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Overview

•Applications and 2007 Focus
•SUMMiT™ Technology
•Beam Steering Mirrors
•High Stroke Mirror Arrays & Results
•SFET - SUMMiT™ with Co-fabricated FETs
•Latest SFET OMEMS Results
•Summary



Applications

•Agile Imaging Systems
–Non-mechanical Zoom
–Foveated imaging

•Beam Steering and Beam Switching
–Novel imaging approaches
–Fast scanning/tracking

•Gimbal Replacement
–MEMS steering speed can overcome 

angle limitations for some applications
–Potentially large cost reduction



Foveated Imaging

MEMS
DM

CCD

Color
Filter

• Increase resolution in a selected area of FOV
– Extremely wide FOV and low f/#
– Smaller, more compact than conventional imaging systems
– Eliminates gimbals (cost, weight, speed limitations, etc.)
– Multiple threat detection enabled by fast (msec), high 

resolution tracking of area of interest within the wide FOV
– Single MEM-DM reduces system aberration



Non-mechanical Zoom

• Decrease FOV and increase resolution
– Optical magnification
– NO macroscopic moving parts 
– Very fast (20 Hz – 1 kHz)
– Broadband – Visible to LWIR (if MEMS are used)
– Two moving optical elements

• 2 MEM-DMs or macroscopic mirror & MEM-DM



2007 Focus Across Several Efforts

• Improve 
–Position repeatability
–Uniformity and yield
–Mirror flatness
–Mirror dynamic behavior
–Optical power handling

•Larger aperture DMs
–W/o addressing scale-up issues
–Speed less important

•Demonstrate scale-up using SFET



Process Features
•Polycrystalline silicon (Poly)
•Low stress (< 5 MPa)
•Conformal depositions
•High fracture strength (~ 3 GPa)

•Ground plane layer (Poly 0)
•4 structural levels (Poly 1- 4)

•Chemical Mechanical 
Planarization (CMP)

•1 µm design rules

•Technology accessible through 
SUMMiT foundry (SAMPLES)

•OMEMS specific BEOL  processes
•Metallization
•Packaging

SUMMiT V™ MEMS Technology
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Beam Steering Mirrors

• 100µm mirrors
– 4 electrodes per mirror with analog 

position control
– All like electrodes in arrays are tied 

together – “ganged” – by surface 
wiring

– 10x10 array prototypes=1mm
• Pros

– Small size allows large steering 
angle, speed, easy to keep flat

– No scale-up problem due to wiring 
or pin out

• Cons
– Incoherent steering only
– No calibration, so deflection 

uniformity is critical



Ganged Arrays

3.24º x-tilt @ 80V 2.64º diagonal tilt @ 90V
• Slat Mirror Arrays

– Two electrodes per mirror
– Two arrays and auxiliary 

mirror required for 2-D 
steering

• Ganged Beam Steering
– Four electrodes per mirror

• Currently in a bench top 
beam steering demo w/ ~10°
FOR

• Fast – switching speeds <10µsec, analog position control
• Applications:  scanning sensors, missile seekers (gimbal

replacement), novel imaging



Ganged mirror array - Tilt magnitude and 
standard deviation vs. applied voltage
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Impact of Angle Non-uniformity

Matlab Model, θx= θy=2.5°, Nonuniformity=5%, λ=532nm
Middle Normalized Far field Intensity
θx=2.5°, θy=2.5°, Nonuniformity=5%
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Dynamic Behavior of Ganged Arrays
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Beam Steering Demo

Mechanical Angle, Single Electrode Drive
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MEM-DM Requirements

• In addition to the usual requirements of mirror quality, high fill-
factor, good reflectivity, etc.

• Large stroke
– Foveated imaging

• Greater stroke allows greater degree of uncompensated aberration
• Greater aberration = greater steering angle

– Non-mechanical zoom
• More stroke = more optical magnification

• Larger apertures required for practical systems
– Larger pixels or more actuators
– Larger pixels conducive to larger stroke BUT…

• Speed and mirror flatness get more difficult 
– More actuators requires addressing the pin-out problem

• Currently working all the angles

2007 DM focus was on increasing aperture…
…without losing functionality…(and improving 

uniformity/repeatability)
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Max Stroke
26.7 µm

• 61 hex mirrors in hex array
• Mirrors 0.5 mm edge-to edge 
• 3.9 mm array aperture 
• 208 pin PGA package

New 500µm Piston/Tip/Tilt Mirror Arrays

• Original employed mechanical 
pivot in actuators
– Ensured full stroke but bad for 

uniformity, position repeatability 
and dynamics

• Revised (BH1_E & _F)
– No mechanical contact in 

actuators (except at full 
deflection)

– Optimized torsion springs and 
actuator to mirror plate springs 
using beam element models

– BH1_F has slightly longer lever 
for >stroke



500µm Mirror Dynamics (in air)
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Improved Optical Power Handling Using 
Dielectric “helper” Stack on Metal
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Max Stroke
26.7 µm

• 61 hex mirrors in hex array
• Mirrors 0.5 mm edge-to edge 
• 3.9 mm array aperture 
• 208 pin PGA package

• 85 hex mirrors in hex array
• Mirrors 0.85 mm edge-to-edge
• ~8 mm array aperture 
• 256 pin PGA package
• 3 actuator variations

~8mm Piston/Tip/Tilt Mirror Arrays

0.765mm



850um Mirror Position Repeatability
Lever 1 Design with 2 Up, 1 Down

• 10 Iterations
• 2 up 1 down
• 8 samples across 0-105V
• Average Template Fit = 995/1000

Actuator Height vs. Voltage
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Radius of curvature of 850 L1
(Standard poly4, 50 nm AlCu, wafer center)



~8mm Aperture, 211-Mirror Array

• 211-hex mirrors in hex array
• ~8 mm array aperture 
• Mirrors 0.5 mm edge-to-edge
• BH1_F design, >25µm stroke

• Status – largely untested
– BGA packages on hand but no 

parts packaged yet
– Mirror flatness OK
– Visual yield OK (quarter wafer 

inspection)

10.5 mm



SUMMiT™ Field Effect Transistor 
(SFET) Fabrication
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• SUMMiT™ flow with added gate level for SFET
– Gate oxide, 1000Å steam, grown on bare Si p-type substrate
– Polysilicon gate uses same film type as Poly0; deposited 

immediately after gate is grown
– Poly12 source/drain contacts doped in-situ with phosphorus 
– Subsequent high temperature anneals (for stress control) diffuse

dopant into substrate to form source and drain
• Remaining fabrication steps identical to SUMMiT™ V

– Building on a mature and robust MEMS process
• Back end processes: 100nm Al metal, release & packaging

B. L. Draper, M. Okandan,  S. S. Mani, and R. S. Bennett, “A Novel Method of 
Fabricating Integrated FETs for MEMS Applications,” IEEE JMEMS, Vol. 13, No. 3, 
pp. 500-504, June 2004. 



Piston Mirror Array (PW2007)
AO1K (RS562) Chip 23, VDD=20V, VSUB=-4V

• 1024 Piston-only mirrors
• Mirrors 0.15 mm square
• Maximum stroke: 2 µm
• 4.8 mm array aperture 
• 132 pin PGA package
• Applications:  laser 

communications, 
narrowband/high-speed 
aberration correction



AO1K Construction Details

150 µm

Through Poly3
(No Poly4)

Flexures
(1 of 4)

Electrode

Through Poly2
(No Poly3 or Poly4)

VDD
Row

SFET 
(1 of 3)

Shielding

Electrode 
support 

pillar 
(1 of 16)

Reset Column



SFET Beam Switching Mirror Array

• Largest SFET-OMEMS devices to date
– 1120 mirrors (32-rows x 35-columns)
– 240 µm diameter mirrors, 250 µm pitch

• Integrated row/column address 
electronics
– 2240 electrodes (2 per mirror)
– 4 or 6 transistors per mirror cell
– Packaged in 120 pin PGA

• Tri-stable mirrors: ±1.4º, 0º (flat)
– Angle deviation <0.1º

• Mirror flatness:  <30nm peak-to valley
• Switching speed:

– Mechanical: <150 µsec in air
– Circuit/transistors: >20MHz (current 

version of electronics support ~45 µsec 
array update)

• Functional Mirror Yield: 99-100%



SFET Switching Mirror Detail
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Etched vs Backfilled DIMPLE3
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Angle Uniformity

East mean= 1.438, std dev=0.010 with  1081 points
West mean= 1.439, std dev=0.010 with  1082 points
Flat mean= 0.005, std dev=0.022  with  1118 points
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2-Transistor per Electrode
Single-ended Drive
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Beam Switching Mirror Demo

Control PC
Matlab w/USBee Interface

Power Supplies PC

Video Capture

Microscope 
Camera

FPGA Demo Board
(not visible) and
Level shift cicuitry



SFET Mirror Video



Summary

• Ganged beam steering mirrors show promise for 
fast, incoherent beam steering
– Initial angle uniformity not bad 
– Improvement expected through device modeling and 

designs to minimize process-induced variations
• Position repeatability of lever mirrors improved by 

eliminating actuator mechanical contact
• Improved understanding of large mirror dynamics
• Large mirrors w/ acceptable flatness achievable

– 850µm mirrors across ~8mm aperture demonstrated
• SFET solves pin-out problem for large scale arrays

wdcowan@sandia.gov
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SFET Characteristics and Model

• Both models OK when transistors are “ON” (Vg >~5V)
• “OFF” transistor leakage current is under-predicted by Model1
• “OFF” transistor leakage current is over-predicted by Model2

– Used for all SPICE circuit simulations to date
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SFET Design Considerations

• Transistors consume layers up through Poly12
• Transistor size and spacing rules limit the circuit functionality 

that can be implemented in a given unit cell size
– Nominal 10µm x 20 µm gate SFET area ~576 µm2

• MEMS electrode and actuator structures must accommodate 
transistor footprint

• Two approaches for densely packed mirror arrays 
– Transistors under electrodes or beside electrodes
– Minimum array mirror size ~ 100µm x 100 µm

• SFETs are photosensitive – must shield from light in operation
• Only NMOS transistors available limiting circuit configurations

– Think 70s era NMOS-only circuitry
• Despite limitations SFET offers tremendous potential for 

micromirror array scale up, localized sensing/amplification & 
novel detectors



Addressing Schemes

Use pulse-width modulation or charge 
control for pseudo-analog positioning

• Piston mirror examples demonstrate this approach
• Number of mirror positions, array size & switching 

speed dictate off-chip signal requirements
– Limited by on-chip switching speed

Single-ended drive of On-Off electrodes
• Fill and empty the bucket through the same hose
• VDD a control signal rather than a DC source

– When VDD=V & ROW & COL electrode charged
– When VDD=0 & ROW & COL electrode discharged

• Demonstrated on 4x5 tri-stable mirror arrays
• SPICE simulation for 35x64 electrodes
• Allows reset transistors to be eliminated

Analog control of ROW (COL) gate signals
• Allows faster update and slower refresh cycle
• Requires sufficient transistor uniformity
• Works in SPICE simulations but untested

Single-ended Drive
Charge, VDD=V

Celectrode

ROW=V

COL=V

Discharge, VDD=0

Celectrode

ROW=V

COL=V



SFET Ring Oscillator

• 11 stage ring oscillator
– Nominal 10x20 SFETs
– 10KOhm pull-up resistors

• Measured data shows >40MHz 
switching at 30V

• Results used to tweak SFET model
– Increasing Cgdo and Cgso from 

700pf to 1600pf provided good 
simulation match to data
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Temperature & High Optical Power Effects 
Ambient Laser Heating

WYKO “through-
glass” interferometric 
objective

0 W 1.3 W Post 1.3 W
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mirror
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Multi-layer 
polysilicon mirror

Si
Heater Element
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Vacuum chamber 
with heater/cooler 
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Laser heating results for 1.3 W (2.8 kW/cm2)
Permanent deformations have been observed 

for both gold and aluminum mirrors



Diagonal tilt of ganged mirror array – polar 
representation
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L1Repeatability: 1 Up

Actuator Height vs Voltage (Up)
10 Iterations
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RMS roughness (w/curvature)

rms
roughness 
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ROC)



RMS roughness (w/o curvature)
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roughness 
(curvature 
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Remaining 
major 
contributor is 
print through 
(~23 nm 
peak-to-
valley)



L1Voltage vs Deflection

Up Down
∆ = 37 m

Single (varying) actuator.
∆is indicative of mech.
Interference.

Actuator Height vs. Voltage
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L1Mechanical Interference

Baseline Deflection vs. Voltage
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L1
Repeatability: Static

• N = 10 measurements.  Manual (lateral) displacement between 
measurements.

• Results are a quantitative measurement of our ability to infer height over 
an array.  Not good, but not a problem for right now…

Max Min

R01 R02 R03 Act # R01 R02 R03

14.09 24.82 25.39 Avg
(um)

13.2 12.31 12.53

12.2 186 160 σ
(nm)

470 470 480



RTA Improves Mirror Surface Quality

Reinforced Mirror, Flattened 
by Process A

• Process A
– Pre-release RTA
– Five 30-sec cycles @ 1100C

• Results shown w/o metal
– Drive convex with RTA
– Allow tensile metal to flatten 

• Transfer to fab pending
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Reflectivity of metallized (Al) MEMS mirror with and without 
dielectric layers
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for dielectric + Al coated mirrors 
vs. 15.8 % for Al only coated 
mirrors
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