

Synthesis of the Feynman-Y Neutron Multiplicity Metric using Deterministic Transport

John Mattingly and Eric S. Varley
Sandia National Laboratories

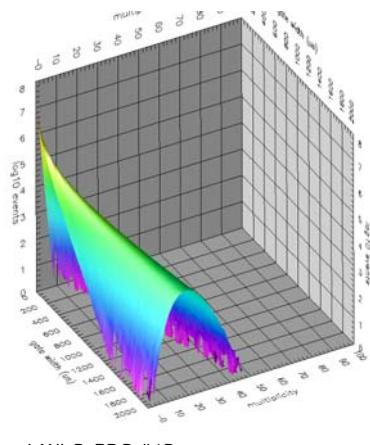
American Nuclear Society 2008 Annual Meeting
June 8 - 12, 2008

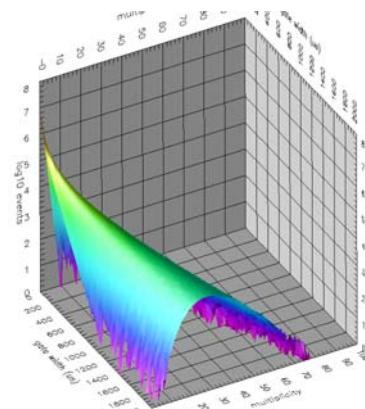
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Objective

- Infer configuration of an unknown radiation source from its measured radiation signatures
- Source features
 - Isotopic composition
 - Fissile mass & multiplication
 - Geometric arrangement of radiating and shielding materials
- Signatures
 - Gamma spectrometry
 - Neutron time-correlation and multiplicity counting
- Applications
 - Nonproliferation
 - Counterterrorism
 - Emergency Response

Technical Approach

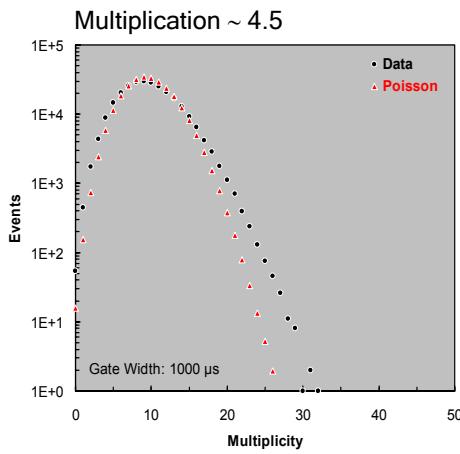

- Compute radiation signatures using radiation transport
- Iteratively modify model parameters to minimize error between predicted and measured signatures
- Method is fairly mature using gamma spectral signatures
- Gamma spectrum primarily sensitive to outer surface of source
- Solution based on gamma spectrometry alone is weakly constrained
- Neutron multiplicity sensitive to entire source volume
- Simultaneous solution based on gamma spectral and neutron multiplicity signatures is better constrained
- Sandia developed fast method to accurately compute neutron multiplicity signatures – based on original work by Muñoz-Cobo, Perez, and Verdú


Neutron Multiplicity Distribution

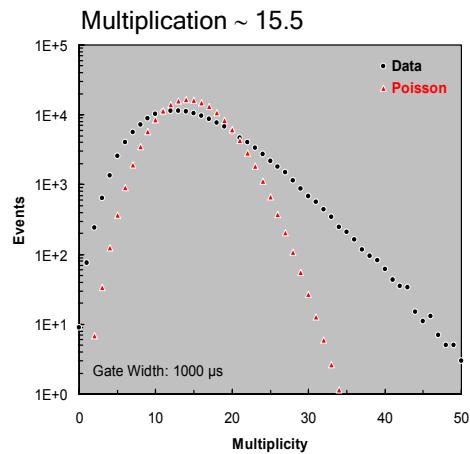
Multiplication ~ 4.5
Generation Time ~ 3 ns

LANL BeRP Ball / Bare

Multiplication ~ 15.5
Generation Time ~ 9 μ s



LANL BeRP Ball / 3" Poly Reflector



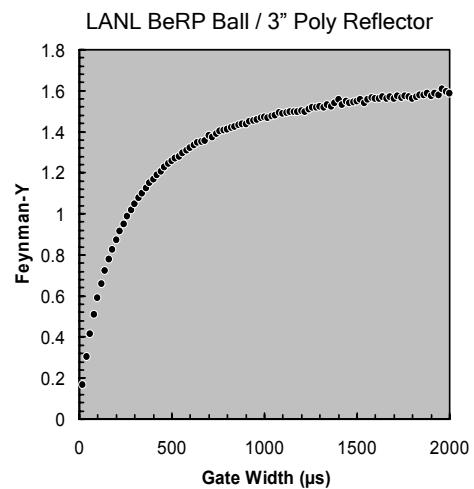
- Los Alamos BeRP ball is an unclassified 4.5 kg sphere of alpha-phase weapons-grade plutonium metal
- Constructed for critical and subcritical experiments using various reflecting materials
- All measurements shown in this presentation use polyethylene reflectors varying in thickness from 0 (bare) to 6"

Multiplication Induces Excess Variance

LANL BeRP Ball / Bare

LANL BeRP Ball / 3" Poly Reflector

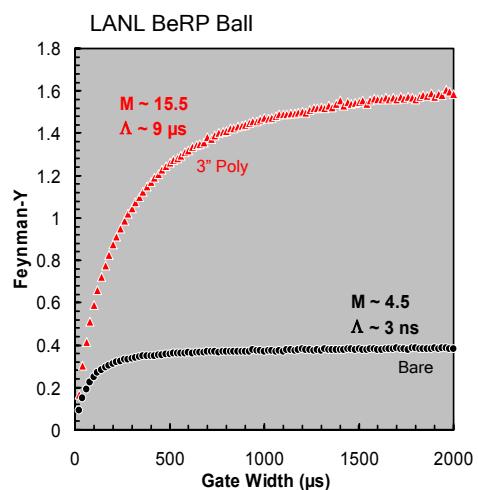
Feynman-Y: Excess Relative Variance


- Feynman-Y measures excess variance relative to Poisson process

$$\frac{\sigma^2}{\mu} = 1 + Y$$

σ^2 : variance

μ : mean


- Y vanishes if counting distribution is purely Poisson
- Y tends to increase with neutron multiplication
- Usually measured vs. coincidence gate width (counting time)

Effect of Multiplication and Generation Time

- Y is a measure of the second moment of the counting distribution
- Asymptotic value tends to increase with square of neutron multiplication
- Y is a measure of the system's dynamic response
- Shape vs. gate width tends to evolve more slowly with increasing neutron generation time

Computation of Feynman-Y from Deterministic Transport

- Feynman-Y exhibits two notional features
 - Asymptotic value
 - Shape dependent on coincidence gate width
- Asymptote
 - Computed from static forward and adjoint transport solution
 - Accounts for relative contribution of source and induced fission neutrons
 - Source term for adjoint problem is detection efficiency - adjoint flux
"weighting function" represents importance to detection
- Shape
 - Computed from solution to dynamic step response problem
 - Forward source term is instantaneously stepped
 - Leakage current is folded with detector cross-section & impulse response
 - Detector response is integrated over gate width

Computation of Feynman-Y Asymptote

- Excess variance comes from **source** and induced **fission**

$$\frac{\sigma^2}{\mu} = 1 + Y \quad \sigma^2 = \mu + {}_2S_0 + {}_2S$$

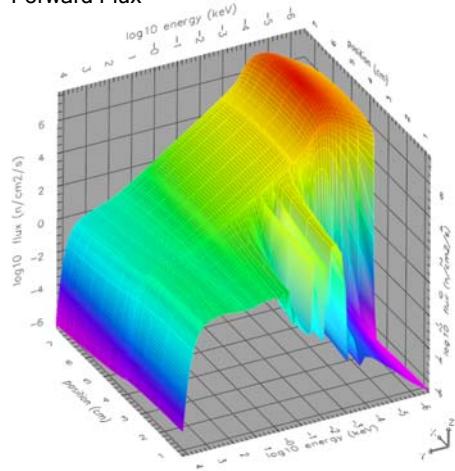
- Variance of **source** neutron production \underline{Q}

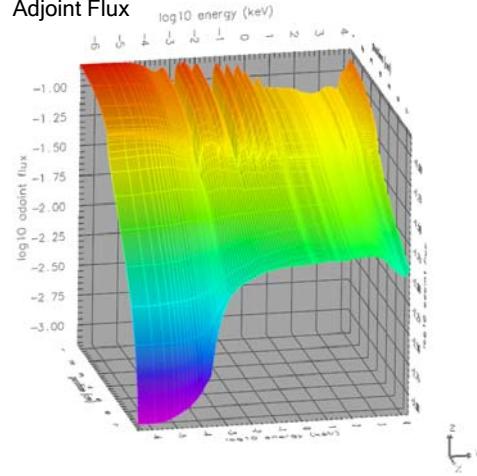
$${}_2S_0 = \int d^3r \int dE \frac{\overline{v_0(v_0-1)}}{v_0} Q(\vec{r}, E) I_0^2(\vec{r}) \quad I_0(\vec{r}) = \int dE' \frac{\chi_0(\vec{r}, E')}{4\pi} \varphi^\dagger(\vec{r}, E')$$

- Variance of **fission** neutron production $v\Sigma_f\varphi$

$${}_2S = \int d^3r \int dE \overline{v(v-1)} \Sigma_f(\vec{r}, E) \varphi(\vec{r}, E) I^2(\vec{r}) \quad I(\vec{r}) = \int dE' \frac{\chi(\vec{r}, E')}{4\pi} \varphi^\dagger(\vec{r}, E)$$

- Importances I_0 and I weighted by adjoint flux φ^\dagger



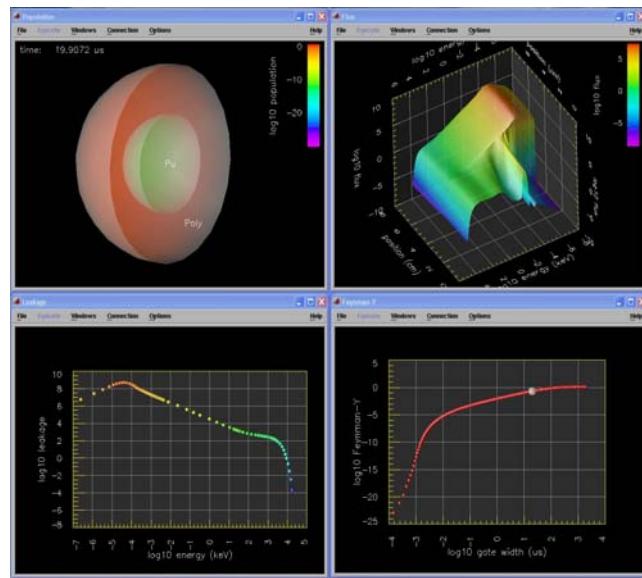

Static Forward and Adjoint Solutions

LANL BeRP Ball / 1.5" Poly Reflector

Forward Flux

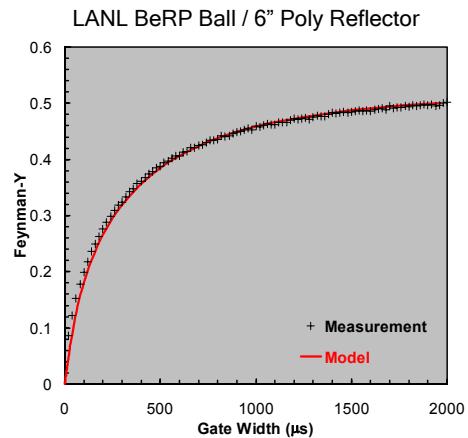
Adjoint Flux

Computation of Feynman-Y Shape


- Feynman-Y shape computed from solution to forward dynamic step response problem

$$Y(T) \propto \frac{1}{T} \int_0^T dt \int_0^t dt' \mathbf{h}(t-t') \Sigma_d(\vec{r}, E) \varphi(\vec{r}, E, t')$$

- Uses LANL transport solver PARTISN to compute flux φ in response to instantaneous step in forward source term Q
- Time-dependent flux folded with detector cross-section Σ_d and impulse response \mathbf{h}
- Integrated over coincidence gate width T



Computation of Dynamic Response

Test Results

- Neutron multiplicity calculations tested against six measurements of LANL BeRP ball
 - Bare
 - Reflected by polyethylene 0.5", 1", 1.5", 3", and 6" thick
- Calculations match measurements within measured uncertainty
- Computational time between 1 and 15 seconds on standard laptop
- Total computational time dominated by dynamic calculation, primarily dictated by neutron lifetime

Conclusions

- Possible to infer configuration of an unknown radiation source from its radiation signatures
- Solutions based on multiple complementary signatures are better constrained
- Sandia is developing methods to solve for source configuration using gamma spectrometry and neutron multiplicity signatures
- Sandia developed fast method to accurately compute Feynman-Y
- Based on original work by Muñoz-Cobo, Perez, and Verdú
- Implementation uses LANL-developed, time-dependent transport solver PARTISN
- Initial test results confirm method's accuracy and potential speed

Future Work

- Increase speed of calculations
 - Explore alternative cross-section libraries
 - Explore different solver options
 - Resolve slow convergence of adjoint solution (maybe)
- Benchmark accuracy of calculations
 - Some measurements used for initial testing exhibited large systematic variations
 - Planning to collect new measurements according to benchmark standards

Acknowledgments

- This work was sponsored by the Simulation, Algorithms, and Modeling Program of the NNSA's Office of Nonproliferation Research and Development
- Thanks to Rafael Perez, Prof. Emeritus at University of Tennessee for his help in understanding the method to compute Feynman-Y
- Thanks to Randy Baker and Jeff Favorite of Los Alamos for their help with PARTISN

