SAND2007- 0896C

An Architecture to Perform NIC Based MPI Matching

Abstract

Modern supercomputers aggregate thousands of microprocessors through a high performance network. The dominant
programming model for these massively parallel systems is the Message Passing Interface (MPI). To improve performance,
most of these systems place a processor on the network interface controller (NIC) that handles some fraction of the MPI
processing. Unfortunately, this processing inherently involves traversing a linked list and invoking a matching function
for each list item. This is a task that microprocessors perform extremely poorly, but that is critical to the performance of
the system. Furthermore, the traditional network processor approaches of multicore and multithreading map poorly to the
problem because the list is a shared data structure. While this processing is simple enough to be implemented directly in
hardware, a pure hardware implementation can be extremely inflexible and lead to extremely high risk. This paper presents
a novel, programmable architecture for a processor to handle the matching function. The matching engine approaches
the performance of a direct hardware implementation while maintaining a high degree of flexibility and programmability.
More importantly, it requires a dramatically smaller area than a conventional processor while achieving significantly higher

performance.

1 Introduction

By far, the dominant programming model for modern supercomputers leverages the Message Passing Interface (MPI)[9,
16]. The most commonly used functions for data transfer are the blocking and nonblocking variants of two-sided, point-to-
point transfers. To transfer data, one processor initiateédRInSend while the receiving processor initiates btPl_Recv
with correspondindMPI envelopdnformation. These two-sided operations requitel matchingat the receiver to resolve
incoming messages to matching receives. In the nonblocking varisiik I6end and MPI_Irecv), the sender and
receiver can both post a series of nonblocking operations. At the receiver, this translates into a linkgubfistdfeceives
that must be traversed each time a message is received. The actual matching operation is one of the more computationally

complex steps of this traversal and has parallelism that is only bounded by the bandwidth to load the list item into the

processing core. Because matching can be decoupled from the latency dominated list traversal operation, this paper focuses
on an architecture to do the matching operation quickly.

Traditionally speaking, network interface controllers (NICs) have included an embedded microprocessor to offload match-
ing operations. Common examples of this include Myricom[18], Quadrics[19], and Cray[2] products; however, it has been
observed that this approach can lead to significant increases in message latency under some realistic usage scenarios[23].
Given that the match timger itemis over3x the memory access latency (and matching exhibits spatial locality that exploits
the cache), this points to limited parallelism within the processor as a significant factor for match time.

To address the issue, a dedicated hardware solution has been proposed for traversing these lists and performing the match-
ing operation[26]. While the MPI matching operation can certainly be implemented entirely in hardware, practical consider-
ations make it undesirable to do so. Most systems evolve the lowest level network API, the implementation of that API, and
even aspects of the MPI header format over the lifetime of the system from concept through end of life. Thus, it is desirable
to have a more general purpose design thatéggrammablebut at the same time the required flexibility is limited and the
design can be heavily customized for the MPI matching problem.

We propose a microcoded engine to process MPI list item matches. It is structured with two ALUs fed by two independent
register files with the ability to pass data between the ALUs. Both ALUs are capable of operating in a SIMD manner at 2
byte boundaries within an 8 byte word; however, the two ALUs support different types of operations. One supports typical
binary operators, while the other is designed to efficiently implement ternary matching to deal with wildcarded matching
entries. Altogether, the microcoded engine approaches the performance limit of the bandwidth to local memory for matching
operations.

To evaluate this microcoded engine, we compare it to an embedded microprocessor design point (comparable to current
practice) and a multithreaded design point (comparable to what is typically used in network processors). We found that the
microcoded engine achieved 94% of the performance of a comparable hardware unit (as limited by the local memory band-
width) when only 10 list items are traversed, and the embedded microprocessor achieved only 34% of this potential, despite
having twice the memory bandwidth. Similarly, a 16 core multithreaded design point only achieves 52% of this potential,
despite havingtx the memory bandwidth. The remarkable observation here is that through architectural specialization, it
is possible to achieve hardware levels of performance in a programmable processor without the area overhead of a conven-
tional processing approach. Aaxtremelyconservative estimate places the microcoded match usitat smaller than the
embedded processor aB& x smaller than ainglemultithreaded core.

In the next section, we present related work. In Section 3, we place the work in context by presenting an overview of the
matching problem followed by a brief overview of the network interface architecture. Details of the proposed microcoded
architecture are then presented in Section 4. Our methodology is explained in Section 5 followed by results in Section 6.

Finally, we present conclusions in Section 7 and future work in Section 8.

2 Related Work

Relatively little work has been devoted to the problem of MPI matching. While Quadrics has used a customized processor
to perform matching on the network interface for many generations[19], the newest hardware (the Elan5) simply increases
the number of thread units rather than specializing the processors. Notably, these processors must implement general code;
thus, they cannot be particularly specialized to the matching problem. Similarly, the network interface for the Cray XT3 ma-
chine [2] implements the Portals [4] programming interface using a truly general purpose PowerPC 440 embedded processor.
However, the embedded processor is ill-suited to quickly traversing the posted receive queue and must also share time with
other tasks.

To address potentially long linked lists, research has considered reducing the search cost by using hash tables [18, 21].
However, while a hash table can significantly reduce the time needed to find a matching entry, it also increases the time
needed to insert an entry into the list. Because of the high turn over rate inherent in MPI processing, the increase in insertion
time is prohibitive. The hashing process is also complicated by the need to support wildcard matching and maintain ordering
semantics; thus, the approach has largely been abandoned. There is also a significant amount of previous work on using the
general processor on the network interface to implement other operations (MPI collectives, for example) efficiently [5, 6, 17].
Similarly, these approaches focus on protocol optimizations and efficient data movement operations rather than list traversal.

On the surface, MPI matching appears closely related to the much more broadly studied field of network intrusion detection
(NID). Network intrusion detection works by matching the contents of network packets against a list of signatures for known
exploits, whereas MPI matching must match the MPI envelope information in a packet against the list of posted receives.
Work on network intrusion detection includes work on algorithms that operate well on network processors [8, 15] to work
on hardware accelerators running in FPGAs [22]. Both of these approaches work by allowing parallel searches through
the signature database. Although MPI matching is very similar to the string matching done in NID, there are two main
differences that prevent these approaches from working with MPI matching. First, the NID signature database is essentially
static (at least for long periods of time) and, thus, leverages off-line processing to make the matching operate quickly. In MPI
matching, however, there is high list turnover, making it prohibitively expensive to use off-line types of calculations. Second,
MPI matching must maintain strict ordering semantics, whereas NID generally does not.

Another common matching computation in network processing is longest prefix matching, where a router must determine
where to route a packet based on the routing table. Longest prefix matching attempts to match the destination with the most
complete (i.e. having the fewest number of wildcards) routing rule. Current work has studied using network processors
backed with ternary content addressable memories (TCAM) to accelerate this matching[1]. Unfortunately, the MPI matching
problem cannot be formulated as a longest prefix match due to the ordering constraints. Also, while a TCAM can prioritize

based on longest prefix, it is otherwise inherently unordered. The TCAM approach can be adapted to support MPI matching

by adding ordering into the ternary structure[24]. While this method works well for a small number of entries in the posted

receive queue, longer queue lengths still require a linear traversal of those items not in the TCAM structure.

3 System Context

The implementation of the matching operation fits into an overall system context that is defined by the MPI matching
problem, as described briefly below. Solving the matching problem, however, requires a specific instantiation on a network

interface. Our basic assumptions about the network interface are described following the discussion of MPI matching.

3.1 The MPI Matching Problem

When offloading MPI processing to a network interface, MPI matching is typically abstracted into a lower level network
API. For this work, we will consider the Portals API[3, 4], since it is an open specification that abstracts the MPI matching
functionality. The (relatively verbose) matching code required by Portals is shown in Figure 1.

A few general comments about the code in Figure 1 are in order. First, the outer loop of the code traverses a linked list
that makes up the equivalent of the MPI posted receive queue. At each position, themeésndstructure containing a
match entryand memory descriptowhich is 64 bytes long and has numerous subfields ranging from 16 bits (e.g. process
ID) to 64 bits (e.g. address, match bits). A corresponding, but slightly smaller, header arrives on the incoming message.
Second, many of the fields have the ability to wildcard the field (engtch _id _pid == ANY) or individual bits (e.qg.
me->dont _ignore _bits). Third, the range of operations includes all variants of compares, ternary operations (“don’t
care bit” masking), and basic arithmetic operations. Finally, virtually all of the comparisons are effectively parallel and offer
the potential for numerous concurrent operations — if the architecture can support it. More importantly, that concurrency is
free if the list item is going to be retrieved anyway.

In terms of memory access properties, the code has interesting characteristics in terms of both memory latency and memory
bandwidth. The linked list traversal certainly incurs the memory latency hit for each listfiti list is not in cache In
contrast, the header is in cache after traversing the first list item. At the same time, in the most common case, the code
short-circuits after the first test if the match will fail; thus, a relatively small part of the cache line that is loaded is actually
used. Although the loop is designed to short-circuit on a failure, with the tests prioritized based on the most common failure

conditions, full matching can fail at any point along the path. Thus, any matching unit must be designed to handle all cases.

3.2 Network Interface Context

When the MPI matching problem is solved on the network interface, it is exclusively a receive side problem. It requires

inspecting the incoming message headers to determine where the data should be placed and informing a DMA engine. Thus,

4

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

struct memdk
2 match(struct memd« memd, const struct ptlhdr % hdr, uint32_t src_nid ,/* IN x/

}

uint64_t x offset , uint32_t«+ mlength /« OUT x/) {

I/« Loop through ME list , looking for a match«/
struct memd« current;

for (current = memd; current !sNULL ; current = current>next) {
struct userme xme = ¤t>me; struct usermd xmd = ¤t—>md;
[/« Check the match bitsx/
if ((me—>matchbits =~ hdr—match) & me>dont.ignore_bits) continue;
I« Check the match id NID and PID«/
if (me—>matchid_nid !'= ANY && me—matchid_nid != src_nid) continue;
if (me—>matchid_pid != ANY && me—matchid_pid != hdr—initiator_pid) continue;
/x The MD must be valid and must be active (raero threshold ¥/
if (!md_valid(current) || !md—>threshold) continue;
/x MD must be configured to respond to the incoming operation typk
if (hdr—op == PTLMSG.PUT && !respond.to_puts(md)) continue;
else if (hdr—op == PTLMSG.GET && ! respond.to_gets(md)) continue;
I+ Unpack the MD’'s lengthx/
uint64_t md.len = getlength (md);
[/« Calculate the effective offset/
if (useremoteoffset(md)) {
x0ffset = getremoteoffset(hdr);
if (xoffset >= md_len) xoffset = mdlen; /+ clamp so math below works/
} else{
x0ffset = getimplicit_offset(current);
}
/x Calculate the amount of space remaining in the MD
uint64_t remain = mdlen — xoffset;
/* MD is inactive if usemaxsize () and remain is less than masize =/
if (usemax_size(md) && !allow_truncation(md)){
uint64_t max.size = getmax.size(md);
if (remain < max_size) continue;
}
I« Determine the length to receive into the M/
if (hdr—>length <= remain) «mlength = hdr>length;
else if (allow_truncation(md))* mlength = remain;
else continue;
/+ Set the offset output and return the matdh
return current;
}
return NULL ; /+ no match was foundsx/

Figure 1. Match function code

ata To Host
Data .
From { Fifo }—»{ DMA Memory

Network
.
{ —» To Host
List Manager ﬁ—, Other NIC Logic «—— From Host

Match Unit

Figure 2. Block diagram of the NIC receive side architecture.

a construct is needed to traverse the posted receive queue and find a matching entry. Figure 2 shows the example of a receive
side NIC architecture used for this work. The dashed box designates the functionality that would typically be served by an
embedded microprocessor. It interacts with a FIFO structure to deliver network headers and a DMA to place the data into
memory.

The alternative presented in Figure 2 replaces the embedded microprocessotlistithanagerand match unit The
list manager provides support for adding items to or deleting items from the posted receive queue. It is also responsible
for streaming list items to the match unit for matching, and for providing information to the host and DMA engine about a
matching receive. The match unit's sole responsibility is to compare an incoming header with the items in the posted receive
gueue to see if there is a match.

The list manager manages a small cache of list items (two or three 64 byte items) to cover the round-trip time to the local
memory. This essentially hides memory access time, allowing header processing to proceed without stalling. When a new
header is received, the list manager pulls it out of the header buffer and passes it to the match unit for processing. At the same
time, it starts memory requests for the first list item not in the cache. Immediately after the header is sent to the match unit,
the list manager starts streaming in the list items, starting with those in the cache. The list manager receives either a “Match
Failed” or a “Match Successful” for each list item sent to be matched. When confirmation of a successful match is received,
the list manager completes sending of the current list item, then sends an “end list” command. On a successful match, the
match unit also sends an offset and a length for the destination of the message in the target buffer. This information is used
by the list manager to create the appropriate DMA commands for sending the message data to the host's memory. The list
manager also sends an event, either directly or through another NIC component, to the the host letting it know about the

received message.

4 Match Unit Architecture

In many ways, the match unit is a general purpose processing engine; however, the match unit has been specialized
in multiple ways. Foremost, inputs and outputs arrive through FIFO constructs, rather than from user specified memory
locations. FIFOs provide a simple interface mechanism with other components in the system — namely the list manager.
Inputs arrive into two independent register files that feed independent ALU and ternary ALU datapaths. Results from these
operations are aggregated through a predicate register file with a predicate combining unit to affect branch behavior. Overall,
on every cycle, the match unit microarchitecture can: 1) input an item, 2) output or copy an item, 3) perform an ALU
operation, 4) perform a ternary operation, 5) perform a predicate merge operation, and 6) resolve a branch.

As a by-product of the extensive concurrency available, the highest level of programming for the match unit uses assembly
language, because the level of and specificity of concurrency within the core would be difficult to express efficiently in a high
level language. The assembly language is translated directly into microcode, and the characteristics of the matching code

written for the match unit are discussed in Section 4.3.

4.1 Motivating Objectives

The architecture of the match unit was driven by three main considerations: high throughput, irregular data alignment,
and program consistency. Ideally the match unit would be able to process the data as quickly as it arrives. However, there
is a trade-off between circuit complexity and throughput. This trade-off led to an architecture with a small number of
computational units operating in parallel. The need for high throughput also influenced the choice of a three stage pipeline
depth of the unit. In general, the first cycle reads operands from the appropriate register file, the second cycle does the
operation, and the third writes the result to the register file.

Inherent in header and list item processing is the necessity to process data of different bit widths packed into native size
words, in this case 64-bits. This led to the inclusion of specialized functions to combine and reorder data, as well as the
inclusion of SIMD-like functionality in the ALU and ternary unit. Finally, given the streaming nature of the data to the
match unit, it is necessary to enforce strict ordering semantics for the program: all operations in the same instruction word
are independent and their results are available for use by the next instruction. This is complicated by the fact that the input
FIFO may become empty at any time. If the FIFO is empty and an element of the wide instruction requires input data, it
is necessary to delay issuing the entire wide instruction until the FIFO has data. These issues make it necessary to include
result forwarding (forwarding paths shown as dashed lines in Figure 3) and to require some of the register file write ports to

be write before read. It is also necessary to modify the pipelining of the predicate unit (see Section 4.2.4).

[Input FIFO

}

qﬂmﬁj‘i Input FIFO Unit Microcode

[Ternary Register File } { ALU Register File]

Branch

SRR T RN T

%Ternary Unit % 1 ; ALU ;
L. Data Copy
™ L
‘ Predicate Register File
LTIy LT }7

Predicate Unit

v
[Output FIFO }

Figure 3. Block diagram of the microcoded match unit

4.2 Match Unit Details

The match engine consists of 4 computational/control units, 4 memories and 2 data transfer units, as seen in Figure 3.
The computational units include the arithmetic logic unit (ALU), the ternary unit, the predicate unit and the branch unit. The
four memories (shaded dark gray in Figure 3) consist of the microcode memory and three register files: the ALU registers,
the ternary registers and the predicate registers. The data transfer units (shaded light gray in Figure 3) control data copies:
1) from the input FIFO to the ALU and ternary register files (Input FIFO Unit) and 2) from the ALU register file to the
output FIFO or the ternary register file (Data Copy Unit). Each of the units has dedicated ports into the necessary memory
elements allowing them to be controlled independently. This is done by giving each of the 6 units an instruction slot in the
wide instruction word format of the microcode. The general format of the instruction word is shown in Figure 4. The bit
widths of the major unit instruction fields are shown below the label for each field (the overall instruction word is 164 bits).
The minor fields for each instruction are also shown. The following sections provide more detail about each of the major

functional components.

4.2.1 Register Files

The ALU register file and the ternary register file are 64 bits wide and have 16 entries each. Each register file includes 2 write

ports and 3 read ports. In both cases, register 0 is set to a constant, and thus, cannot be written. This constant is zero for the

Fifo ALU TALU |Transfer | Predicates |Branch

(18) (66) (22) (15) (30) (13)
Regs Op ‘ Regs In:;::;?::e/ Op |Regs Regs | Unitl | Unit2 [Op |JA
ALU RORI 32 bits ﬁﬂw:‘]’]1;5) RORI, RORI,
TALU : ate RD,0p RD.O
RD,Pred Mask Pred P P

Permute

Figure 4. Format of the match unit’s wide instruction word.

ALU and all 1's for the ternary unit. The connections to the read and write ports for these files can be seen in Figure 3. To
comply with the program consistency semantics, the write ports connected to the input FIFOs are read before write and the
other write ports are write before read.

The predicate register file contains sixteen 1-bit entries which can be accessed through 7 read ports. The write port
structure is more complex: Eight of the registers are directly connected to the ALU and ternary unit to receive results of

comparison operations. Register 0 is set to a constant 1, and the remaining 7 registers are writable from the predicate unit.

4.2.2 Arithmetic Logic Unit (ALU)

The ALU can perform most common binary operations, including addition, subtraction, logical operations and comparisons.
Notably absent are the multiply and shift operations. Multiply is simply not needed in any known matching operations, but
the removal of the shift operation may seem unusual. This decision was made as part of a trade-off between complexity
and flexibility. Shifts are commonly used with logical operations to manipulate subsets of the ALU word size. Equivalent
functionality is available from other components in the processor, so explicit shifts were removed. Bit level operations are
supported by the ternary unit, as described in Section 4.2.3. Byte level (and above) operations are handled with the SIMD
capability combined with an arbitrary permutation operation.

The permute operator can arbitrarily combine two registers on byte (8-bit) boundaries. This means that each byte of output
can be chosen from any of the 8-bytes from either of the two inputs. In addition, each byte can also be set to all zeros. This
function is needed to align the data fields in the header to the list item, and can replace a shifter for arbitrary byte level
operations.

Because headers typically have a number of fields ranging from 16 to 64 bits, the ALU includes a feature to improve
the efficiency of processing data smaller than 64-bits which are arbitrarily packed together into the native 64-bit words: the
arithmetic functions are divided into 4 16-bit sections which can act in a SIMD fashion. Each segment executes the same
instruction, but the segments can be aggregated together to perform larger functions. This is controlled by 3 SIMD bits, which
tell the unit which internal 16-bit boundaries the operation will cross. Each 16-bit section also has its own comparison result
output, and another set of 4-bits controls which of these results will be written to the predicate register file. This optimization

allows the unit to work on the data when it is oddly aligned, and even allows it to operate on multiple fields simultaneously.

Because constants are periodically needed for various purposes in the match code, the instruction word for the arithmetic
unit includes a 32-bit immediate field. This field doubles as part of the control field for the permute instruction. For all
other instructions, however, this immediate can be injected as either the upper or lower 32-bits of the second operand. The
remainder of the bits are passed through unchanged from the operand read from the register file (a traditional immediate
instruction can be created by using register zero as the second operand). Since the immediate is the only mechanism for
loading constants, creating a 64 bit constant involves replacing the lower 32 bits of a register and then replacing the upper
32 bits in a second instruction. For this reason, 64 bit constants that are needed frequently should be placed in a register at
initialization (using two instructions) to save time and infrequently used constants should be built at execution time to save
register file space.

To minimize the number of branch stalls needed, predication is used to control whether or not ALU operations write a
result back to the ALU register file — a result is only written when its associated predicate is asserted. Operations that always
write can use predicate register 0 (always true) as their predicate, and “nop” operations use ALU register 0 as their destination
register. Unlike the other instructions, comparison operations do not write results to the ALU register file (and, therefore,
are not affected by the predicate), but instead write their results directly to dedicated registers in the predicate register file.
In addition to writing directly to the predicate register file, the results of comparison instructions can be combined with the
existing predicate value as it is written (i.e. the new result can either overwrite the old result, orasadet@rored with the
old result). This is useful for quickly computing compound expressions. For example, checking to see if a value falls within
a specified rangea(> 5 && a <10), or for checking to see if a field matches a particular value, or is set to accept any value
(a==b || a==ANY). Although the compound functions could be computed in the predicate unit, the results are available a
cycle faster when done during the register write. This is important given the relatively small number of cycles available for

each match.

4.2.3 Ternary Unit

Unlike the arithmetic unit which has a variety of functions, the ternary unit performs one basic operation (although it can be
used for multiple functions). As the name implies, there are three inputs to the unit: matchO, matchl and mask. The ternary
unit does an equal comparison under mask — only the bits which are specified in the mask are used in the comparison, all
other bits are ignoréd Like the ALU, the ternary unit has SIMD functionality.

The ternary unit serves two primary purposes for the matching functionality. The first is to quickly see if the match
bits in the header match the mask and match bits in the posted receive list (see line 11 in Figure 1. In addition, it can do
equals comparisons on subsets of a word (i.e. smaller granularity than 16 bits). This second feature replaces the shifting

and masking that would normally be used to pull out single bit flags from packed control words. This feature also allows for

1The unit can accept the mask as “ignore bits” or “don’t ignore bits” depending on the mode

10

limited boolean functions (essentially wided functions with optional negation of inputs) to be performed on flags which

are found in the same word. For exampley,ib andc are one bit values packed into a single control word, the ternary unit
could perform an operation such Bs&& b && !c . As an additional benefit, the ternary unit can also be used as an equals
comparison on any size field (for example, checking the expected NID with the NID in the header can happen in either the
ALU or the ternary unit). The results are fed directly into the predicate register file, with the same facility for combining
results described in Section 4.2.2.

The ternary unit also includes a simple permute unit on the input to the register file from the input FIFO. This permute
divides the input into four 16-bit fields (corresponding to the four fields in a SIMD operation) and allows each of the 4 output
fields to arbitrarily select any of the 4 input fields. This is useful for allowing the ternary unit to pull multiple flags out of a
single 16-bit word. If this simplified permute is not sufficient, the more complex permute of the ALU can be used to properly

stage the data.

4.2.4 Predicate Unit

The predicate unit is used to combine predicates generated by the arithmetic and ternary units. The unit consists of the
predicate register file and two logic units which can each perform arbitrary boolean functions on two predicates. The two
logic units can read from any register, but can only write to registers 1 through 7. There are also three other read ports: one
each for the branch unit, the ALU, and the data copy unit. All of the read ports are write before read, allowing predicates to
be read and used more quickly.

The predicate unit uses slightly different timing so that all units have consistent timing. The first cycle does nothing, the
second cycle reads from the register file and the third computes and writes the result. This is possible because the predicates

are only single bit values.

4.2.5 Branch Unit

The branch unit simply controls the flow of the microcode program. A branch instruction specifies a predicate register and an
absolute target address. The branch instruction can then be either branch on one or branch on zero. Thus, a branch depends
on the results of some number of previous ALU comparisons that have been accumulated in predicate registers (either by the
ALU write accumulation capability or the predicate unit accumulations).

In the absence of a branch command, the unit simply retrieves the next instruction word. A branch requires two cycles to
resolve, therefore, there are two branch delay slots. All instructions in these two slots will be executed on a taken branch,
with the exception of other branch commands; a taken branch will invalidate branches in the next two instructions. These
branch delay slots are generally easy to fill as most branches are “early out” cases where the header does not match that list

item; thus, further list item comparisons can go in these slots.

11

Table 1. Breakdown of the assembly code
| Code segment | Instructions|

Initialization 4
Header 9
List Item (Shared) 6
List Item (Fast Path) 7
List Item (Slow Path) 10
Flush 8

] Total \ 44 \

The branch unit also controls program flow when the input FIFO is empty. Each instruction can be tagged as requiring
FIFO input or not. If the input FIFO is empty and the instruction requires input, then the branch unit will invalidate the
current instruction and hold the program counter at its current value. Instructions which have already issued will continue to
progress through the pipeline, with the exception of branch instructions, which will wait for input to proceed. This is required

to ensure that both branch delay instructions execute.

4.2.6 Data Transfer Units

The match unit has two data transfer units to move data around the processor. The input FIFO unit simply takes data from
the input FIFO and moves it to either the ALU register file, the ternary register file, or both simultaneously. Instruction words
that contain a command for the input FIFO unit stall if the FIFO is empty (does not contain data).

The second data transfer unit copies from the ALU register file into the ternary register file or into the output FIFO. As
with all instructions that write to register files, these instructions can be controlled by a predicate. Unlike the input FIFO unit,
this data transfer unit cannot cause the overall instruction to stall, because the output FIFO can always accept data (never

becomes full).

4.3 Matching Code Characteristics

The match unit is programmed entirely in an assembly language that translates one-to-one into microcode instructions.
Part of the design target of the architecture was to minimize the number of instructions (and, therefore, cycles) required
to implement the matching code. Table 1 gives a breakdown of the 44 instructions required to implement the matching
operation. Initialization is needed to establish constants that will be used in the primary loop and is only executed at boot
time. The primary loop for matching includes one execution of the header code, one or more executions of the list item code
(typically shared code plus the fast path), and one execution of the flush code for a total of at least 31 cycles (a pipelining
impact). Each additional list item traversed adds at least 8 cycles (assuming the common case). More detail on the individual

code segments follows.

12

The header code must read an 8 item header (one per cycle) from the input FIFO. Because header fields and list item
fields are not typically identical, this code must reformat the data to match the list items to improve matching speed. The list
item code then reads list items and compares them to the header. This code is split into “fast” and “slow” paths that share a
common preamble, where the “slow” path supports a less common Portals semantic on a per list item basis. The “fast” path
is optimized to complete a list item as soon as a match fails, but this cannot be less than 8 total cycles, as it takes 8 cycles to
read the list item from the FIFO. The most common match failure isrtheh _bits test that occurs first in Figure 1. This
failure require 8 cycles per list item, where a full match will execute 12 instructions in 14 cycles (on a match, only 5 of the 6
“shared” instructions are executed). Finally, in most cases, the list manager will have sent an extra list item to be matched —
not knowing that a match will be found. This requires that the flush code execute (8 cycles) to drain the extra list item from

the input.

5 Methodology

We compare the matching performance of three basic architectures: the customized architecture described in this paper,
a typical embedded CPU and a multithreaded CPU. The more traditional processors were simulated using the Structural
Simulation Toolkit (SST)[25], and are described further below; however, the microcoded match unit was done in a cycle

accurate hardware simulator.
5.1 Benchmark

The performance of the three architectures is compared using a benchmark that times the match under different conditions.
The benchmark measures the total match time for 64 matches based on the total length of the posted receives queue, as well
as the number of list items actually traversed. The core operation of the benchmark is shown in Figureratchife
function is shown in Figure 1. Since the benchmark is designed to only measure match time, the code does not delete anything
from the list, it just performs the match.

In the benchmark code, the outer loop goes through a set of headers which are designed to match 0% (meaning the first
entry) through 100% of the way through the list in increments of 10%. In addition, the first iteration is used to prime the
instruction cache so that there are no misses during execution. The inner loop reads 64 identical headers and is the only part
included in the measured time. A large number of headers was chosen to allow for a comparison with the multithreaded unit,
which provides no advantage for a single header, but which can greatly improve throughput for a large number of rapidly
received headers. To support the multithreaded processor, two specific changes to the code were made. First, each call to
match() was invoked in a new thread. Second, locking was added tm#teh() function to insure that two different

threads did not simultaneously access one list item and to insure that one thread did not “pass” another thread and cause out

13

for (i =0; 0 <12; i++){
2 struct memd x matchmemd;
struct ptlhdr xstart = (ptlhdr x)(offset);

4
int before = readSimCycle ();
6 for (j =0;) <64; j++){
start = getNextHeader ();
8 matchmemd = match(list , start ,0,&offset ,&length);

}

10 int after = readSimCycle ();
times[i] = after—before;
12 }

Figure 5. Core operation of match performance
benchmark.

Table 2. Embedded Processor Configuration

Fetch/Decode Width 2

Issue Width 2
Commit Width 3inst.
RUU Size 16

LSQ Size 4

dL1 Cache 32KB 64-Way
iL1 Cache 32KB 64-Way
dL2 Cache None
Latency L1/memory 1/10 cycles
Int. ALU 2

Int Mult 1
Memory BW (bits/cycle) 128
Memory Ports 1

of order matching to occur. Both thread startup and locking are simulated as exceptionally fast to insure that the comparison

to multithreaded processor is not unfair. Details about each configuration are given below.

5.2 Embedded CPU

The simulation model for the embedded CPU is configured to be similar to a PowerPC 440 processor, as shown in Table 2.
The SimpleScalar[7] processor model was used to simulate the PowerPC using a PowerPC instruction set. The code was

compiled with gcc 3.3.3 and targeted Mac-OSX (the loader supported by the simulator — no OS was used).

5.3 Multithreaded CPU

Table 3 highlights many of the properties of the multithreaded processor configurations. The number of execution cores

was varied for typical (1 and 2 core) configurations as well as an aggressive configuration reflective of a state of the art

14

Table 3. Multithreaded Processor Configuration

cores 1 2 16
Fetch/Decode Width 1 1 1
Issue Width (in-order) 1 1 1
Commit Width 1 1 1
dL1 Cache (64-Way) 32KB | 16KB | 16KB
iL1 Cache (64-Way) 32KB | 16KB | 16KB
dL2 Cache None | None | None
Latency L1/mem. (cycles) 1/10 | 1/10 | 1/10
Int. ALU (inc. Mult) 1 1 1
Threads/core 8 8 4
Memory BW (bits/cycle) | 128 128 256

multithreaded network processor like the Intel IXP2800[12]. Each execution core had a fixed number of hardware thread
contexts, of which up to 64 total contexts could be used by the benchmark

The thread creation time was only two cycles. While this is aggressive, it is also conceivably possible in this type of
application; thus, we chose this design point to make the multithreaded core as competitive as possible. Each core switches
between active contexts each cycle. Every 1024 cycles (or, when there are no active contexts), inactive contexts are swapped
into the core. Inactive contexts are created whenever a new thread is spawned and there is not a free hardware context to hold
it. Swapping in an inactive context takes 10 cycles. Again, this is an aggressive design point, but it is chosen to maximize the

competitiveness of the multithreaded architecture.
5.4 Microcoded Match Unit

The microcoded unit is simulated using cycle accurate hardware simulation in JHDL[10]. The match code was hand coded
in assembly code and translated to microcode to be run on the match unit. The simulation assumes that the list items are read
by the list manager as discussed in Section 3. Since the list manager is separate from the match code, it is likely that the
match unit will receive an extra item after a match is found. The match time includes the time required to flush this extra

item and notify the list manager.

6 Results

We selected four technology points for comparison: a conventional embedded processor, a multi-core, multi-threaded
processor, a pure hardware unit with memory bandwidth to match the microcoded match unit, and our proposed match unit
architecture. These were selected to represent current practice in NICs supporting MPI, current state of the art NPUs, the

“pbest case?, and our proposed design. We present data assuming that each architecture is running at 500 MHz under the

2This also happens to be the maximum number of threads in any context.
3This is only a “best case” for the bandwidth available to our microcoded match engine and is selected because a wider (higher bandwidth) hardware
unit would actually pose significant implementation challenges.

15

assumption that each design point could approach approximately the same clock rate with sufficient effort.

6.1 Performance

Figures 6 and 7 present comparative data for the various processor options at four different list lengths: 10, 30, 100, and
300 items. The data is presented in three different ways: as an absolute time (a, b) , as a time per list item traversed (c, d), and
as the time relative to a best case hardware unit (e, f). The best case hardware time assumes that list items can be processesed
as quickly as they can be fed to the matching unit; thus, is assumes a flat overhead of 8 cycles to load the header and a flat
delay of 8 cycles per item traversed. In all cases, the X-axis is the percentage of the list that must be traversed to find a match
and the Y-axis is a metric of time. In general, the configurations considered here do not encounter the caching effects seen in
[23].

The most notable property of all of these graphs is that all of the programmable configurations pay a larger fixed overhead
than a pure hardware implementation. This is particularly noticeable for the embedded processor and threaded processors,
where the memory latency for loading the header imposes a significant overall penalty when a single list item is traversed. As
more list items are traversed, this overhead is amortized away. The overhead for the microcoded match unit is only 6 cycles
peritem matchedvith no penalty peitem traversedThe 6 cycle penalty is the difference between the time to match an item
using the microcoded match unit (14 cycles) and the time to feed an item to be matched into the match unit (8 cycles). For
our streaming test, this results in a constant 384 cycle penalty (64 incoming items that match in the list, 6 cycles per item that
matches). The embedded processor clearly pays a penalty (relative to the hardware approach) for ieth gaekrsed
as well as eaciiem matchedbecause the “zero length” time is larger than the asymptotic time per item and the asymptotic
time per item does not approach the hardware limit. The multithreaded units, however, exploit much more concurrency with
the multicore cases so that the asymptotic time per item approaches the lower bound of the hardware time as the list grows
long. They do, however, pay a hightgm matchegenalty.

At short list lengths (10 items), we see nearBraadvantage for the microcoded match unit over any of the other configu-
rations — an advantage that growsste if only a portion of the list is traversed. In general, the embedded processor, with its
more robust pipeline and out-of-order execution capabilities, has a significant win (14%) over the the largest multithreaded
configuration when traversing only a few items. However, even when traversing only 10 items, the concurrency that the
multithreaded unit is able to exploit yields a slight advantage for the single multithreaded core and a 34% advantage when 16
multithreaded cores are used.

As the list length grows (30 items), the multithreaded scenarios begin to distinguish themselves from the embedded
processor. Although there are significant impacts from computation time, memory latency impacts are sufficient to make
the latency tolerating strengths of the multithreaded cores evident. With a list of only 30 items, however, there is still not

sufficient concurrency to dramatically differentiate 16 multithreaded cores from 2. In all of these cases, the microcoded

16

Latency/Item (nanaseconds) Latency (microseconds)

Time Unit / Time Hardware

100

Match Unit —+—
Embedded CPU ---->--
Threaded - 1 Core -
Threaded - 2 Cores
Threaded - 16 Cores

20 40 60 80

100
Percentage of Queue Traversed

@)

Match Unit —+—
Embedded CPU -
Threaded - 1 Core -
Threaded - 2 Cores &
Threaded - 16 Cores --

i

20 40 60 80

100
Percentage of Queue Traversed

(€)

Match Unit —+—
Embedded CPU -
Threaded - 1 Core - |
Threaded - 2 Cores &
Threaded - 16 Cores --#--

100
Percentage of Queue Traversed

()

Latency/Item (nanaseconds) Latency (microseconds)

Time Unit / Time Hardware

Match Unit —+—
Embedded CPU -
Threaded - 1 Core -3
Threaded - 2 Cores &
Threaded - 16 Cores --#--

20 40 60 80
Percentage of Queue Traversed

(b)

100

Match Unit —+—
Embedded CPU ----x-
Threaded - 1 Core -3
Threaded - 2 Cores &
Threaded - 16 Cores --

20 40 60 80
Percentage of Queue Traversed

(d)

100

Match Unit —+—
Embedded CPU
Threaded - 1 Core %
Threaded - 2 Cores &
Threaded - 16 Cores --#--

100
Percentage of Queue Traversed

()

Figure 6. Total time for (a) 10 item list and (b) 30 item list; time per item for (c) 10 item list and (d) 30
item list; time relative to hardware for (e) 10 item list and (f) 30 item list

17

Table 4. Estimated Sizes of Studied Architectures

Match Unit | PPC 440 Multithreaded
Cores 1 1 1 2 16
Area (mm?) 1.3 6 5 10 80
Relative Area 1x 4.6x 3.8x | 7.7x | 61.5x%

match unit maintains a dramatic advantage over the most aggressive of the multithreaded configurations — an advantage of
almost2x! In the case of the microcoded match unit, the overhead over a pure hardware solution (which begins at 19%) has
dropped to only 2.3% when 30 list items are traversed.

As the list grows long, sufficient concurrency becomes available to clearly highlight the hardware advantages of adding
more multithreaded cores. Where the absolute gap between the embedded microprocessor and the microcoded match unit
is a virtually constant value across a range of list traversal lengths, adding more items to the list increases the available
concurrency and offers the multithreaded cores an opportunity to shine.

With 100 list items traversed, the 16 multithreaded core case approaches the performance of the microcoded engine
(although using drastically more hardware). By the time the list reaches 300 items, 2 multithreaded cores approach the
performance of the microcoded match unit and 16 multithreaded cores exceed it. Indeed, leveraging the fact that it is
configured withd x more memory bandwidth than the microcoded match engine, the 16 multithreaded core case exceeds the
“best case” scenario posed by the hardware at lower bandwidth. This is because 16 functional units are employed to work on

64 different incoming messages traversing a single list.
6.2 Area

A significant advantage of the proposed microcoded match unit is its savings in chip area compared to other potential
approaches. Using the CACTI tool[20], we estimated that the memories in the match ubiBztem? in 90 nm technol-
ogy. To make a very conservative estimate of the area required, we double this estiite:{n?) to account for the size
of the functional units. In addition, although it should be much smaller, we assume that the list management unit needed to
support the match unit is as large as the match unit itself for a totaBefm?. In Table 4, we compare this area to that of an
embedded processor (the PowerPC 440 approximated by our simulations[11]) and a multi-core, multithreaded approach. For
the multithreaded approach, we leveraged a die photo and area information about the Sun Niagara multithreaded processor
found in [13] and then used information available about the IXP2800[14] as a sanity*check

The microcoded match unit has significant area advantages over the single core approaches and dramatic advantages over
the multicore approach (16 multithreaded cores) that is actually competitive in performance. The primary area advantage

comes from the fact that neither the match unit or the list manager has a large cache integrated with it. While it could be

4The Niagara information was much more complete than the IXP2800 information.

18

Latency (microseconds)

Latency/Item (nanaseconds)

1000

—
o
o

Match Unit —+— |
Embedded CPU ---->--
Threaded - 1 Core -

Threaded - 2 Cores

Threaded - 16 Cores

Latency (microseconds)

Match Unit —+—
Embedded CPU -
Threaded - 1 Core -3
Threaded - 2 Cores &
Threaded - 16

1000 |

-
o
o

20 40 60 80 100 0 20 40 60 80 100
Percentage of Queue Traversed Percentage of Queue Traversed
(@) (b)

Match Unit —+—
Embedded CPU -
Threaded - 1 Core -
Threaded - 2 Cores &
Threaded - 16 Cores --

()

Latency/Item (nanaseconds)

Match Unit —+—
Embedded CPU -
Threaded - 1 Core -3
Threaded - 2 Cores &
Threaded - 16 Cores --#--

()

.- *% - % ><
R -
BN
10 | " "“-?
10 L L L L L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Queue Traversed Percentage of Queue Traversed
(c) (d)
6 — 6 —
Match Unit —+— Match Unit —+—
x Embedded CPU - ¥ Embedded CPU -
5 | Threaded - 1 Core % | 5 [Threaded - 1 Core -
<4 Threaded - 2 Cores & 14 p Threaded - 2 Cores &
g Threaded - 16 Cores --#-- ‘g Threaded - 16 Cores --#--
© ©
5 1 =4 |
T T
(] Q
£ , £ i
= =
5 R S O SN) S e S
g e S S g
= i, S S F L = 1
R 'T
0 L L L L 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Queue Traversed Percentage of Queue Traversed

Figure 7. Total time for (a) 100 item list and (b) 300 item list; time per item for (c) 100 item list and (d)
300 item list; time relative to hardware for (e) 100 item list and (f) 300 item list

19

argued that the cache could be eliminated from the more conventional processor designs, these designs have these caches
by default and if a new processor design is going to be created, it is better to optimize the architecture to the domain.
Furthermore, the performance of both the embedded microprocessor and the multithreadddpemdsn that cache. In

the case of the embedded microprocessor, the cache is needed to hide the memory latency. In the multicore multithreaded

approach, the cache acts as an effective memory bandwidth multiplier to make it feasible to design the system.

6.3 FPGA Prototype

The architecture was mapped onto a Virtex4 (-11 speed grade) FPGA to get approximate operating frequency. The
prototype was able to operate at 150MHz on the FPGA, which is produced using a 90nm CMOS process. Conservative
estimates place standard cell ASICSat the clock rate of FPGAs; thus, we would expect the design to easily achieve a

750MHz operating frequency in a 90nm standard cell ASIC.

7 Conclusions

As supercomputer networks are pushed to ever lower latencies and ever higher message rates, it will become necessary
to perform MPI matching at increasingly high rates. Rather than rely on a pure hardware implementation, we present a
customized architecture to perform the MPI matching operation: the microcoded match unit. The customizations include the
elimination of the traditional memory interface in favor of streaming data to be matched in through FIFO based constructs.
In addition, the architecture includes two ALUs — one of which can only perform ternary operations — that are both capable
of multiple simultaneous sub-word operations that match the irregular data structures typically found in network headers and
linked list elements. Finally, the architecture includes a high degree of concurrency that enables six types of operations in
each cycle.

We compare the proposed architecture to an upper bound on performance formed by a dedicated hardware implementation
and find that the microcoded match unit is within 20% of this upper bound when only a single item is traversed and within
6% of this bound when 10 list items are traversed. In contrast, we also compare the microcoded match unit to a conventional
embedded processor and a multi-core multithreaded approach. We find that the microcoded match unit ds<alastei
than either when the list is only a single element long and Bweas fast when the list is 10 items. In fact, the multithreaded
approach only approaches comparable performance when the list is 100 items long and only exceeds the performance of the
simple microcoded match unit when there are 16 multithreaded cores and the list is hundreds of items long. These results
were achieved while using an area thattiéx smaller than an embedded microprocessor &g smaller than aingle

multithreaded core.

20

8 Future Work

The core of the matching algorithm is the key place where flexibility is required in the overall MPI processing pipeline;

however, we plan to continue to explore microarchitectural requirements for other portions of the pipeline as a mechanism to

provide flexibility without sacrificing performance. A key example is the management of the posted receive queue. While a

parameterizable hardware unit can be built to manage a simple list, using a programmable unit makes it easier to change the

list format, implement improved free space management algorithms, or cope with hardware bugs elsewhere in the system.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

M. J. Akhbarizadeh and M. Nourani. Efficient prefix cache for network processoRrolreedings of the 12th IEEE Symposium on
High-Performance Interconnegt8ugust 2004.

R. Brightwell, T. Hudson, K. T. Pedretti, and K. D. Underwood. SeaStar interconnect: Balanced bandwidth for scalable performance.
IEEE Micro, 26(3), May/June 2006.

R. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E. Riesen. The Portals 3.0 message passing interface revision 2.0. Technical
Report SAND2006-0420, Sandia National Laboratories, January 2006.

R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen. Portals 3.0: Protocol building blocks for low overhead communication. In
Proceedings of the 2002 Workshop on Communication Architecture for Cluais2002.

D. Buntinas and D. K. Panda. NIC-based reduction in Myrinet clusters: Is it beneficiifoteedings of the SAN-02 Workshop (in
conjunction with HPCA)February 2002.

D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-based barrier over Myrinet/8iMcérdings of the International Parallel

and Distributed Processing Symposiufypril 2001.

D. Burger and T. AustinThe SimpleScalar Tool Set, Version.23)mpleScalar LLC.

C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and A. Thomas. A hardware platform for network intrusion detection and

prevention. InProceedings of the Third Workshop on Network Processors and Applicaklitanlid, Spain, February 2004.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message passing interface

(10]

(11]

(12]
(13]

standard Parallel Computing22(6):789—-828, September 1996.

B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and M. Rytting. A CAD suite for high-performance FPGA design.

In Proceedings of the IEEE Workshop on FPGAs for Custom Computing Maclpages 12—-24, Napa, CA, April 1999. IEEE

Computer Society, IEEE.

IBM. Ibm powerpc 440 embedded core product brief. http://www-306.ibm.com/chips/techlib/techlib.nsftechdocs/F72367F770327F8A8725
Nov. 2006.

Intel Coporation.ntel IXP2805 Network Processd2005.

P. Kongetira. A 32-way multithreaded sparc processoHdhChips 16 August 2004.

21

(14]

(15]

(16]

(17]

(18]
(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

Y.-K. Lai and G. T. Byrd. High-throughput sketch update on a low-power stream proces#dids '06: Proceedings of the 2006
ACM/IEEE symposium on Architecture for networking and communications sygiages 123—-132, New York, NY, USA, 2006.

ACM Press.

R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao. A fast string-matching algorithm for network processor-based intrusion detection
system.Trans. on Embedded Computing $%¢3):614—-633, 2004.

Message Passing Interface Forum. MPI: A message-passing interface stardahdternational Journal of Supercomputer Appli-
cations and High Performance Computjrg 1994.

A. Moody, J. Fernandez, F. Petrini, and D. K. Panda. Scalable NIC-based reduction on large-scale cluBtereeltings of the
ACM/IEEE SC2003 Conferenddovember 2003.

Myricom, Inc. Myrinet Express (MX): A high performance, low-level, message-passing interface for Myrinet, July 2003.

F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics network: High-performance clustering technology.
IEEE Micro, 22(1):46-57, January/February 2002.

P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timing, power, and area model. WRL Research Report 2, Western
Research Laboratory, 250 University Lane, Palo Alto CA, 2001.

P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-bypass NIC-driven gigabit ethernet message pa2singedings of

the 2001 Conference on SupercomputiNgv. 2001.

J. Singaraju, L. Bu, and J. A. Chandy. A signature match processor architecture for network intrusion detefooeddings of

the IEEE Symposium on Field-Programmable Custom Computing MaciNaes, California, April 2005.

K. D. Underwood and R. Brightwell. The impact of MPI queue usage on message latenByockedings of the International
Conference on Parallel Processing (ICRR)ontreal, Canada, August 2004.

K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and R. Brightwell. A hardware acceleration unit for MPI queue
processing. I19th International Parallel and Distributed Processing Symposium (IPDP S| 2005.

K. D. Underwood, M. Levenhagen, and A. Rodrigues. Simulating Red Storm: Challenges and successes in building a system
simulation. In21st International Parallel and Distributed Processing Symposium (IPDPSN&jch 2007.

K. D. Underwood, A. Rodrigues, and K. S. Hemmert. Accelerating list management for MPAroteedings of the 2005 IEEE

International Conference on Cluster Computiiggptember 2005.

22

