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Semiconductor Surfaces Reconstruct to Lower Energy

• When a surface is formed, the dangling 
bonds rearrange on the surface to 
minimize their energy

• Competing Interactions
• Local Chemistry

• Long Range Electrostatics

• Strain

• Surface reconstructions affect

• Ordering in alloys

• Interfaces

• Self Assembly

• Catalysis

• Epitaxial Film Growth

• InAs (001) and GaAs (001)
• Single Reconstruction Surface

• Changes with Chemical Potential

2(2x4) 2(2x4)

InAs (001)

Barvosa-Carter et.al., Surface Science 499, L129  (2002).

2(2x4)

Unreconstructed
=Anion
=Cation
=Dangling

Bond

Scanning Tunneling Microscopy (STM) Images
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Outline

Goal: Examine Atomic Surface Structure of III-
V Alloys

• Ternary alloys exhibit reconstruction 
coexistence

• Understanding the Role of Strain
• Atomic size mismatch strain

• z(4x4) reconstruction

• (4x3) reconstruction (?)

• Lattice mismatch strain
• Sb/GaAs reconstruction coexistence
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Alloy Reconstructions Distinct from Constituents  

• In0.53Ga0.47As/InP

• Lattice Matched

• (4x3) reconstruction

• In0.27Ga0.73As/GaAs

• 2% compressive 
Strain

• (4x3) and 2(2x4) 
reconstructions

• In0.81Ga0.19As/InP

• 2% compressive 
Strain

• (4x3) and 2(2x4) 
reconstructions

Images courtesy of A. Riposan, PhD Dissertation, University of Michigan
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Elastic Relaxation Drives Coexistence of Reconstructions

*Tromp, Hannon, Surf. Rev. and Lett. v9, 1565 (2002)

• Thermodynamic model for 
reconstruction coexistence*

• Competing Interactions
• Minimize surface energy

• Maximize elastic relaxation

• Detailed evaluation of model requires 
knowledge of physical terms such as 
surface energy, surface tension, and 
boundary energy
• Utilize DFT to determine values

• Strained InGaAs films exhibit 
nanoscale domains of different 
reconstructions

• Well behaved distribution of 
anisotropic domains
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Anisotropic Boundary Energy

• For an isotropic boundary 
energy the length and 
width are equal below a 
critical area.

• Above critical area 
rectangular domains are 
stable

• Square domains are not 
stable at any size when 
boundary energy is 
anisotropic.

• Experimental Data is 
Consistent!!!
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Sears, Pearson, Millunchick,  Appl. Phys. Lett. (Submitted).
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Anisotropic Boundary Energy

• For an isotropic boundary 
energy the length and width 
are equal below a critical 
area.

• Above critical area 
rectangular domains are 
stable

• Square domains are not 
stable at any size when 
boundary energy is 
anisotropic.

• Experimental Data is 
Consistent!!!

Sears, Pearson, Millunchick,  Appl. Phys. Lett. (Submitted).
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Outline

Goal: Examine Atomic Surface Structure of III-
V Alloys

• Ternary alloys exhibit reconstruction 
coexistence

• Understanding the Role of Strain
• Atomic size mismatch strain

• z(4x4) reconstruction

• (4x3) reconstruction (?)

• Lattice mismatch strain
• Sb/GaAs reconstruction coexistence
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The Alternating Dimer Configuration

• In0.27Ga0.73As experiment shows the surface dimer alternates position with 
an 80% incidence

• z(4x4) reconstruction

• z(4x4) not seen in pure InAs or GaAs
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Misfit Strain Does Not Explain z(4x4)
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• Misfit Strain is

• Pure GaAs and InAs  
show slight z(4x4) 
stabilization
• Not enough to 

overcome effects of 
temperature

• Misfit strain alone is not 
enough to stabilize 
z(4x4)

z(4x4)

2(2x4)

 
a film  asubstrate

asubstrate
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Atomic Size Mismatch Strain
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Surface Alloying Stabilizes z(4x4)

Increasing Energy

• z(4x4)-zig In
-132meV

� 2(2x4)-zig In
-40meV

� 2(2x4)-straight In
0meV

• z(4x4)-straight In
37meV

• Atomic size mismatch strain is induced by the size difference 
between two cations

• Placement of Indium in specific locations induces a surface solute 
strain and strongly stabilizes the z(4x4)

• In atoms can relax the cation-cation bond

• Large atoms can better relax in alternating pattern

= As
= Ga
= In
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The Role of Atomic Size Mismatch Strain

• Convex hull displays formation 
energy of multiple configurations 
on  a single graph

• z(4x4) is more stable than the    
2(2x4) for most surface 
percentages of In

• Approximately 100meV 
stabilization for XIn=0.33

• Atomic size mismatch strain 
stabilizes the surface 
reconstruction

• Suggests that the surface layer 
is most stable for a mixed 
composition

Bickel, Modine, Van der Ven, Millunchick,  Appl. Phys. Lett. 92, 062104 (2008)
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(4x3) Surface Structure Still Unknown

Cation Dimer Model
• Mixed Termination
• Anion Dimers
• Cation Dimers
• Hetero Dimers
• As coverage = 0.5ML
Millunchick et al. Surf. Sci. 550 1 
(2004)

Filled state image Empty state imageModel

• In0.53Ga0.47As
• Annealed 25 min 
at growth conditions

Experimental STM of the (4x3) Structure

Filled State Image
• Bright spots on dim rows

Empty State Image
• Bright spots and rows

DFT Simulated STM of the (4x3) Structure*

[110]

+ 3.1012Å-3.0812Å

Anion Dimer Model 
• Anion Termination
• Anion Dimers
• Excess Anion Dimer
• As coverage = 1.5ML
P.A. Bone et al., Surf. Sci. 600
973 (2006)

Jones et al

= As
= In

Millunchick et al

Filled state image Empty state image

*J. Tersoff, D.R. Hamann, Phys. Rev B, 50 1998 (1983)
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(4x3) Likely Stabilized By Solute Strain

• Best experimental STM to 
DFT STM match is mixed 
dimer model

• Energy remains too high 

• Misfit strain does not 
sufficiently lower energy

• Alloy induced solute strain 
may be the key

Riposan

Mixed Dimer Model
• Mixed Termination
• Anion Dimers
• Hetero Dimers
• As coverage = 0.83ML
A. Riposan, (PhD dissertation) 
University of Michigan

Surface stability follows lowest energy 
line as a function of chemical potential
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Outline

Goal: Examine Atomic Surface Structure of III-
V Alloys

• Ternary alloys exhibit reconstruction 
coexistence

• Understanding the Role of Strain
• Atomic size mismatch strain

• z(4x4) reconstruction

• (4x3) reconstruction (?)

• Lattice mismatch strain
• Sb/GaAs reconstruction coexistence
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Reconstructions on Sb/GaAs
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• 2(2x4)

• Common to GaAs

• Not common to bulk 
GaSb

Surface Reconstruction of Sb/GaAs(001)

2(2x4) reconstruction

= Ga
= Sb

Some atoms 
omitted for clarity
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Surface Reconstruction of Sb/GaAs(001)

(4x3) reconstruction

= Ga
= Sb

Some atoms 
omitted for clarity

• (4x3)

• Bulk GaSb 
reconstruction

• Not common to GaAs
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RHEED of the samples after quenching (top), and room temperature STM images (bottom)
for increasing thickness of Sb/GaAs. b) 0.8ML, c) ~1.7ML. The box in (a) indicates an area
of x3 rows within the disordered surface.

Mixed Reconstruction Stability

0.50ML 0.80ML ~1.70ML

(2x4) (2x4)
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Elastic Relaxation

• GaSb Lattice 
Parameter
• Lowest line = stable 

reconstruction

• (4x3) reconstruction 
stable for much of Sb

• Sb =chemical 
potential of Sb

• Stability with decreasing 
Sb

• c(4x4)

• (4x3)

• (4x3)

• 2(2x4)

(2x4) stable (4x3) stable
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Elastic Relaxation

• GaAs Lattice Parameter
• Lowest line = stable 

reconstruction

• (2x4) reconstruction 
stable for much of Sb

• Sb =chemical 
potential of Sb

• Stability with decreasing 
Sb

• (4x3)

• 2(2x4)

• 2(2x4) (2x4) stable (4x3) stable
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Elastic Relaxation

• Mixed Reconstruction in 
GaSb/GaAs (001)

• Mixed Anion System

• 2(2x4)

• Stable for smaller lattice 
parameters

• Appears where lattice 
parameter is constrained

• (4x3)

• Stable at larger lattice 
parameters

• Appears at terrace edges 
where lattice parameter 
can elastically relax

GaSb lat-par

GaAs lat-par

(2x4)

(2x4)

(4x3)

(4x3)
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Elastic Relaxation

• Mixed Reconstruction in 
GaSb/GaAs (001)

• Mixed Anion System

• 2(2x4)

• Stable for smaller lattice 
parameters

• Appears where lattice 
parameter is constrained

• (4x3)

• Stable at larger lattice 
parameters

• Appears at terrace edges 
where lattice parameter 
can elastically relax

Elastically
Relaxed

Constrained

(4X3) 2(2x4)

Bickel, Modine, Pearson, Millunchick,  Phys. Rev. B, 77, 1 (2008).
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2(2x4) Relieves Compressive Strain

(4x3) 2(2x4)

= As
= Ga
= Sb

Some atoms 
omitted for clarity
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Conclusions

• Ternary alloys are complex than their binary 
counterparts

• Thermodynamic Coexistence Model
• Fit to data suggests that this is not a kinetic effect

• Role of Strain
• Atomic Size Mismatch Strain

• Stabilizes the z(4x4) reconstruction

• Mixed cation surface

• Alloying necessary to DFT treatment

• Lattice Mismatch Strain
• Elastic relaxation at step edges => complex strain field on 

surface

• May stabilize surface coexistence as for Sb/GaAs
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Thickness Study

Thin layers of Sb/GaAs.  Top left to right: 0.25ML, 0.75ML, 0.8ML. 
Bottom left to right: 1.25ML, 1.5ML, ~1.7ML

0.25ML 0.75ML 0.80ML

1.25ML 1.50ML ~1.70ML



University of Michigan
Materials Science and Engineering 

Elastic Relaxation

U(s, t)  2F0
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Indium Surface Segregation
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z(4x4) Statistics
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Monte Carlo of Pure InAs
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• Large Stable areas for 
50% dimer coverage

• Do see a slight favoring 
of the z(4x4), 
particularly for lower 
temperatures
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Reconstructions in (4x3) Energy Comparison

BC (4x3) model
• Mixed Termination
• Anion Dimers
• Hetero Dimers
• As coverage = 1.5ML

Barvosa-Carter et al
W. Barvosa-Carter, et al, Phys. 
Rev. Lett. 84 4649 (2000)

Filled state image Empty state imageModel Model Characteristics

= As
= In

2(2x4) 2(2x4)

LaBella et.al., Surface Science 
60, 1  (2005).
LaBella et.al., Surface Science 
60, 1  (2005).

Barvosa-Carter et.al., Surface 
Science 499, L129  (2002).
Barvosa-Carter et.al., Surface 
Science 499, L129  (2002).
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Effect of Misfit Strain on (4x3) Stability
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RHEED of the samples after quenching (top), and room temperature STM images (bottom)
for increasing thickness of Sb/GaAs. a) 0.5ML, b) 0.8ML, c) ~1.7ML. The box in (a)
indicates an area of x3 rows within the disordered surface.

Thickness Study

0.50ML 0.80ML ~1.70ML

(1x3) (2x4) (2x4)

Rows of
1x3
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Growth Model Flat 2(2x4) 
film

Sb 
nucleates on 
surface as 
(4x3)

(4x3) 
domains 
grow and 
transform into 
2(2x4)

Layer fills in

0.5 ML 0.75 ML 1.0 ML

1.5 ML 2.0 ML 3.0 ML

= As
= Ga
= Sb
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Critical Terrace Size

• Two types of terraces

• (4x3) only

• (4x3) at edge with 2(2x4) in 
center 

• Maximal size of (4x3) terrace = 
30±10nm2

• Suggests strain a factor in 
surface reconstruction 
stabilization

• The reconstructions are able to 
coexist next to each other

• Both have trench dimers which 
could help coexistence

• Notice the height difference

(4x3) 2(2x4)

= As
= Ga
= Sb
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Role of Ga

GaSb growth
• Ga is present in the beam
• Transformation is easy
• Percentage of (4x3) on the surface 
varies dramatically
• Minimum percentage of Sb is ~1.05ML

Sb Growth
• Ga is present only via diffusion from 
step edges
• Transformation Ga-limited
• Percentage of (4x3) is much more 
constant
• Thickness at which transformation 
complete is higher, ~1.25ML

The percentage of the sample surface covered by either reconstruction changes during
growth due not only to strain but also to the availability of Ga.

• (2x4) requires 9 Ga per unit area
• (4x3) requires 4 Ga per unit area
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Low unit strain energy

• For small values of F the 
surface energy and 
boundary energy terms 
dominate

• Above a critical size square 
domains are not 
energetically favored

• Multiple rectangular shaped 
domains coexist

• But domains want to shrink 
to zero (i.e. disappear
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High Unit Strain Energy

• For large values of F

• Still a critical size above 
which square domains are 
not energetically favorable

• Domains are now globally 
stable.

• The equilibrium 
reconstruction domain shape 
is  a quantum wire.

Length


