rv
e
d

o
rd

e
r

o
f
c
o

n
v
e

rg
e

n
c
e

20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Pressure, l
Temperature, l



u-Velocity, l
v-Velocity, l



w-Velocity, l

N

o
b

s
e

rv
e
d

o
rd

e
r

o
f
c
o

n
v
e

rg
e

n
c
e

20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Pressure, l
Temperature, l



u-Velocity, l
v-Velocity, l



w-Velocity, l

extrapolation-based collinear-edge-based



Gradient Reconstruction Options in Premo

• Nodal gradients are used for
– extrapolation of variables in MUSCL based schemes,

– calculation of viscous fluxes, and

– calculation of turbulence model source terms

• legacy options
– Green-Gauss (GG)

– least squares (LS)
• equally weighted

• inverse-distance weighted

• new options
– control volume finite element (CVFEM)

• three quadrature options

– finite element least squares (FELS)
• two options for boundary treatment

accuracy suffers for high 
mesh curvature/skewness

accuracy suffers for high 
mesh aspect ratio

robustness issues



Error Plot Representing Parallel Issue
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Error Norms for High Aspect Ratio Mesh
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Summary

• Formal order verification via the method of 
manufactured solutions has been instrumental in the 
development of Premo.

• Coding mistakes and formulation weaknesses have 
been detected and addressed.

• Order verification has been integrated into the 
development process so that new capabilities can be 
verified as soon as they are implemented.

• Order verification has become instrumental in 
advancing the state of the art in flux schemes and 
gradient reconstruction within Premo.
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