

Background Radiation Studies for Future, Above-Ground Antineutrino Detectors

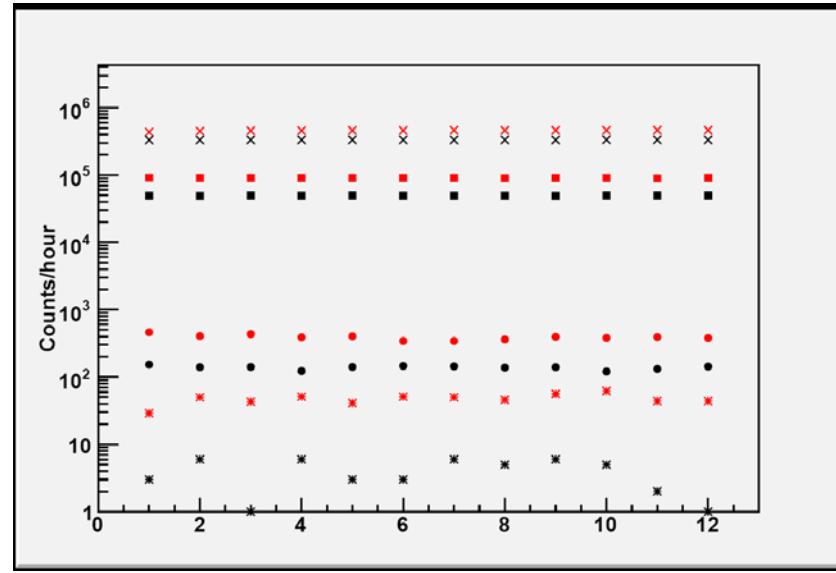
L.E. Sadler^a, A. Bernstein^b, N.S. Bowden^b, S. Dazeley^b, J. Lund^a, S. Mrowka^a, D. Reyna^a

^a*Sandia National Laboratories, Livermore, CA*

^b*Lawrence Livermore National Laboratory, Livermore, CA*

- ✓ Underground antineutrino detectors observe power changes and fuel evolution at nuclear power plants
- ✓ Compact, non-intrusive monitors provide continuous measurements
- ✗ Limited deployment to plants with underground locations

- ✓ Above-ground antineutrino detectors can potentially monitor any nuclear power plant
- ✗ Less passive shielding due to the loss in overburden
- ✗ Significant increase in background due to cosmic and terrestrial radiation sources


Understanding the above-ground backgrounds will allow for the development of both passive and active shielding for new antineutrino detectors

Experimental Measurements

Detector Suite

Nal-Gammas
Liquid Scintillator
Good PSD
Muon Paddle
Correlated times
 ^{3}He -Thermal
neutrons

Comparison of detector rates at:
6 mwe at UC
2nd story at UC

- ✗ Gamma rates
- Muons
- Fast neutrons
- * Thermal neutrons

Deployment-

- 01/08 Above-ground Sandia, California
- 02/08 6 meters water equivalent (m.w.e.), University of Chicago
- 03/08 2nd floor above-ground, UC
- Summer 08 Above-ground at a nuclear power plant (planned)