SAND2008- 5098C

Protecting Sensitive Information
in Directory Services

William Claycomb
Sandia National Laboratories
PO Box 5800, MS 0823
Albuquerque, New Mexico, 87185-0823
USA
Phone: 505-284-9949
Fax: 505-284-5619
Email: wrclayc@sandia.gov

Abstract— Directory services are commonly used to store infor-
mation related to individuals within a corporation. Sometimes,
they contain sensitive information, and need to be protected.
Existing solutions offer minimal protection against insider at-
tacks, a growing threat to both government and industry data
services. We present a solution for data protection that leverages
virtual directories, metadirectories, and data encryption to pro-
vide a user-centric approach to data protection, delegation, and
collaboration. We explore the benefits and vulnerabilities of this
solution, and present performance testing results to support our
proposal.

I. INTRODUCTION

Directory Services are used to store information about
objects within an organization, such as users, computers, etc.,
and are organized in a hierarchical structure. Often, directory
services (or simply, directories) are used as authoritative data
sources for many applications that require user information,
such as web portals, email, and instant messaging. In some
cases, the information contained in a directory is considered
confidential, such as employee id number, clearance level, or
other personally identifiable information (PII). While tech-
niques exist to protect this information, they do not ade-
quately prevent a user with administrative privileges from
unauthorized access. Additionally, many companies have sev-
eral directories, some containing duplicate information. This
can arise from inadequate information planning, applications
requiring proprietary data sources, or the need to protect spe-
cific information at different levels. Determining authoritative
data sources and synchronizing data across directories is a
challenging and ongoing task for many corporations.

Each object in a directory is described by a set of attributes.
Examples include name, address, email, or manager name. In
some cases, an object’s attributes should be publicly available
for others to use, such as name and/or email address. However,
in other cases, attributes are used for a single application,
or closely related groups of applications, and should not be
available to others outside a set of authorized users. These
attributes are necessary to perform important functions, such

Dongwan Shin
Computer Science Department
New Mexico Institute of
Mining and Technology
801 Leroy Place
Socorro, New Mexico, 87801
USA
Phone: 505-835-6458
Fax: 505-835-5587
Email: doshin@nmt.edu

as payroll, or for access control decisions, such as clearance
level, but should not be used for any unauthorized purpose. In
these cases, options exist to protect the information. Access
control lists (ACLs) or marking attributes confidential [1] are
two ways to protect data from ordinary users. In general,
however, directories are used to share information, and rarely
contain access controls beyond simple user authentication
(only users with accounts on the system may access the
data). An insider threat, someone with authorized access, could
potentially retrieve personal information about every object
in the directory. The malicious activities possible with such
information could include selling the information to competing
companies, foreign governments, or spammers, or even worse
- the targeted attack of specific individuals within the company,
such as domain-level administrators, known as context aware
attacks, or spear phishing [2].

We present an architecture for protecting individual at-
tributes in directory services from unauthorized access. In
standard configurations, clients communicate directly with
directory services using the Lightweight Directory Access
Protocol (LDAP). Clients connect to a specific port on a
specific server, and may authenticate using various methods,
including providing a username and password, if necessary.
Our architecture places a third component in this standard
configuration between the client and server, to handle LDAP
communication between them. This third component relies
on information provided by the client to encrypt sensitive
information. While other solutions have proposed encrypting
attribute information, our architecture provides this capability
without requiring additional software or hardware on either
the client or destination server.

The remainder of this paper is organized as follows. Section
IT presents an analysis of background material and related
solutions. Section III outlines the motivation for our solution,
including a description of the threats currently posed by
insider attacks. Section IV describes our architecture in detail.
In Section V, we analyze the results of our implementation

testing. Section VI discusses the architecture, including various
advantages, as well as attack models. Section VI concludes this
paper with a glimpse of future work.

II. BACKGROUND AND RELATED WORK
A. Directory Services

Directories are collections of information related to objects
in an organization. These objects often include users, com-
puters, or contacts. Directory Services are the services which
make this data available for use by others. Frequently, the
intention is to provide a single point of access for various
applications and individuals to find in-formation about users
and other objects within an organization [1]. The information
contained within the directory may come from direct input,
and can be manually maintained, but also may be referenced
and managed indirectly from other corporate data repositories,
such as databases and other information stores. Commonly
used directory services are Microsoft Active Directory [3],
IBM Tivoli [4], Apple Open Directory [5], Novell eDirec-
tory (formerly called Novell Directory Services) [6], OpenL-
DAP [7], Fedora Directory Server [8], and Sun Java System
Directory Server [9].

B. Protecting Information in Directory Services

A few techniques exist for protecting the information stored
within a directory itself. In general, access control lists (ACLs)
can be used to implement some form of protection in most
directories. For instance, in OpenLDAP, ACL protection can
be applied to individual objects, groups of objects, specific
LDAP filters, or a list of attributes [10]. Other techniques are
almost exclusively implementation-specific.

Microsoft Active Directory [3] provides additional access
control features through the use of confidential attributes [1].
This is a setting applied to the searchFlags component of
individual attributes, and is only supported on Microsoft Win-
dows Server 2003 SP1 and later. When processing confidential
attributes, the directory server checks for additional access
control rights associated with the requesting user. This partic-
ular type of access, called "CONTROL_ACCESS,” is granted
to administrative accounts by default, but can be delegated to
other accounts individually.

Another approach to protecting attributes is encrypting
them. Fedora Directory Server [8] has the capability to encrypt
all instances of specified attributes. This means that for every
object containing such attributes, the data in that attribute
is encrypted using a symmetric key known to the directory
server. Various encryption methods can be configured, and
different attributes can be encrypted using different ciphers.
Encryption and decryption are handled by the directory server
itself, so access to attributes is not controlled by this method.
However, data would be protected from unauthorized access
if the directory data was stolen or otherwise compromised.

A third approach to protecting directory attributes is de-
scribed in [11]. This method is not dependent on a particular
directory implementation. Rather, it uses public key infras-
tructure (PKI) to allow users to control the encryption of

attributes related to their own directory information. This solu-
tion describes different methods for using PKI to ensure either
data authenticity alone, or data authenticity combined with
confidentiality. Specific solutions are proposed for scalability
and usability purposes.

Additionally, [12] proposes encrypting directory informa-
tion for users based on a unique-id chosen for each user. This
method applies primarily to public directory servers, and does
not address the issue of preventing unauthorized access so
much as it addresses the issue of preventing access to the
entire directory. For instance, a company could share contact
information publicly, and provide selected clients with appro-
priate unique-ids, without worrying that the entire directory
would be scanned for email addresses. One important aspect
of the work is to choose a unique-id well, so that it cannot be
easily guessed, but can still be easily shared with authorized
users.

C. Metadirectories and Virtual Directories

One way to protect personal information is to reduce the
number of different data stores containing personal informa-
tion. This can be a complicated task, particularly for businesses
with many disparate data sources. The International Data
Corporation (IDC) and Gartner Groups have found that large
corporations may have in excess of 100 data stores containing
user information [13]. Additionally, proprietary systems often
do not interact with other data sources. Consolidating data into
a single data source is often not possible, due to constraints
on who may have access to specific information. Technology
has emerged to address these issues, specifically by referencing
the underlying data sources and presenting end-users with cus-
tomized views of the data they require, and by synchronizing
data between different data sources. Two similar but distinct
methods of handling these tasks are metadirectories and virtual
directories.

1) Metadirectories: Analyzing the origin of the word
“metadirectory,” we see the Greek phrase “meta-” which
means “after,” or “beyond.” In modern English, this term often
describes abstraction. Thus, a metadirectory is an abstraction
of an actual directory. In this sense, it acts as a directory in
some instances, by providing user interaction via LDAP, but
does not act as a directory in other instances, because it is
not the actual authoritative source of directory information. A
metadirectory is used to abstract data from other directories
into a single source, which can be used for two purposes.

The first use is for end user reference. Users may access
the data collected by a metadirectory via LDAP. In particular,
this not only reduces the number of data sources an end user
connects to, but enables customization of directory data for
individual uses. Therefore, in one sense a metadirectory is a
real directory - information is actually stored locally, and is
queried directly by end users.

However, this repository is not the authoritative source of
the data. Rather, data synchronization must occur between
the metadirectory and source directories to ensure consistency
and accuracy of the data. It is the synchronization of data

which is its second purpose. When different data sources
must store the same information, it is desirable to have a
single source of authoritative data, which is synchronized with
other data sources. For example, if the HR department is the
authoritative source for a user’s telephone number, but the
company directory application, which uses its own data source,
also requires a telephone number to be stored, a metadirectory
could be used to automatically synchronize the data from the
original source (HR). A more advanced use of metadirectories
is for user provisioning, which is a modified version of
synchronization, where new user accounts are created and
prepared for use, based on data in an authoritative source,
such as an account database. Examples of metadirectory
implementations include Microsoft Identity Lifecycle Manager
2007 [14], Sun ONE Meta-Directory [15], and Critical Path
Meta-Directory Server [16].

2) Virtual Directories: ”A virtual directory functions as
an abstraction layer between applications and data reposito-
ries.” [17] In contrast to metadirectories, virtual directories do
not maintain the data in a standalone data source (though some
offer data caching, which does store data locally for improved
performance). Rather, virtual directories reference various data
sources and present a consolidated view to the end user. This
has the advantage of not requiring data synchronization - the
data presented is always real-time, directly from the source.
Most virtual directory implementations have the additional ca-
pability of acquiring data from sources other than directories,
such as databases, and presenting this information to end users
via LDAP.

Virtual directory instances can be highly customized to
modify, or transform, data prior to client use. Additionally,
some products offer data synchronization as well, which
when coupled with a virtual directory instance, could be used
for user provisioning in much the same way as a metadi-
rectory. Virtual directory products currently in use include
Radiant Logic’s RadiantOne [18], Symlabs Virtual Directory
Server [19], and Oracle Virtual Directory [20].

III. MOTIVATION

The threat of unauthorized access of sensitive data by
employees or other authorized users, known as “dedicated
insiders”, is well documented [21], [22], [23]. While the
psychology and behavioral factors of these individuals is
beyond the scope of this paper, their motivation and level
of access should be considered. Additionally, it should be
noted that the number of offenses committed by insiders
is rising each year [23]. In January 2008, the U.S. Secret
Service and CERT issued a report titled “Insider Threat Study:
Ilicit Cyber Activity in the Government Sector” [14]. This
study out-lines a multi-year project, started in 2002, that
explores the activity and threats posed by insiders, defined
as “employees who have perpetrated acts of harm against an
organization via computer, system, or network to include theft
of intellectual property, fraud, and acts of sabotage within
critical infrastructure sectors.” Among the key findings of the
study that are relevant to this paper are the following:

o Most of the insiders had authorized access at the time of
their malicious activities

o Access control gaps facilitated most of the insider inci-
dents, including:

— The ability of an insider to use technical methods to
override access controls without detection

— System vulnerabilities that allowed technical insiders
to use their specialized skills to override access
controls without detection

In addition to outlining the methods and characteristics of

the unauthorized access, the study also details findings about
the motivation of the insiders, as well as the scope of the
problem. In particular, the study notes that ”in many cases in-
siders used authorized access to alter or obtain an individual’s
personal data in some manner.” Theft of personal data was
noted as a particularly likely target of insider threats, most
often to sell to others for financial gain. The study notes that
this is useful in “understanding how access to identity-related
data might contribute to insider activity in [the government
sector].” Additionally, it was noted that “agencies at all levels
of government were targets of insider threat,” and that the
attacks were successful because of “similar vulnerabilities
in business practices and access controls.” [21] To address
these concerns, the study also presented considerations for
government agencies with respect to the protection of data,
including the following:

o Electronic storage of citizens’ confidential information
necessitates accurate, reliable, and confidential record
keeping within government databases and computer sys-
tems. Policies and technical controls are implemented to
provide a safety net for critical data.

« Government agencies at all levels need to remain vigilant
against the potential impacts of insider incidents on public
trust and the citizens’ confidence in government services

o Government agencies should have proactive strategies to
protect information entrusted to them

o Federal agencies are required to comply with Title III
of the E-Government Act of 2002 known as the Federal
Information Security Management Act.

IV. OUR APPROACH

Our approach to protecting sensitive information in di-
rectory services is to encrypt that information using user-
controlled keys and to provide access to that data using
user-controlled delegation. This user-centric approach follows
current trends in computer security and privacy, but should not
interfere with more traditional approaches to access control.
Our approach also maintains usability with existing client
applications and source directories. To better understand the
overall picture of our solution, it is first important to under-
stand various key components.

A. Encryption

Encrypting sensitive information to protect it from misuse
is hardly a new concept. In the simplest application towards
protecting information in directory services, an end user

Client Encrypted Directory
Data Server
Fig. 1. Basic Client Encryption to LDAP Directory

Unencrypted
Data Encr pted n:
h|rd o " Directory
Party Server
Fig. 2. Basic Third Party Encryption to LDAP Directory

would simply encrypt sensitive information and then store the
encrypted data in a directory. To share information, the user
would share the encryption/decryption key with another user,
who would obtain the encrypted form from the directory and
decrypt it locally. This is shown in Figure 1.

However, this approach presents several usability and se-
curity problems. First of all, the integrity of the data relies
entirely on the shared key. If a malicious user were to obtain
this key, or if an authorized user were to share it with an
unauthorized party, the information could be compromised.
Data integrity could be provided by using an asymmetric
encryption algorithm, such as RSA, but this still does not
protect the data from unauthorized access.

Secondly, this approach requires the user to perform encryp-
tion and decryption before and after retrieving the information
from the directory. At best, this could be accomplished by a
custom application, which interfaces directly with the client
LDAP application. At worst, existing client LDAP applications
would need to be rewritten to incorporate encryption and
decryption. This is an undesirable situation for which a simple
solution exists: add a third party, between the client and server,
to handle encrypting and decrypting the data. This is shown
in Figure 2.

The third party component could be a custom component,
a proxy, written specifically for the purpose of handling
encryption and decryption of information between the client
and directory. However, we find it much more useful to
leverage the existing technologies of virtual directories and
metadirectories to provide the third party component to the
model. The benefits of doing so are numerous, and will be
discussed in detail later.

B. Using Virtual Directories

If we consider a virtual directory as the third party - the
component responsible for encrypting and decrypting data -
we must consider several key aspects, namely: how does the

virtual directory obtain key information from the client, how
does the virtual directory perform pass-through authentication
to destination directories, and how does the virtual directory
manipulate the data in the destination directory?

1) Obtaining client key information: When LDAP commu-
nications occur between a client and server, several standard
pieces of information are transmitted. These components are
generally configured by the client application, and can be
changed by the end user. They are: username, password,
and destination server name and port. We leverage these
components to pass encryption information to the server as
follows. The destination server and port, Dy, are replaced with
the destination server name and port of the virtual directory.
This configures the client to communicate with the virtual
directory, instead of the original destination directory. The
password remains the same as the original password used to
authenticate to the original destination directory. We replace
the username component with a string which is the con-
catenation of the following: the original destination directory
name, Dy, the client username, U, the hash of the original
user password, {P.}y, and a client key, S.. The last two
components are encrypted using a secret key known only to
the virtual directory server, Sy . The addition of these last
components requires additional setup, performed by another
application with access to the virtual directory key, Sy, and
is also discussed in detail later. The resulting string is called
an authentication string:

Ue|Ds[{Sel{Pe} rl}t sy

2) Performing pass-through authentication: We do not ig-
nore traditional authentication and access control methods with
this solution. Unless configured for anonymous authentication
(also called anonymous bind), the destination LDAP server
will expect a client to authenticate prior to data retrieval. Some
Virtual Directory implementations allow a static username and
password to be used for every transaction, but this defeats the
purpose of fine-grained access control. Rather, we will pass
the original client username and password, obtained from the
authentication string and password provided by the client, to
perform an initial bind prior to data retrieval. If this bind is
not successful, then no data transmission occurs between the
virtual directory and the client.

3) Storing the data: Once the user has successfully authen-
ticated to the destination directory, we use the transformation
capabilities of the virtual directory instance to extract the
user’s secret key, S., and password hash, {P.} . The pass-
word hash is used as an additional measure of security against
an attack where a malicious administrator may change the
user’s password and, using the original authentication string,
masquerade as the user. While this step may seem redundant,
it is necessary because of the nature of LDAP clients. Many
LDAP clients allow users to cache login information, including
the username. An attacker would need to have no knowledge
of the client secret key, S., if he used a cached authentication
string and a newly-reset password. However, if the client were
configured to prompt for a password every time, while still

retaining a cached authentication string, the user’s password
hash could be checked against the password hash encrypted by
the virtual directory’s secret key, {{P.} i }s,, . In this instance,
a changed user password would cause a failure, because its
hash would not match the original hash in the authentication
string.

Once verified, the user’s secret key, S, is used to perform
encryption or decryption of data stored in the directory.
The protocol for reading an encrypted attribute is shown in
Figure 3, and the protocol for writing an encrypted attribute
is shown in Figure 4.

C. Collaboration and Delegation

One of the key components to our approach, as shown in
Figures 3 and 4, is the capability of the user to delegate
access to attributes, enabling collaboration with other users.
We modify a traditional Access Control List (ACL) model,
by identifying the access control entry principal by password
hash. If another user is delegated permission to access a
particular attribute, the corresponding password hash must
exist in the ACL attached to the attribute when stored in
the destination directory. This ACL is managed by the virtual
directory server, and again would require additional interaction
by the attribute owner to manage.

V. PERFORMANCE TESTING

The solution presented here has been implemented for
testing and usability purposes. Directory servers were repre-
sented using Microsoft Active Directory Administration Mode
(ADAM) [24]. The Virtual directory component was modeled
via a custom application on a separate system, and clients
were simulated using directory services functions in Microsoft
Visual Studio .NET 2008.

To accurately compare results of testing different config-
urations of using virtual directories, three separate ADAM
instances were created, to represent the following situations:

o No virtual directory - communication directly between
the client and destination directory server

e A virtual directory handing communication between
client and destination directory server, but processing no
encrypted attributes

o A virtual directory handing communication between
client and destination directory server, and processing
some encrypted attributes

Data was simulated using real-world directory objects from
a corporate Active Directory instance. For each test, 10,000
user objects were created, with 25 attributes populated for
each user. Testing both with and without the virtual directory
server, as well as with and without encrypted attributes was
performed. When using encryption to protect attributes, three
attributes per user were stored encrypted. The time to perform
each operation was recorded, as well as the overall size on
disk of each directory instance.

TABLE I
AVERAGE NEW ACCOUNT CREATION TIME (MS)

Configuration Time (ms)
No virtual directory - no encryption 92
Virtual directory - not encrypting 99
Virtual directory - encrypting 205

TABLE II
AVERAGE TIME TO MODIFY A NON-ENCRYPTED ATTRIBUTE (MS)

Configuration Time (ms)
No virtual directory - no encryption 6
Virtual directory - not encrypting 12
Virtual directory - encrypting 12

1) Creating New Objects: Creating new objects in a di-
rectory service, known as account provisioning, involves two
distinct steps: creating the new object, and populating the
attributes of that object. For testing purposes, this was mea-
sured as one atomic operation. Table I shows the average
time necessary for each testing configuration to create new
accounts.

2) Modifying an Non-encrypted Attribute: When modifying
an attribute, the virtual directory server is able to detect
whether or not the attribute is encrypted. If the attribute is
not encrypted, the virtual directory simply passes through the
modification request from the client to the destination directory
server. The time to modify an non-encrypted attribute is shown
in Table II

3) Modifying an Encrypted Attribute: To modify an en-
crypted attribute, the virtual directory is required to decrypt
the authentication string, extract the shared secret key of the
client, S., and check to see if the requesting client is either the
data owner, or listed as an authorized user of that particular
object attribute. In some cases, the performance is dependent
on whether or not the attribute is blank or has been previously
populated. The time to complete these tasks is shown in
Table 111

4) Retrieving an Attribute Value: Retrieving an attribute
also depends on the particular configuration and whether or
not the attribute is encrypted. The time to retrieve an object
attribute is Table IV

5) Directory Size on Disk: The disk space necessary to
store a directory services instance can be easily measured
when using ADAM. Table V shows the beginning and ending

TABLE 111
AVERAGE TIME TO MODIFY ENCRYPTED ATTRIBUTES (MS)

Time Time
Configuration (blank (populated
attribute (ms)) | attribute (ms))
No virtual directory - no encryption 5 6
Virtual directory - not encrypting 12 12
Virtual directory - encrypting 106 100

Client Secure Virtual Directory Server Secure Dest. server
comm. comm.
Auth. » Authenticate client usin
string + " s e
P,C {Uc | Ds I Scl {PC}H }S,,
Check {P'c}y = {Pcly
Recv. If match, continue Authenticate client, using
auth. authentication U;and P’
Request —» Receive request
{data| {Po}y |ACL}s, “— {data| {Po}y |ACL}s,
Decrypt using S,
provided by client, and
check {Pc}y = {Polu
or {P-}y € ACLg
<4—— [f match, return to client
Fig. 3. Reading an encrypted attribute
Client Secure Virtual Directory Server Secure Dest. server
comm. comm.
Auth. . . :
string > Authenticate client using
+p’ {Uc | Ds | Scl {PC}H }.S‘,,
c
Check {P'c}y = {Pc}u
Recv. If match, continue Authenticate client, using
auth. authentication U, and P,
data’” —>» Receive data’
{data| {Po}y |ACL}s, “— {data| {Po}y |ACL}s,
Check {Pcly = {Po}y
or {P-}y € ACLy,
If match, encrypt using {data| {Po}y |ACL}
S, and S, then save oJH Se
<“— Acknowledge success

Fig. 4. Writing an encrypted attribute

size of the file used to store the directory for each test
configuration. The final file size was recorded after all test
accounts had been created and all test attributes modified.

VI. DISCUSSION

Analyzing the solution we present should be approached
from several angles. First, what are the advantages to using vir-
tual directories and metadirectories as the encryption provider?
Next, what are the benefits and limitations of using encryption
to protect the data in directory services? No analysis of data
protection would be complete without discussing vulnerabil-

ities and attack models. Finally, how well does the solution
perform, particularly in real-world situations?

A. Advantages of using virtual directories

By using virtual directories, we leverage existing technol-
ogy to overcome barriers such as application reliability and
security. Additionally, many virtual directory implementations
compliment existing access control methods, by specifying
yet another level at which users may be granted permission
to access specific objects. Another distinct advantage is that
virtual directories are client and destination independent. That

TABLE IV
AVERAGE TIME TO RETRIEVE AN ATTRIBUTE (MS)

Time Time
Configuration (non-encrypted (encrypted
attribute (ms)) | attribute (ms))
No virtual directory - no encryption 3
Virtual directory - not encrypting 6 6
Virtual directory - encrypting 6 98

TABLE V
DIRECTORY SIZE ON DISK (MB)

Configuration Beginning Final

size (MB) | size (MB)
No virtual directory - no encryption 6.3 56.6
Virtual directory - not encrypting 6.3 56.6
Virtual directory - encrypting 6.3 77.6

is, any LDAP client can be configured to use a virtual
directory, and virtual directories can be connected to almost
any type of directory service, as well as other types of data
sources, such as databases.

One additional advantage could be gained by incorporating
a metadirectory service into the solution as well. By using the
data synchronization component of metadirectories, we could
ensure that all instances of a particular attribute related to a
certain user were encrypted. This takes data protection one
step further, by eliminating the need to individually protect
data in each separate data source.

B. Advantages of using encryption

Allowing the user to maintain the encryption/decryption key
used in this solution is a user-centric approach [25], [26], [27]
to data protection and identity management. In general, user-
centric identity management is a method of managing user
identities where the users themselves control what information
is stored, the actual content of that information, and who
is allowed to view the information. One motivation for this
concept is privacy, accomplished by giving users the choice
about what is shared, and with whom it is shared. [11].
Allowing the users to control the key provides them with
complete control over the content of the data, and by including
a user-specified ACL in the model, we allow users to specify
who is allowed to access that data.

This is a particular advantage when considering one possible
threat to conventional ACL-based access control. Admin-
istrative users may have permissions to modify ACLs on
directory objects, and could grant themselves permission to
read attributes intended to be confidential. By encrypting this
data, we mitigate this particular threat.

C. Vulnerabilities

Of course, it’s still possible for a dedicated attacker to
compromise this system by gaining administrative access to
the virtual directory server. This type of attack is difficult to
prevent in any architecture. However, the type of attack which

would compromise the data stored using our solution would be
a more sophisticated attack, require more technical knowledge,
and be more risky in terms of detection. No longer is a simple
ACL modification necessary, now an attacker must either
compromise the virtual directory application and intercept
unencrypted data in transit, or he must compromise the data
during transit or storage, by attacking the SSL connection.
This is a much harder attack to undertake, and the risk of
detection by network monitoring tools is greater.

A much simpler attack on this solution would be to com-
promise the user’s secret key. However, this would be useless
without also compromising the user’s original password. Tools
such as keystroke logging and administrative access to the
user’s computer could be used to mount such an attack, but
again, this requires more technical skill, and comes with a
higher risk of detection.

D. Performance analysis

Examining the performance tables shown in Section IV
seems to reveal a large difference between the time it takes
to manage encrypted attributes versus the time to manage
unencrypted attributes. This is hard to avoid - encryption is not
computationally easy - but we believe this large difference is
not functionally detrimental to the overall performance of the
directory. Often, attributes which need to be protected anyway
are rarely accessed. A difference of 100ms is hardly noticeable
when the attribute is only accessed a few times per day.

More significant to the performance of the solution in
the real world is the user interaction required. An initial
interaction is necessary to establish the authentication string.
This could be done via secure web services, for example,
but still require user configuration of the local LDAP client.
Additionally, any authorized password change would require
a new authentication string to be issued.

Collaboration and delegation would also be an application
management issue. To add a user to the object ACL, the
owner would need to use a third-party interface, and would
need to have access to the hash of the delegatee’s password.
Again, password changes would require a modification of the
ACL stored on the directory object. For large-scale delegation,
this could become unwieldy. However, for sharing information
with a few select sources, the benefits of this solution appear
to outweigh the administrative overhead.

VII. FUTURE WORK AND CONCLUSION

We have presented an architecture for protecting sensitive
information in directory services. This architecture leverages
the existing technology of virtual directories and metadirecto-
ries as a layer between client and directory service applica-
tions. This third layer is responsible for handling communica-
tion between client and server, and manages encryption and
decryption routines with information provided by the client.
The client provides the information using standard LDAP
client fields, requiring only a reconfiguration - not a recode
- of client applications. By allowing users to control and
protect encryption keys, we enable a user-centric model of data

protection, and reduce the threats posed by dedicated insider
attacks.

Future work will include additional real-world implementa-
tion and testing. Integration with existing PKI infrastructure
may also pose an interesting approach, and could help to
eliminate some of the overhead associated with user key
and password management. Finally, by examining existing
data stores and the applications that utilize them, we may
come to a better understanding of how sensitive information
is distributed over an enterprise-level environment, and may
discover new approaches to information protection based on
such knowledge.

[1]
[2]
[3]

[4]
[5]
[6]

[7]
[8]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]

REFERENCES

“How to mark an attribute as confidential in windows server 2003 service
pack 1.”

M. Jakobsson, “Modeling and preventing phishing attacks,” in Financial
Cryptography, 2005.

“Windows server 2003 active directory.” [Online]. Available:
www.microsoft.com/windowsserver2003/technologies/directory
/activedirectory/default.mspx

“Ibm tivoli directory server”” [Online]. Available: www-
306.ibm.com/software/tivoli/products/directory-server/

“Mac os x server open directory”” [Online]. Available:
www.apple.com/server/macosx/opendirectory.html

“Novell edirectory.” [Online]. Available:
www.novell.com/products/edirectory/

“Open ldap.” [Online]. Available: www.openldap.org/

“Fedora directory server.” [Online]. Available: direc-
tory.fedoraproject.org/

“Sun java system directory server” [Online]. Available:

www.sun.com/software/products/directory_srvr/home_directory.xml

G. Carter, LDAP System Administration. O’Reilly, 2003.

W. Claycomb, D. Shin, and D. Hareland, “Towards privacy in enterprise
directory services: A user-centric approach to attribute management,” in
Proceedings of the 41th IEEE International Carnahan Conference on
Security Technology, Ottawa, Canada, 2007.

A. Berger, “Privacy protection for public directory services,” Computer
Networks and ISDN Systems, vol. 30, pp. 1521-1529, 1998.

M. Chacon, “Unifying diverse directories,” Network Magazine, vol. 16,
pp. 70-75, 2001.

“Microsoft identity lifecycle manager 2007.” [Online]. Available:
www.microsoft.com/windowsserver/ilm2007/default.mspx

“Sun one meta-directory.” [Online]. Available:
www.sun.com/software/products/meta_directory/home_meta_dir.xml
“Critical path meta-directory server.”” [Online]. Available:
www.criticalpath.net/pdf/MetaDirectory.pdf

I. Radiant Logic, “Using virtualization to leverage your investment in
active directory,” Radiant Logic, Inc., Tech. Rep.

“Radiant logic, inc.” [Online]. Available:
http://www.radiantlogic.com/main/

“Symlabs virtual directory server”” [Online]. Available:
http://symlabs.com/products/virtual-directory-server

“Oracle virtual directory.” [Online]. Auvailable:

http://www.oracle.com/technology/products/id_mgmt/ovds/index.html
E. Kowalski, D. Cappelli, T. Conway, B. Willke, S. Keverline, A. Moore,
and M. Williams, “Insider threat study: Illicit cyber activity in the
government sector,” U.S. Secret Service and CERT, Tech. Rep., January
2008.

M. Keeney, D. Capelli, E. Kowalski, A. Moore, T. Shimeall, and
S. Rogers, “Insider threat study: Computer system sabotage in critical
infrastructure sectors,” U.S. Secret Service and CERT/SEI, Tech. Rep.,
May 2005.

E. Shaw, K. Ruby, and J. Post, “The insider threat to information
systems,” Security Awareness Bulletin, no. 2-98, September 1998.
“Windows server 2003 active directory application mode.”

M. Koch and W. Worndl, “Community support and identity man-
agement,” in Seventh European Conference on Computer-Supported
Cooperative Work - ECSCW 2001, Bonn, Germany, September 2001.

[26] M. Koch, “Global identity management to boost personalization,” in

Ninth Research Symposium on Emerging Electronic Markets, Basel,
Switzerland, September 2002.

[27] A. Josang and S. Pope, “User centric identity management,” in Asia

Pacific Information Technology Security Conference, AusCERT2005,
Austrailia, 2005.

