
Complex Systems Fundamentals,
Methods and Applications (CSYS300)

Fred Oppel 6134
Ken Summers 6134

Agent-Based Modeling for Physical
Behavioral Entities with Umbra

SAND2014-3383C

Training Outline

•Agent Based Physical Modeling Approach
– Umbra Overview
– Building Blocks for Complex Systems

•Dante (Umbra Application)
– Force on Force Modeling
– Scenario Setup
– Post Processing Batch Runs
– Create an example Scenario

•Dante Demo
– Create a simple scenario
– Execute Batch Runs
– Analyze Data

Embodied Physics Agent Based Modeling

Dept 6134

Impact

• Systems analysis and software engineering
• Simulation & Gaming Terrain Team
• Embodied Agents (Physics, Behaviors, 3D environ.)
• Live Virtual Constructive Simulations

• DOE Physical Security – Safety of NW Complex
• DOE Facility Design - Sensor layouts
• DoD Warfighter Missions – Operational Information

Force-on-Force
Constructive
and Tabletop

Terrain Generation &
Gaming

Sensor Operations &
Path Planning

Modular Software
Framework

Umbra Models
Multi Fidelity Physics and Environments

Dante Tabletop

OpShed Sensor
Analysis

Software Tools

Dante Constructive Simulation
Small Arms Engagement

Examples

What is Umbra?

Sensor Behav. Control Physics Graphic

Sensor

Sensor

F

Time

Umbra Engine (Software Framework)

• Modular C++ Core based on Object Oriented Design

• Data Directed Update Graph for Modules and Systems

• Flexible Scripting (Tcl) for Module Construction

• Enables both Physics-based (time-step) & Event-based
Models to co-exist

• Supports Batch & 3D Interactive Mode

• Executes on Windows, Linux, and Mac OS X

• Uses Open Scene Graph, XML, Boost, GDAL

• Optimized Computational Geometry Package

• Umbra Worlds support non-linear interactions

Umbra Packages (Current Libraries)

• Platforms (Air, Ground)

• Communications, Sensors, Terrains

• Behaviors, Planners

• LVC Interface for Real and Virtual Entities

• HLA Distributive Computing

V
ir
tu

a
l R

e
a
lit

y

Pla
tfo

rm
s

Air,
 G

ro
un

d,

H
um

an
s

Com
m

s,

Sensors,

Terrains

R
e
a
l- tim

e
 C

o
n
tro

l A
p
p
s

3D
 G

ra
ph

ic
s,

XM
L,

 H
LA

Behaviors,

Planners

Applications

Packages

Multi-Layer

Command Shell

GUI & 3D Graphics

Umbra System

SKL1

SKL6

Slide 4

SKL1 We might update this slide a little
- to include C#,
- take out Mac OS X (we used to support it, but I don't think we could deliver a build today),
 - eliminate the reference to OSG, XML, Boost, GDAL (who cares?).
Summers, Kenneth L, 8/12/2013

SKL6 Something missing in this presentation is an explination of this. Umbra is a time-slice simulator. This is really the only
place where that is introduced (and as an aside, at that), but that is key to following explinations.
Summers, Kenneth L, 8/12/2013

Types of Problems
Umbra was designed for

•Robotics technologies
– Sensors, Controls, Mobility, …

•Network-centric communications
– Ad-hoc wireless, full communication OSI layer

•Human behaviors
– Decision making within mission operations

•Small unit combat operations
– DOE physical security

– DoD convoy operations (IED)

– Border/Port security

– Incident response

•Live-Virtual-Constructive (LVC) interfaces
– Augmented Reality training

Umbra’s design approach

Umbra Simulation

Rapid insights into tech impacts
on mission effectiveness

Portfolio of interrelated
projects leading to comprehensive
libraries of capabilities and tools

Enable rapid analysis of complex systems using the best
models regardless of origin

SKL2

Slide 6

SKL2 I don't understand why this slide is here. It is definite marketing speak, and it either should be move way up (because it
is extremely abstract) or eliminated altogether (because it is really more of a sales slide than a technical slide).
Summers, Kenneth L, 8/12/2013

Umbra Building Blocks

Umbra Simulation Method

• The simulation is built up of sub-components

– Complex systems built out of many simple components

• Time is sliced into small chunks

– As time advances all sub-components asked to
recalculate their outputs

• Based on the current time and their inputs

– Slice size can be set to any value (typically 0.01s to
0.1s)

• Or Umbra can vary the slice size dynamically to give any
multiple of real-time

Modules (use as talking points for next
slide)

• Umbra applications consist of
– Modules that perform the state calculations for each time step
– Connectors that transfer data between modules

• Modular, object-oriented architecture facilitates independent
development of systems
– Allows problem and implementation decomposition
– Independent implementation
– Promotes code reusability
– Enhances the flexibility of scenario development

• Modular architecture allows “mix and match” control over fidelity
– Some modules can be lower fidelity, while modules of

particular interest to the simulation can be higher fidelity
• Umbra’s architecture provides building blocks for modules from

very simple to complex systems

SKL8

Slide 9

SKL8 This whole slide could be the notes for the following slide (and we could eliminate this one).

So, I'm thinking these are the talking points for the slide on the next page.
Summers, Kenneth L, 8/12/2013

Modules

Module is Umbra’s word for Component

• Represent system functional components like controllers,
sensors, physics,…

• Instances of C++ classes
• Response to Outside Events (commands) from the environment

Connectors

• Connect modules to form a system function

• Enable data-flow connections between modules

• Connections between modules determine the update
order of modules during each update cycle

• Data transferred can be standard types (double, int,
etc.) or complex structs and classes.

• Allow 1 connection to an input and multiple
connections from an output

Connectors (cont.)

• Connector data can trigger events

• In Standard connectors data flows left to right

• In Feedback connectors data flows right to left

• Feedback connectors provide input data from
previous update

• Feedback connectors enable modeling a control
system

Standard Connections

Feedback Connections

Graphs

• Determine the Umbra update order when a tick occurs

• Sequential graph (sorted list) where update order is
determined by connection predecessor enforcement or
explicit predecessor relationships

• Calls the “update” method on each module that
resides on the graph.

• Separates modules into levels where modules at the
same level can update in any order

SKL9

Slide 13

SKL9 I *think* I know what this means, but it sounds redundant to me (what is the difference between "connection
predecessor enforcement" and "explicite predecessor relationships"?). In any case, it's confusing.
Summers, Kenneth L, 8/12/2013

Umbra Update Order

• Basic update order for 4 modules

– The output of module1 is connected to the input, which
means module1 updates BEFORE module2 each step
in the simulation engine.

– Module5 updates at the same level as module2
because module1 is a predecessor

module1 module2 module3 module4

module5

Systems

• A System is a module AND a self-contained Graph
that contains its own list of sub-modules

• Systems are “black boxes” that provide complex
functionality through the creation of a single module.

• Systems expose “ports” which pipe the data of their
sub-modules for external consumption
– Systems look like “fat” modules from the outside

Umbra System

Output Port

Input Port

Systems (cont.)

• A System also contains three additional capabilities relative to
an ordinary module
– Constructed of lower-level modules to form a system function
– Maintain the update graph for the modules in the System

• It is only the System, not its modules, that is part of the global
Umbra update graph

• The System has the responsibility to update its own modules

– Update the modules in the System with each time step
• System can do multiple updates within a single Umbra update
• This allows multiple levels of time granularity

Umbra System

Umbra Update Order (with Systems)

• Update order when a system is introduced

– System1 is connected to modules 2 and 4, but its
submodules are contained entirely within the system’s
graph and do not interact with other modules directly

module1 module2 system1 module4

submodule1 submodule2

Worlds

• World modules represent phenomena that have
simulation-wide impacts (such as communication,
collisions, sensors, etc.)

• Worlds encapsulate physical phenomena by
abstracting them into a world instead of distributing
them throughout the simulation

• Worlds allow Umbra to integrate with other systems
and higher-level simulations

• Worlds are factories that produce “product” modules
(i.e., children of the World) which act as probes or
proxies for world-specific effects

Basis of the Umbra Patent
(US 7,085,694)

SKL11

Slide 18

SKL11 Need to explain this, probably verbally.
Summers, Kenneth L, 8/12/2013

Worlds (cont.)

• World modules let developers break the problem into
easily understood pieces, thus reducing the
complexity of simulation development
– Modules partition the problem space at the entity level
– Worlds are special modules that modularize the interactions

between entities

• Worlds provide the physics for their children
• Examples:

– Various kinds of sensor worlds (RF, acoustic, radiation)
– Communication World contains transmitters and receivers
– HLA World contains objects and interaction modules

Enables modeling complex systems

Umbra Update Order (with World)

• Update order with world/children

– World updates AFTER its children or the systems
containing their children.

– Module2 can update after the world because it has no
relationship to world.

module2child1 system1 world

child2 submodule2

Enables a fair fight in Force on Force

Capability Interface

• Umbra Systems contain a capability interface to easily add
capabilities to compose complex systems

• Reduces coding complexity

– Removes inheritance issues

– Simplifies library dependencies

• Allows a simple system base

– Additional capabilities added thru xml or interactive scripts

• Example: Entity Character

– Base System

• Contains a position, simple behavior, and graphic module

– Optional Capabilities

• Tactical behaviors, Shooting, Sensing, Detectable Properties,
Mobility, etc…

SKL5

Slide 21

SKL5 This sounds confusing: "systems contain capabilities to compose systems" ???
Summers, Kenneth L, 8/12/2013

Callbacks

• Callbacks implement the event mechanism of Umbra

• A callback is a method (C++, TCL, etc.) called when
an event occurs

• Events can be user-defined, but there are a number
of “standard” events built-in to Umbra
– Connectors can call events for changes in data values

or connectivity

– SimClock has callbacks for numerous time event types:
onTime, onDeltaTime, onPeriod, etc.

– Graph has callbacks for pre and post graph updates

Parameters

• Externally accessible data that is part of a Module but
does not feed into other modules

– Operates as an easy way to access a piece of data in a
module, providing built-in functionality of get/set

– Can be read-write or read-only

– Can be mapped to callbacks on data value changes

Combat Modeling

Analysis Tool

Built upon

Dante

DANTE allows Red and Blue to explore the effect due
to changes in CONOPS and technology insertion.

• Physical security evaluation

– Concept of Operations (CONOPS)

– Tactics, Techniques and Procedures
(TTPs)

– Weapons systems

– Protective systems (barriers, fences,
sensors, etc.)

• Force-on-force engagement simulation

– Automated behaviors and perception

– Weapon modeling (direct and indirect)

– Combining physical interactions with
statistical modeling

– Human-in-the-loop not required

• Applied to:

– DOE Physical Security

– DoD Operations

• Scenario Editor

• Run-time execution
and visualization
– Physics calculations

– Enhanced Ph/Pk

• Batch run
management

• Data analysis and
visualization
– Statistical analysis

– Scenario Replayer

Example of a missed
shot where PH said a
hit would occur, but
geometric orientation
caused a miss. Shot
lines terminate at the
entity/terrain they hit.

Dante Tool Suite
Combat simulation & gaming

Combat Modeling Concepts

Battle outcomes between entities comes from
automated behaviors and perceptions

– Behavior

• Set of selectable character behaviors

• Behaviors are driven by the entities plans (sequence of planned
activities

• Based on perception (both visual and acoustic) entity will react.

– Visual perception

• Probability of detection based upon line-of-sight obscuration, range and
pose.

– Auditory perception

• Sounds are classified, i.e., footsteps, vehicle, explosion, shot
(distant), crack (bullet aimed at entity).

– Engagement

• If reaction is to engage, Ph/Pk tabular data is used.

Dante Path & Future

Dante Multiplayer
Fully

Computer
Generated

Fully
Human

Operated

Batch Analysis
TableTop “Turn-Based” Game
Multiplayer Real Time Game

Dante Tabletop

• Operation (Current Beta version)
– Strategy “Turn-Taking” Game
– Coordinated simulations for Red & Blue
– Line-Of-Sight in 3D terrain
– Ph/Pk Engagements
– “Fog of War” concealing hidden entities
– Records Events and Notes
– Referee/Spectator view

• Next Version
– Leverage Dante batch tool
– Team Behaviors and Path Planning

• Trainer mode (Future)
– Red side automated
– Batch Execution

1st person view

3D Overview

Dante Mulitplayer Future

Distributed multi-player neutralization tool
– Sliding functionality from fully computer generated to

fully human operated

– Scenarios derived / developed from multiplayer game
(and run in batch mode for analysis)

– “Gaming” factors mitigated by improved interface

– Active communications simulated in the game

– LVC capable

• CAS operations

• Active sensor models

– Insider Threat

– Government-owned software
• Leverage other government capabilities Fully

Computer
Generated

Fully
Human

Operated

System Effectiveness - Data Collection - V&V

Dante Demo

• Create Simple Scenario

• Execute Batch Runs

• Analyze Runs

Review

• Umbra is a powerful modeling and simulation
framework that allows multiple modules to be
incorporated to solve complex problems

• Umbra has been applied to a wide array of
engineering problems: robotics, planning, systems
integration, etc.

• Umbra’s key features are modularity, scriptability,
hybrid time management, mixed fidelity, and the
concepts of worlds and systems

